| Index: gdb/rl78-tdep.c
|
| diff --git a/gdb/rl78-tdep.c b/gdb/rl78-tdep.c
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..acd36c25d781c46055d1a74c9899fc65be8674a1
|
| --- /dev/null
|
| +++ b/gdb/rl78-tdep.c
|
| @@ -0,0 +1,1173 @@
|
| +/* Target-dependent code for the Renesas RL78 for GDB, the GNU debugger.
|
| +
|
| + Copyright (C) 2011-2012 Free Software Foundation, Inc.
|
| +
|
| + Contributed by Red Hat, Inc.
|
| +
|
| + This file is part of GDB.
|
| +
|
| + This program is free software; you can redistribute it and/or modify
|
| + it under the terms of the GNU General Public License as published by
|
| + the Free Software Foundation; either version 3 of the License, or
|
| + (at your option) any later version.
|
| +
|
| + This program is distributed in the hope that it will be useful,
|
| + but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| + GNU General Public License for more details.
|
| +
|
| + You should have received a copy of the GNU General Public License
|
| + along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
| +
|
| +#include "defs.h"
|
| +#include "arch-utils.h"
|
| +#include "prologue-value.h"
|
| +#include "target.h"
|
| +#include "regcache.h"
|
| +#include "opcode/rl78.h"
|
| +#include "dis-asm.h"
|
| +#include "gdbtypes.h"
|
| +#include "frame.h"
|
| +#include "frame-unwind.h"
|
| +#include "frame-base.h"
|
| +#include "value.h"
|
| +#include "gdbcore.h"
|
| +#include "dwarf2-frame.h"
|
| +#include "reggroups.h"
|
| +
|
| +#include "elf/rl78.h"
|
| +#include "elf-bfd.h"
|
| +
|
| +/* Register Banks. */
|
| +
|
| +enum
|
| +{
|
| + RL78_BANK0 = 0,
|
| + RL78_BANK1 = 1,
|
| + RL78_BANK2 = 2,
|
| + RL78_BANK3 = 3,
|
| + RL78_NUMBANKS = 4,
|
| + RL78_REGS_PER_BANK = 8
|
| +};
|
| +
|
| +/* Register Numbers. */
|
| +
|
| +enum
|
| +{
|
| + /* All general purpose registers are 8 bits wide. */
|
| + RL78_RAW_BANK0_R0_REGNUM = 0,
|
| + RL78_RAW_BANK0_R1_REGNUM,
|
| + RL78_RAW_BANK0_R2_REGNUM,
|
| + RL78_RAW_BANK0_R3_REGNUM,
|
| + RL78_RAW_BANK0_R4_REGNUM,
|
| + RL78_RAW_BANK0_R5_REGNUM,
|
| + RL78_RAW_BANK0_R6_REGNUM,
|
| + RL78_RAW_BANK0_R7_REGNUM,
|
| +
|
| + RL78_RAW_BANK1_R0_REGNUM,
|
| + RL78_RAW_BANK1_R1_REGNUM,
|
| + RL78_RAW_BANK1_R2_REGNUM,
|
| + RL78_RAW_BANK1_R3_REGNUM,
|
| + RL78_RAW_BANK1_R4_REGNUM,
|
| + RL78_RAW_BANK1_R5_REGNUM,
|
| + RL78_RAW_BANK1_R6_REGNUM,
|
| + RL78_RAW_BANK1_R7_REGNUM,
|
| +
|
| + RL78_RAW_BANK2_R0_REGNUM,
|
| + RL78_RAW_BANK2_R1_REGNUM,
|
| + RL78_RAW_BANK2_R2_REGNUM,
|
| + RL78_RAW_BANK2_R3_REGNUM,
|
| + RL78_RAW_BANK2_R4_REGNUM,
|
| + RL78_RAW_BANK2_R5_REGNUM,
|
| + RL78_RAW_BANK2_R6_REGNUM,
|
| + RL78_RAW_BANK2_R7_REGNUM,
|
| +
|
| + RL78_RAW_BANK3_R0_REGNUM,
|
| + RL78_RAW_BANK3_R1_REGNUM,
|
| + RL78_RAW_BANK3_R2_REGNUM,
|
| + RL78_RAW_BANK3_R3_REGNUM,
|
| + RL78_RAW_BANK3_R4_REGNUM,
|
| + RL78_RAW_BANK3_R5_REGNUM,
|
| + RL78_RAW_BANK3_R6_REGNUM,
|
| + RL78_RAW_BANK3_R7_REGNUM,
|
| +
|
| + RL78_PSW_REGNUM, /* 8 bits */
|
| + RL78_ES_REGNUM, /* 8 bits */
|
| + RL78_CS_REGNUM, /* 8 bits */
|
| + RL78_PC_REGNUM, /* 20 bits; we'll use 32 bits for it. */
|
| +
|
| + /* Fixed address SFRs (some of those above are SFRs too.) */
|
| + RL78_SPL_REGNUM, /* 8 bits; lower half of SP */
|
| + RL78_SPH_REGNUM, /* 8 bits; upper half of SP */
|
| + RL78_PMC_REGNUM, /* 8 bits */
|
| + RL78_MEM_REGNUM, /* 8 bits ?? */
|
| +
|
| + RL78_NUM_REGS,
|
| +
|
| + /* Pseudo registers. */
|
| + RL78_SP_REGNUM = RL78_NUM_REGS,
|
| +
|
| + RL78_X_REGNUM,
|
| + RL78_A_REGNUM,
|
| + RL78_C_REGNUM,
|
| + RL78_B_REGNUM,
|
| + RL78_E_REGNUM,
|
| + RL78_D_REGNUM,
|
| + RL78_L_REGNUM,
|
| + RL78_H_REGNUM,
|
| +
|
| + RL78_AX_REGNUM,
