Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(4)

Side by Side Diff: runtime/vm/flow_graph_compiler_x64.cc

Issue 11956004: Fix vm code base so that it can be built for --arch=simarm (no snapshot yet). (Closed) Base URL: http://dart.googlecode.com/svn/branches/bleeding_edge/dart/
Patch Set: Created 7 years, 11 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
OLDNEW
1 // Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file 1 // Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file
2 // for details. All rights reserved. Use of this source code is governed by a 2 // for details. All rights reserved. Use of this source code is governed by a
3 // BSD-style license that can be found in the LICENSE file. 3 // BSD-style license that can be found in the LICENSE file.
4 4
5 #include "vm/globals.h" // Needed here to get TARGET_ARCH_X64. 5 #include "vm/globals.h" // Needed here to get TARGET_ARCH_X64.
6 #if defined(TARGET_ARCH_X64) 6 #if defined(TARGET_ARCH_X64)
7 7
8 #include "vm/flow_graph_compiler.h" 8 #include "vm/flow_graph_compiler.h"
9 9
10 #include "lib/error.h" 10 #include "lib/error.h"
11 #include "vm/ast_printer.h" 11 #include "vm/ast_printer.h"
(...skipping 1276 matching lines...) Expand 10 before | Expand all | Expand 10 after
1288 __ Drop(1); 1288 __ Drop(1);
1289 __ jmp(skip_call); 1289 __ jmp(skip_call);
1290 __ Bind(&is_false); 1290 __ Bind(&is_false);
1291 __ LoadObject(result, Bool::False()); 1291 __ LoadObject(result, Bool::False());
1292 __ Drop(1); 1292 __ Drop(1);
1293 __ jmp(skip_call); 1293 __ jmp(skip_call);
1294 __ Bind(&fall_through); 1294 __ Bind(&fall_through);
1295 } 1295 }
1296 1296
1297 1297
1298 void FlowGraphCompiler::LoadDoubleOrSmiToXmm(XmmRegister result, 1298 void FlowGraphCompiler::LoadDoubleOrSmiToFpu(XmmRegister result,
Ivan Posva 2013/01/16 01:17:56 ditto
regis 2013/01/16 01:55:07 Done.
1299 Register reg, 1299 Register reg,
1300 Register temp, 1300 Register temp,
1301 Label* not_double_or_smi) { 1301 Label* not