|
| + RL78_BC_REGNUM,
|
| + RL78_DE_REGNUM,
|
| + RL78_HL_REGNUM,
|
| +
|
| + RL78_BANK0_R0_REGNUM,
|
| + RL78_BANK0_R1_REGNUM,
|
| + RL78_BANK0_R2_REGNUM,
|
| + RL78_BANK0_R3_REGNUM,
|
| + RL78_BANK0_R4_REGNUM,
|
| + RL78_BANK0_R5_REGNUM,
|
| + RL78_BANK0_R6_REGNUM,
|
| + RL78_BANK0_R7_REGNUM,
|
| +
|
| + RL78_BANK1_R0_REGNUM,
|
| + RL78_BANK1_R1_REGNUM,
|
| + RL78_BANK1_R2_REGNUM,
|
| + RL78_BANK1_R3_REGNUM,
|
| + RL78_BANK1_R4_REGNUM,
|
| + RL78_BANK1_R5_REGNUM,
|
| + RL78_BANK1_R6_REGNUM,
|
| + RL78_BANK1_R7_REGNUM,
|
| +
|
| + RL78_BANK2_R0_REGNUM,
|
| + RL78_BANK2_R1_REGNUM,
|
| + RL78_BANK2_R2_REGNUM,
|
| + RL78_BANK2_R3_REGNUM,
|
| + RL78_BANK2_R4_REGNUM,
|
| + RL78_BANK2_R5_REGNUM,
|
| + RL78_BANK2_R6_REGNUM,
|
| + RL78_BANK2_R7_REGNUM,
|
| +
|
| + RL78_BANK3_R0_REGNUM,
|
| + RL78_BANK3_R1_REGNUM,
|
| + RL78_BANK3_R2_REGNUM,
|
| + RL78_BANK3_R3_REGNUM,
|
| + RL78_BANK3_R4_REGNUM,
|
| + RL78_BANK3_R5_REGNUM,
|
| + RL78_BANK3_R6_REGNUM,
|
| + RL78_BANK3_R7_REGNUM,
|
| +
|
| + RL78_BANK0_RP0_REGNUM,
|
| + RL78_BANK0_RP1_REGNUM,
|
| + RL78_BANK0_RP2_REGNUM,
|
| + RL78_BANK0_RP3_REGNUM,
|
| +
|
| + RL78_BANK1_RP0_REGNUM,
|
| + RL78_BANK1_RP1_REGNUM,
|
| + RL78_BANK1_RP2_REGNUM,
|
| + RL78_BANK1_RP3_REGNUM,
|
| +
|
| + RL78_BANK2_RP0_REGNUM,
|
| + RL78_BANK2_RP1_REGNUM,
|
| + RL78_BANK2_RP2_REGNUM,
|
| + RL78_BANK2_RP3_REGNUM,
|
| +
|
| + RL78_BANK3_RP0_REGNUM,
|
| + RL78_BANK3_RP1_REGNUM,
|
| + RL78_BANK3_RP2_REGNUM,
|
| + RL78_BANK3_RP3_REGNUM,
|
| +
|
| + RL78_NUM_TOTAL_REGS,
|
| + RL78_NUM_PSEUDO_REGS = RL78_NUM_TOTAL_REGS - RL78_NUM_REGS
|
| +};
|
| +
|
| +/* Architecture specific data. */
|
| +
|
| +struct gdbarch_tdep
|
| +{
|
| + /* The ELF header flags specify the multilib used. */
|
| + int elf_flags;
|
| +
|
| + struct type *rl78_void,
|
| + *rl78_uint8,
|
| + *rl78_int8,
|
| + *rl78_uint16,
|
| + *rl78_int16,
|
| + *rl78_uint32,
|
| + *rl78_int32,
|
| + *rl78_data_pointer,
|
| + *rl78_code_pointer;
|
| +};
|
| +
|
| +/* This structure holds the results of a prologue analysis. */
|
| +
|
| +struct rl78_prologue
|
| +{
|
| + /* The offset from the frame base to the stack pointer --- always
|
| + zero or negative.
|
| +
|
| + Calling this a "size" is a bit misleading, but given that the
|
| + stack grows downwards, using offsets for everything keeps one
|
| + from going completely sign-crazy: you never change anything's
|
| + sign for an ADD instruction; always change the second operand's
|
| + sign for a SUB instruction; and everything takes care of
|
| + itself. */
|
| + int frame_size;
|
| +
|
| + /* Non-zero if this function has initialized the frame pointer from
|
| + the stack pointer, zero otherwise. */
|
| + int has_frame_ptr;
|
| +
|
| + /* If has_frame_ptr is non-zero, this is the offset from the frame
|
| + base to where the frame pointer points. This is always zero or
|
| + negative. */
|
| + int frame_ptr_offset;
|
| +
|
| + /* The address of the first instruction at which the frame has been
|
| + set up and the arguments are where the debug info says they are
|
| + --- as best as we can tell. */
|
| + CORE_ADDR prologue_end;
|
| +
|
| + /* reg_offset[R] is the offset from the CFA at which register R is
|
| + saved, or 1 if register R has not been saved. (Real values are
|
| + always zero or negative.) */
|
| + int reg_offset[RL78_NUM_TOTAL_REGS];
|
| +};
|
| +
|
| +/* Implement the "register_type" gdbarch method. */
|
| +
|
| +static struct type *
|
| +rl78_register_type (struct gdbarch *gdbarch, int reg_nr)
|
| +{
|
| + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
| +
|
| + if (reg_nr == RL78_PC_REGNUM)
|
| + return tdep->rl78_code_pointer;
|
| + else if (reg_nr <= RL78_MEM_REGNUM
|
| + || (RL78_X_REGNUM <= reg_nr && reg_nr <= RL78_H_REGNUM)
|
| + || (RL78_BANK0_R0_REGNUM <= reg_nr
|
| + && reg_nr <= RL78_BANK3_R7_REGNUM))
|
| + return tdep->rl78_int8;
|
| + else
|
| + return tdep->rl78_data_pointer;
|
| +}
|
| +
|
| +/* Implement the "register_name" gdbarch method. */
|
| +
|
| +static const char *
|
| +rl78_register_name (struct gdbarch *gdbarch, int regnr)
|
| +{
|
| + static const char *const reg_names[] =
|
| + {
|
| + "", /* bank0_r0 */
|
| + "", /* bank0_r1 */
|
| + "", /* bank0_r2 */
|
| + "", /* bank0_r3 */
|
| + "", /* bank0_r4 */
|
| + "", /* bank0_r5 */
|
| + "", /* bank0_r6 */
|
| + "", /* bank0_r7 */
|
| +
|
| + "", /* bank1_r0 */
|
| + "", /* bank1_r1 */
|
| + "", /* bank1_r2 */
|
| + "", /* bank1_r3 */
|
| + "", /* bank1_r4 */
|
| + "", /* bank1_r5 */
|
| + "", /* bank1_r6 */
|
| + "", /* bank1_r7 */
|
| +
|
| + "", /* bank2_r0 */
|
| + "", /* bank2_r1 */
|
| + "", /* bank2_r2 */
|
| + "", /* bank2_r3 */
|
| + "", /* bank2_r4 */
|
| + "", /* bank2_r5 */
|
| + "", /* bank2_r6 */
|
| + "", /* bank2_r7 */
|
| +
|
| + "", /* bank3_r0 */
|
| + "", /* bank3_r1 */
|
| + "", /* bank3_r2 */
|
| + "", /* bank3_r3 */
|
| + "", /* bank3_r4 */
|
| + "", /* bank3_r5 */
|
| + "", /* bank3_r6 */
|
| + "", /* bank3_r7 */
|
| +
|
| + "psw",
|
| + "es",
|
| + "cs",
|
| + "pc",
|
| +
|
| + "", /* spl */
|
| + "", /* sph */
|
| + "pmc",
|
| + "mem",
|
| +
|
| + "sp",
|
| +
|
| + "x",
|
| + "a",
|
| + "c",
|
| + "b",
|
| + "e",
|
| + "d",
|
| + "l",
|
| + "h",
|
| +
|
| + "ax",
|
| + "bc",
|
| + "de",
|
| + "hl",
|
| +
|
| + "bank0_r0",
|
| + "bank0_r1",
|
| + "bank0_r2",
|
| + "bank0_r3",
|
| + "bank0_r4",
|
| + "bank0_r5",
|
| + "bank0_r6",
|
| + "bank0_r7",
|
| +
|
| + "bank1_r0",
|
| + "bank1_r1",
|
| + "bank1_r2",
|
| + "bank1_r3",
|
| + "bank1_r4",
|
| + "bank1_r5",
|
| + "bank1_r6",
|
| + "bank1_r7",
|
| +
|
| + "bank2_r0",
|
| + "bank2_r1",
|
| + "bank2_r2",
|
| + "bank2_r3",
|
| + "bank2_r4",
|
| + "bank2_r5",
|
| + "bank2_r6",
|
| + "bank2_r7",
|
| +
|
| + "bank3_r0",
|
| + "bank3_r1",
|
| + "bank3_r2",
|
| + "bank3_r3",
|
| + "bank3_r4",
|
| + "bank3_r5",
|
| + "bank3_r6",
|
| + "bank3_r7",
|
| +
|
| + "bank0_rp0",
|
| + "bank0_rp1",
|
| + "bank0_rp2",
|
| + "bank0_rp3",
|
| +
|
| + "bank1_rp0",
|
| + "bank1_rp1",
|
| + "bank1_rp2",
|
| + "bank1_rp3",
|
| +
|
| + "bank2_rp0",
|
| + "bank2_rp1",
|
| + "bank2_rp2",
|
| + "bank2_rp3",
|
| +
|
| + "bank3_rp0",
|
| + "bank3_rp1",
|
| + "bank3_rp2",
|
| + "bank3_rp3"
|
| + };
|
| +
|
| + return reg_names[regnr];
|
| +}
|
| +
|
| +/* Implement the "register_reggroup_p" gdbarch method. */
|
| +
|
| +static int
|
| +rl78_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
|
| + struct reggroup *group)
|
| +{
|
| + if (group == all_reggroup)
|
| + return 1;
|
| +
|
| + /* All other registers are saved and restored. */
|
| + if (group == save_reggroup || group == restore_reggroup)
|
| + {
|
| + if (regnum < RL78_NUM_REGS)
|
| + return 1;
|
| + else
|
| + return 0;
|
| + }
|
| +
|
| + if ((RL78_BANK0_R0_REGNUM <= regnum && regnum <= RL78_BANK3_R7_REGNUM)
|
| + || regnum == RL78_ES_REGNUM
|
| + || regnum == RL78_CS_REGNUM
|
| + || regnum == RL78_SPL_REGNUM
|
| + || regnum == RL78_SPH_REGNUM
|
| + || regnum == RL78_PMC_REGNUM
|
| + || regnum == RL78_MEM_REGNUM
|
| + || (RL78_BANK0_RP0_REGNUM <= regnum && regnum <= RL78_BANK3_RP3_REGNUM))
|
| + return group == system_reggroup;
|
| +
|
| + return group == general_reggroup;
|
| +}
|
| +
|
| +/* Strip bits to form an instruction address. (When fetching a
|
| + 32-bit address from the stack, the high eight bits are garbage.
|
| + This function strips off those unused bits.) */
|
| +
|
| +static CORE_ADDR
|
| +rl78_make_instruction_address (CORE_ADDR addr)
|
| +{
|
| + return addr & 0xffffff;
|
| +}
|
| +
|
| +/* Set / clear bits necessary to make a data address. */
|
| +
|
| +static CORE_ADDR
|
| +rl78_make_data_address (CORE_ADDR addr)
|
| +{
|
| + return (addr & 0xffff) | 0xf0000;
|
| +}
|
| +
|
| +/* Implement the "pseudo_register_read" gdbarch method. */
|
| +
|
| +static enum register_status
|
| +rl78_pseudo_register_read (struct gdbarch *gdbarch,
|
| + struct regcache *regcache,
|
| + int reg, gdb_byte *buffer)
|
| +{
|
| + enum register_status status;
|
| +
|
| + if (RL78_BANK0_R0_REGNUM <= reg && reg <= RL78_BANK3_R7_REGNUM)
|
| + {
|
| + int raw_regnum = RL78_RAW_BANK0_R0_REGNUM
|
| + + (reg - RL78_BANK0_R0_REGNUM);
|
| +
|
| + status = regcache_raw_read (regcache, raw_regnum, buffer);
|
| + }
|
| + else if (RL78_BANK0_RP0_REGNUM <= reg && reg <= RL78_BANK3_RP3_REGNUM)
|
| + {
|
| + int raw_regnum = 2 * (reg - RL78_BANK0_RP0_REGNUM)
|
| + + RL78_RAW_BANK0_R0_REGNUM;
|
| +
|
| + status = regcache_raw_read (regcache, raw_regnum, buffer);
|
| + if (status == REG_VALID)
|
| + status = regcache_raw_read (regcache, raw_regnum + 1, buffer + 1);
|
| + }
|
| + else if (reg == RL78_SP_REGNUM)
|
| + {
|
| + status = regcache_raw_read (regcache, RL78_SPL_REGNUM, buffer);
|
| + if (status == REG_VALID)
|
| + status = regcache_raw_read (regcache, RL78_SPH_REGNUM, buffer + 1);
|
| + }
|
| + else if (RL78_X_REGNUM <= reg && reg <= RL78_H_REGNUM)
|
| + {
|
| + ULONGEST psw;
|
| +
|
| + status = regcache_raw_read_unsigned (regcache, RL78_PSW_REGNUM, &psw);
|
| + if (status == REG_VALID)
|
| + {
|
| + /* RSB0 is at bit 3; RSBS1 is at bit 5. */
|
| + int bank = ((psw >> 3) & 1) | ((psw >> 4) & 1);
|
| + int raw_regnum = RL78_RAW_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK
|
| + + (reg - RL78_X_REGNUM);
|
| + status = regcache_raw_read (regcache, raw_regnum, buffer);
|
| + }
|
| + }
|
| + else if (RL78_AX_REGNUM <= reg && reg <= RL78_HL_REGNUM)
|
| + {
|
| + ULONGEST psw;
|
| +
|
| + status = regcache_raw_read_unsigned (regcache, RL78_PSW_REGNUM, &psw);
|
| + if (status == REG_VALID)
|
| + {
|
| + /* RSB0 is at bit 3; RSBS1 is at bit 5. */
|
| + int bank = ((psw >> 3) & 1) | ((psw >> 4) & 1);
|
| + int raw_regnum = RL78_RAW_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK
|
| + + 2 * (reg - RL78_AX_REGNUM);
|
| + status = regcache_raw_read (regcache, raw_regnum, buffer);
|
| + if (status == REG_VALID)
|
| + status = regcache_raw_read (regcache, raw_regnum + 1,
|
| + buffer + 1);
|
| + }
|
| + }
|
| + else
|
| + gdb_assert_not_reached ("invalid pseudo register number");
|
| + return status;
|
| +}
|
| +
|
| +/* Implement the "pseudo_register_write" gdbarch method. */
|
| +
|
| +static void
|
| +rl78_pseudo_register_write (struct gdbarch *gdbarch,
|
| + struct regcache *regcache,
|
| + int reg, const gdb_byte *buffer)
|
| +{
|
| + if (RL78_BANK0_R0_REGNUM <= reg && reg <= RL78_BANK3_R7_REGNUM)
|
| + {
|
| + int raw_regnum = RL78_RAW_BANK0_R0_REGNUM
|
| + + (reg - RL78_BANK0_R0_REGNUM);
|
| +
|
| + regcache_raw_write (regcache, raw_regnum, buffer);
|
| + }
|
| + else if (RL78_BANK0_RP0_REGNUM <= reg && reg <= RL78_BANK3_RP3_REGNUM)
|
| + {
|
| + int raw_regnum = 2 * (reg - RL78_BANK0_RP0_REGNUM)
|
| + + RL78_RAW_BANK0_R0_REGNUM;
|
| +
|
| + regcache_raw_write (regcache, raw_regnum, buffer);
|
| + regcache_raw_write (regcache, raw_regnum + 1, buffer + 1);
|
| + }
|
| + else if (reg == RL78_SP_REGNUM)
|
| + {
|
| + regcache_raw_write (regcache, RL78_SPL_REGNUM, buffer);
|
| + regcache_raw_write (regcache, RL78_SPH_REGNUM, buffer + 1);
|
| + }
|
| + else if (RL78_X_REGNUM <= reg && reg <= RL78_H_REGNUM)
|
| + {
|
| + ULONGEST psw;
|
| + int bank;
|
| + int raw_regnum;
|
| +
|
| + regcache_raw_read_unsigned (regcache, RL78_PSW_REGNUM, &psw);
|
| + bank = ((psw >> 3) & 1) | ((psw >> 4) & 1);
|
| + /* RSB0 is at bit 3; RSBS1 is at bit 5. */
|
| + raw_regnum = RL78_RAW_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK
|
| + + (reg - RL78_X_REGNUM);
|
| + regcache_raw_write (regcache, raw_regnum, buffer);
|
| + }
|
| + else if (RL78_AX_REGNUM <= reg && reg <= RL78_HL_REGNUM)
|
| + {
|
| + ULONGEST psw;
|
| + int bank, raw_regnum;
|
| +
|
| + regcache_raw_read_unsigned (regcache, RL78_PSW_REGNUM, &psw);
|
| + bank = ((psw >> 3) & 1) | ((psw >> 4) & 1);
|
| + /* RSB0 is at bit 3; RSBS1 is at bit 5. */
|
| + raw_regnum = RL78_RAW_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK
|
| + + 2 * (reg - RL78_AX_REGNUM);
|
| + regcache_raw_write (regcache, raw_regnum, buffer);
|
| + regcache_raw_write (regcache, raw_regnum + 1, buffer + 1);
|
| + }
|
| + else
|
| + gdb_assert_not_reached ("invalid pseudo register number");
|
| +}
|
| +
|
| +/* Implement the "breakpoint_from_pc" gdbarch method. */
|
| +
|
| +static const gdb_byte *
|
| +rl78_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
|
| + int *lenptr)
|
| +{
|
| + /* The documented BRK instruction is actually a two byte sequence,
|
| + {0x61, 0xcc}, but instructions may be as short as one byte.
|
| + Correspondence with Renesas revealed that the one byte sequence
|
| + 0xff is used when a one byte breakpoint instruction is required. */
|
| + static gdb_byte breakpoint[] = { 0xff };
|
| +
|
| + *lenptr = sizeof breakpoint;
|
| + return breakpoint;
|
| +}
|
| +
|
| +/* Define a "handle" struct for fetching the next opcode. */
|
| +
|
| +struct rl78_get_opcode_byte_handle
|
| +{
|
| + CORE_ADDR pc;
|
| +};
|
| +
|
| +/* Fetch a byte on behalf of the opcode decoder. HANDLE contains
|
| + the memory address of the next byte to fetch. If successful,
|
| + the address in the handle is updated and the byte fetched is
|
| + returned as the value of the function. If not successful, -1
|
| + is returned. */
|
| +
|
| +static int
|
| +rl78_get_opcode_byte (void *handle)
|
| +{
|
| + struct rl78_get_opcode_byte_handle *opcdata = handle;
|
| + int status;
|
| + gdb_byte byte;
|
| +
|
| + status = target_read_memory (opcdata->pc, &byte, 1);
|
| + if (status == 0)
|
| + {
|
| + opcdata->pc += 1;
|
| + return byte;
|
| + }
|
| + else
|
| + return -1;
|
| +}
|
| +
|
| +/* Function for finding saved registers in a 'struct pv_area'; this
|
| + function is passed to pv_area_scan.
|
| +
|
| + If VALUE is a saved register, ADDR says it was saved at a constant
|
| + offset from the frame base, and SIZE indicates that the whole
|
| + register was saved, record its offset. */
|
| +
|
| +static void
|
| +check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size,
|
| + pv_t value)
|
| +{
|
| + struct rl78_prologue *result = (struct rl78_prologue *) result_untyped;
|
| +
|
| + if (value.kind == pvk_register
|
| + && value.k == 0
|
| + && pv_is_register (addr, RL78_SP_REGNUM)
|
| + && size == register_size (target_gdbarch, value.reg))
|
| + result->reg_offset[value.reg] = addr.k;
|
| +}
|
| +
|
| +/* Analyze a prologue starting at START_PC, going no further than
|
| + LIMIT_PC. Fill in RESULT as appropriate. */
|
| +
|
| +static void
|
| +rl78_analyze_prologue (CORE_ADDR start_pc,
|
| + CORE_ADDR limit_pc, struct rl78_prologue *result)
|
| +{
|
| + CORE_ADDR pc, next_pc;
|
| + int rn;
|
| + pv_t reg[RL78_NUM_TOTAL_REGS];
|
| + struct pv_area *stack;
|
| + struct cleanup *back_to;
|
| + CORE_ADDR after_last_frame_setup_insn = start_pc;
|
| + int bank = 0;
|
| +
|
| + memset (result, 0, sizeof (*result));
|
| +
|
| + for (rn = 0; rn < RL78_NUM_TOTAL_REGS; rn++)
|
| + {
|
| + reg[rn] = pv_register (rn, 0);
|
| + result->reg_offset[rn] = 1;
|
| + }
|
| +
|
| + stack = make_pv_area (RL78_SP_REGNUM, gdbarch_addr_bit (target_gdbarch));
|
| + back_to = make_cleanup_free_pv_area (stack);
|
| +
|
| + /* The call instruction has saved the return address on the stack. */
|
| + reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM], -4);
|
| + pv_area_store (stack, reg[RL78_SP_REGNUM], 4, reg[RL78_PC_REGNUM]);
|
| +
|
| + pc = start_pc;
|
| + while (pc < limit_pc)
|
| + {
|
| + int bytes_read;
|
| + struct rl78_get_opcode_byte_handle opcode_handle;
|
| + RL78_Opcode_Decoded opc;
|
| +
|
| + opcode_handle.pc = pc;
|
| + bytes_read = rl78_decode_opcode (pc, &opc, rl78_get_opcode_byte,
|
| + &opcode_handle);
|
| + next_pc = pc + bytes_read;
|
| +
|
| + if (opc.id == RLO_sel)
|
| + {
|
| + bank = opc.op[1].addend;
|
| + }
|
| + else if (opc.id == RLO_mov
|
| + && opc.op[0].type == RL78_Operand_PreDec
|
| + && opc.op[0].reg == RL78_Reg_SP
|
| + && opc.op[1].type == RL78_Operand_Register)
|
| + {
|
| + int rsrc = (bank * RL78_REGS_PER_BANK)
|
| + + 2 * (opc.op[1].reg - RL78_Reg_AX);
|
| +
|
| + reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM], -1);
|
| + pv_area_store (stack, reg[RL78_SP_REGNUM], 1, reg[rsrc]);
|
| + reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM], -1);
|
| + pv_area_store (stack, reg[RL78_SP_REGNUM], 1, reg[rsrc + 1]);
|
| + after_last_frame_setup_insn = next_pc;
|
| + }
|
| + else if (opc.id == RLO_sub
|
| + && opc.op[0].type == RL78_Operand_Register
|
| + && opc.op[0].reg == RL78_Reg_SP
|
| + && opc.op[1].type == RL78_Operand_Immediate)
|
| + {
|
| + int addend = opc.op[1].addend;
|
| +
|
| + reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM],
|
| + -addend);
|
| + after_last_frame_setup_insn = next_pc;
|
| + }
|
| + else
|
| + {
|
| + /* Terminate the prologue scan. */
|
| + break;
|
| + }
|
| +
|
| + pc = next_pc;
|
| + }
|
| +
|
| + /* Is the frame size (offset, really) a known constant? */
|
| + if (pv_is_register (reg[RL78_SP_REGNUM], RL78_SP_REGNUM))
|
| + result->frame_size = reg[RL78_SP_REGNUM].k;
|
| +
|
| + /* Record where all the registers were saved. */
|
| + pv_area_scan (stack, check_for_saved, (void *) result);
|
| +
|
| + result->prologue_end = after_last_frame_setup_insn;
|
| +
|
| + do_cleanups (back_to);
|
| +}
|
| +
|
| +/* Implement the "addr_bits_remove" gdbarch method. */
|
| +
|
| +static CORE_ADDR
|
| +rl78_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
|
| +{
|
| + return addr & 0xffffff;
|
| +}
|
| +
|
| +/* Implement the "address_to_pointer" gdbarch method. */
|
| +
|
| +static void
|
| +rl78_address_to_pointer (struct gdbarch *gdbarch,
|
| + struct type *type, gdb_byte *buf, CORE_ADDR addr)
|
| +{
|
| + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
| +
|
| + store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
|
| + addr & 0xffffff);
|
| +}
|
| +
|
| +/* Implement the "pointer_to_address" gdbarch method. */
|
| +
|
| +static CORE_ADDR
|
| +rl78_pointer_to_address (struct gdbarch *gdbarch,
|
| + struct type *type, const gdb_byte *buf)
|
| +{
|
| + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
| + CORE_ADDR addr
|
| + = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
|
| +
|
| + /* Is it a code address? */
|
| + if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
|
| + || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
|
| + || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type))
|
| + || TYPE_LENGTH (type) == 4)
|
| + return rl78_make_instruction_address (addr);
|
| + else
|
| + return rl78_make_data_address (addr);
|
| +}
|
| +
|
| +/* Implement the "skip_prologue" gdbarch method. */
|
| +
|
| +static CORE_ADDR
|
| +rl78_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
|
| +{
|
| + const char *name;
|
| + CORE_ADDR func_addr, func_end;
|
| + struct rl78_prologue p;
|
| +
|
| + /* Try to find the extent of the function that contains PC. */
|
| + if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
|
| + return pc;
|
| +
|
| + rl78_analyze_prologue (pc, func_end, &p);
|
| + return p.prologue_end;
|
| +}
|
| +
|
| +/* Implement the "unwind_pc" gdbarch method. */
|
| +
|
| +static CORE_ADDR
|
| +rl78_unwind_pc (struct gdbarch *arch, struct frame_info *next_frame)
|
| +{
|
| + return rl78_addr_bits_remove
|
| + (arch, frame_unwind_register_unsigned (next_frame,
|
| + RL78_PC_REGNUM));
|
| +}
|
| +
|
| +/* Implement the "unwind_sp" gdbarch method. */
|
| +
|
| +static CORE_ADDR
|
| +rl78_unwind_sp (struct gdbarch *arch, struct frame_info *next_frame)
|
| +{
|
| + return frame_unwind_register_unsigned (next_frame, RL78_SP_REGNUM);
|
| +}
|
| +
|
| +/* Given a frame described by THIS_FRAME, decode the prologue of its
|
| + associated function if there is not cache entry as specified by
|
| + THIS_PROLOGUE_CACHE. Save the decoded prologue in the cache and
|
| + return that struct as the value of this function. */
|
| +
|
| +static struct rl78_prologue *
|
| +rl78_analyze_frame_prologue (struct frame_info *this_frame,
|
| + void **this_prologue_cache)
|
| +{
|
| + if (!*this_prologue_cache)
|
| + {
|
| + CORE_ADDR func_start, stop_addr;
|
| +
|
| + *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct rl78_prologue);
|
| +
|
| + func_start = get_frame_func (this_frame);
|
| + stop_addr = get_frame_pc (this_frame);
|
| +
|
| + /* If we couldn't find any function containing the PC, then
|
| + just initialize the prologue cache, but don't do anything. */
|
| + if (!func_start)
|
| + stop_addr = func_start;
|
| +
|
| + rl78_analyze_prologue (func_start, stop_addr, *this_prologue_cache);
|
| + }
|
| +
|
| + return *this_prologue_cache;
|
| +}
|
| +
|
| +/* Given a frame and a prologue cache, return this frame's base. */
|
| +
|
| +static CORE_ADDR
|
| +rl78_frame_base (struct frame_info *this_frame, void **this_prologue_cache)
|
| +{
|
| + struct rl78_prologue *p
|
| + = rl78_analyze_frame_prologue (this_frame, this_prologue_cache);
|
| + CORE_ADDR sp = get_frame_register_unsigned (this_frame, RL78_SP_REGNUM);
|
| +
|
| + return rl78_make_data_address (sp - p->frame_size);
|
| +}
|
| +
|
| +/* Implement the "frame_this_id" method for unwinding frames. */
|
| +
|
| +static void
|
| +rl78_this_id (struct frame_info *this_frame,
|
| + void **this_prologue_cache, struct frame_id *this_id)
|
| +{
|
| + *this_id = frame_id_build (rl78_frame_base (this_frame,
|
| + this_prologue_cache),
|
| + get_frame_func (this_frame));
|
| +}
|
| +
|
| +/* Implement the "frame_prev_register" method for unwinding frames. */
|
| +
|
| +static struct value *
|
| +rl78_prev_register (struct frame_info *this_frame,
|
| + void **this_prologue_cache, int regnum)
|
| +{
|
| + struct rl78_prologue *p
|
| + = rl78_analyze_frame_prologue (this_frame, this_prologue_cache);
|
| + CORE_ADDR frame_base = rl78_frame_base (this_frame, this_prologue_cache);
|
| +
|
| + if (regnum == RL78_SP_REGNUM)
|
| + return frame_unwind_got_constant (this_frame, regnum, frame_base);
|
| +
|
| + else if (regnum == RL78_SPL_REGNUM)
|
| + return frame_unwind_got_constant (this_frame, regnum,
|
| + (frame_base & 0xff));
|
| +
|
| + else if (regnum == RL78_SPH_REGNUM)
|
| + return frame_unwind_got_constant (this_frame, regnum,
|
| + ((frame_base >> 8) & 0xff));
|
| +
|
| + /* If prologue analysis says we saved this register somewhere,
|
| + return a description of the stack slot holding it. */
|
| + else if (p->reg_offset[regnum] != 1)
|
| + {
|
| + struct value *rv =
|
| + frame_unwind_got_memory (this_frame, regnum,
|
| + frame_base + p->reg_offset[regnum]);
|
| +
|
| + if (regnum == RL78_PC_REGNUM)
|
| + {
|
| + ULONGEST pc = rl78_make_instruction_address (value_as_long (rv));
|
| +
|
| + return frame_unwind_got_constant (this_frame, regnum, pc);
|
| + }
|
| + return rv;
|
| + }
|
| +
|
| + /* Otherwise, presume we haven't changed the value of this
|
| + register, and get it from the next frame. */
|
| + else
|
| + return frame_unwind_got_register (this_frame, regnum, regnum);
|
| +}
|
| +
|
| +static const struct frame_unwind rl78_unwind =
|
| +{
|
| + NORMAL_FRAME,
|
| + default_frame_unwind_stop_reason,
|
| + rl78_this_id,
|
| + rl78_prev_register,
|
| + NULL,
|
| + default_frame_sniffer
|
| +};
|
| +
|
| +/* Implement the "dwarf_reg_to_regnum" gdbarch method. */
|
| +
|
| +static int
|
| +rl78_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
|
| +{
|
| + if (0 <= reg && reg <= 31)
|
| + {
|
| + if ((reg & 1) == 0)
|
| + /* Map even registers to their 16-bit counterparts. This
|
| + is usually what is required from the DWARF info. */
|
| + return (reg >> 1) + RL78_BANK0_RP0_REGNUM;
|
| + else
|
| + return reg;
|
| + }
|
| + else if (reg == 32)
|
| + return RL78_SP_REGNUM;
|
| + else if (reg == 33)
|
| + return RL78_PC_REGNUM;
|
| + else
|
| + internal_error (__FILE__, __LINE__,
|
| + _("Undefined dwarf2 register mapping of reg %d"),
|
| + reg);
|
| +}
|
| +
|
| +/* Implement the `register_sim_regno' gdbarch method. */
|
| +
|
| +static int
|
| +rl78_register_sim_regno (struct gdbarch *gdbarch, int regnum)
|
| +{
|
| + gdb_assert (regnum < RL78_NUM_REGS);
|
| +
|
| + /* So long as regnum is in [0, RL78_NUM_REGS), it's valid. We
|
| + just want to override the default here which disallows register
|
| + numbers which have no names. */
|
| + return regnum;
|
| +}
|
| +
|
| +/* Implement the "return_value" gdbarch method. */
|
| +
|
| +static enum return_value_convention
|
| +rl78_return_value (struct gdbarch *gdbarch,
|
| + struct value *function,
|
| + struct type *valtype,
|
| + struct regcache *regcache,
|
| + gdb_byte *readbuf, const gdb_byte *writebuf)
|
| +{
|
| + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
| + ULONGEST valtype_len = TYPE_LENGTH (valtype);
|
| +
|
| + if (valtype_len > 8)
|
| + return RETURN_VALUE_STRUCT_CONVENTION;
|
| +
|
| + if (readbuf)
|
| + {
|
| + ULONGEST u;
|
| + int argreg = RL78_RAW_BANK1_R0_REGNUM;
|
| + int offset = 0;
|
| +
|
| + while (valtype_len > 0)
|
| + {
|
| + regcache_cooked_read_unsigned (regcache, argreg, &u);
|
| + store_unsigned_integer (readbuf + offset, 1, byte_order, u);
|
| + valtype_len -= 1;
|
| + offset += 1;
|
| + argreg++;
|
| + }
|
| + }
|
| +
|
| + if (writebuf)
|
| + {
|
| + ULONGEST u;
|
| + int argreg = RL78_RAW_BANK1_R0_REGNUM;
|
| + int offset = 0;
|
| +
|
| + while (valtype_len > 0)
|
| + {
|
| + u = extract_unsigned_integer (writebuf + offset, 1, byte_order);
|
| + regcache_cooked_write_unsigned (regcache, argreg, u);
|
| + valtype_len -= 1;
|
| + offset += 1;
|
| + argreg++;
|
| + }
|
| + }
|
| +
|
| + return RETURN_VALUE_REGISTER_CONVENTION;
|
| +}
|
| +
|
| +
|
| +/* Implement the "frame_align" gdbarch method. */
|
| +
|
| +static CORE_ADDR
|
| +rl78_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
|
| +{
|
| + return rl78_make_data_address (align_down (sp, 2));
|
| +}
|
| +
|
| +
|
| +/* Implement the "dummy_id" gdbarch method. */
|
| +
|
| +static struct frame_id
|
| +rl78_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
|
| +{
|
| + return
|
| + frame_id_build (rl78_make_data_address
|
| + (get_frame_register_unsigned
|
| + (this_frame, RL78_SP_REGNUM)),
|
| + get_frame_pc (this_frame));
|
| +}
|
| +
|
| +
|
| +/* Implement the "push_dummy_call" gdbarch method. */
|
| +
|
| +static CORE_ADDR
|
| +rl78_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
|
| + struct regcache *regcache, CORE_ADDR bp_addr,
|
| + int nargs, struct value **args, CORE_ADDR sp,
|
| + int struct_return, CORE_ADDR struct_addr)
|
| +{
|
| + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
| + gdb_byte buf[4];
|
| + int i;
|
| +
|
| + /* Push arguments in reverse order. */
|
| + for (i = nargs - 1; i >= 0; i--)
|
| + {
|
| + struct type *value_type = value_enclosing_type (args[i]);
|
| + int len = TYPE_LENGTH (value_type);
|
| + int container_len = (len + 1) & ~1;
|
| +
|
| + sp -= container_len;
|
| + write_memory (rl78_make_data_address (sp),
|
| + value_contents_all (args[i]), len);
|
| + }
|
| +
|
| + /* Store struct value address. */
|
| + if (struct_return)
|
| + {
|
| + store_unsigned_integer (buf, 2, byte_order, struct_addr);
|
| + sp -= 2;
|
| + write_memory (rl78_make_data_address (sp), buf, 2);
|
| + }
|
| +
|
| + /* Store return address. */
|
| + sp -= 4;
|
| + store_unsigned_integer (buf, 4, byte_order, bp_addr);
|
| + write_memory (rl78_make_data_address (sp), buf, 4);
|
| +
|
| + /* Finally, update the stack pointer... */
|
| + regcache_cooked_write_unsigned (regcache, RL78_SP_REGNUM, sp);
|
| +
|
| + /* DWARF2/GCC uses the stack address *before* the function call as a
|
| + frame's CFA. */
|
| + return rl78_make_data_address (sp + 4);
|
| +}
|
| +
|
| +/* Allocate and initialize a gdbarch object. */
|
| +
|
| +static struct gdbarch *
|
| +rl78_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
| +{
|
| + struct gdbarch *gdbarch;
|
| + struct gdbarch_tdep *tdep;
|
| + int elf_flags;
|
| +
|
| + /* Extract the elf_flags if available. */
|
| + if (info.abfd != NULL
|
| + && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
|
| + elf_flags = elf_elfheader (info.abfd)->e_flags;
|
| + else
|
| + elf_flags = 0;
|
| +
|
| +
|
| + /* Try to find the architecture in the list of already defined
|
| + architectures. */
|
| + for (arches = gdbarch_list_lookup_by_info (arches, &info);
|
| + arches != NULL;
|
| + arches = gdbarch_list_lookup_by_info (arches->next, &info))
|
| + {
|
| + if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
|
| + continue;
|
| +
|
| + return arches->gdbarch;
|
| + }
|
| +
|
| + /* None found, create a new architecture from the information
|
| + provided. */
|
| + tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
|
| + gdbarch = gdbarch_alloc (&info, tdep);
|
| + tdep->elf_flags = elf_flags;
|
| +
|
| + /* Initialize types. */
|
| + tdep->rl78_void = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
|
| + tdep->rl78_uint8 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
|
| + tdep->rl78_int8 = arch_integer_type (gdbarch, 8, 0, "int8_t");
|
| + tdep->rl78_uint16 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
|
| + tdep->rl78_int16 = arch_integer_type (gdbarch, 16, 0, "int16_t");
|
| + tdep->rl78_uint32 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
|
| + tdep->rl78_int32 = arch_integer_type (gdbarch, 32, 0, "int32_t");
|
| +
|
| + tdep->rl78_data_pointer
|
| + = arch_type (gdbarch, TYPE_CODE_PTR, 16 / TARGET_CHAR_BIT,
|
| + xstrdup ("rl78_data_addr_t"));
|
| + TYPE_TARGET_TYPE (tdep->rl78_data_pointer) = tdep->rl78_void;
|
| + TYPE_UNSIGNED (tdep->rl78_data_pointer) = 1;
|
| +
|
| + tdep->rl78_code_pointer
|
| + = arch_type (gdbarch, TYPE_CODE_PTR, 32 / TARGET_CHAR_BIT,
|
| + xstrdup ("rl78_code_addr_t"));
|
| + TYPE_TARGET_TYPE (tdep->rl78_code_pointer) = tdep->rl78_void;
|
| + TYPE_UNSIGNED (tdep->rl78_code_pointer) = 1;
|
| +
|
| + /* Registers. */
|
| + set_gdbarch_num_regs (gdbarch, RL78_NUM_REGS);
|
| + set_gdbarch_num_pseudo_regs (gdbarch, RL78_NUM_PSEUDO_REGS);
|
| + set_gdbarch_register_name (gdbarch, rl78_register_name);
|
| + set_gdbarch_register_type (gdbarch, rl78_register_type);
|
| + set_gdbarch_pc_regnum (gdbarch, RL78_PC_REGNUM);
|
| + set_gdbarch_sp_regnum (gdbarch, RL78_SP_REGNUM);
|
| + set_gdbarch_pseudo_register_read (gdbarch, rl78_pseudo_register_read);
|
| + set_gdbarch_pseudo_register_write (gdbarch, rl78_pseudo_register_write);
|
| + set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rl78_dwarf_reg_to_regnum);
|
| + set_gdbarch_register_reggroup_p (gdbarch, rl78_register_reggroup_p);
|
| + set_gdbarch_register_sim_regno (gdbarch, rl78_register_sim_regno);
|
| +
|
| + /* Data types. */
|
| + set_gdbarch_char_signed (gdbarch, 0);
|
| + set_gdbarch_short_bit (gdbarch, 16);
|
| + set_gdbarch_int_bit (gdbarch, 16);
|
| + set_gdbarch_long_bit (gdbarch, 32);
|
| + set_gdbarch_long_long_bit (gdbarch, 64);
|
| + set_gdbarch_ptr_bit (gdbarch, 16);
|
| + set_gdbarch_addr_bit (gdbarch, 32);
|
| + set_gdbarch_float_bit (gdbarch, 32);
|
| + set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
|
| + set_gdbarch_double_bit (gdbarch, 32);
|
| + set_gdbarch_long_double_bit (gdbarch, 64);
|
| + set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
|
| + set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
|
| + set_gdbarch_pointer_to_address (gdbarch, rl78_pointer_to_address);
|
| + set_gdbarch_address_to_pointer (gdbarch, rl78_address_to_pointer);
|
| + set_gdbarch_addr_bits_remove (gdbarch, rl78_addr_bits_remove);
|
| +
|
| + /* Breakpoints. */
|
| + set_gdbarch_breakpoint_from_pc (gdbarch, rl78_breakpoint_from_pc);
|
| + set_gdbarch_decr_pc_after_break (gdbarch, 1);
|
| +
|
| + /* Disassembly. */
|
| + set_gdbarch_print_insn (gdbarch, print_insn_rl78);
|
| +
|
| + /* Frames, prologues, etc. */
|
| + set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
| + set_gdbarch_skip_prologue (gdbarch, rl78_skip_prologue);
|
| + set_gdbarch_unwind_pc (gdbarch, rl78_unwind_pc);
|
| + set_gdbarch_unwind_sp (gdbarch, rl78_unwind_sp);
|
| + set_gdbarch_frame_align (gdbarch, rl78_frame_align);
|
| + frame_unwind_append_unwinder (gdbarch, &rl78_unwind);
|
| +
|
| + /* Dummy frames, return values. */
|
| + set_gdbarch_dummy_id (gdbarch, rl78_dummy_id);
|
| + set_gdbarch_push_dummy_call (gdbarch, rl78_push_dummy_call);
|
| + set_gdbarch_return_value (gdbarch, rl78_return_value);
|
| +
|
| + /* Virtual tables. */
|
| + set_gdbarch_vbit_in_delta (gdbarch, 1);
|
| +
|
| + return gdbarch;
|
| +}
|
| +
|
| +/* -Wmissing-prototypes */
|
| +extern initialize_file_ftype _initialize_rl78_tdep;
|
| +
|
| +/* Register the above initialization routine. */
|
| +
|
| +void
|
| +_initialize_rl78_tdep (void)
|
| +{
|
| + register_gdbarch_init (bfd_arch_rl78, rl78_gdbarch_init);
|
| +}
|
|
|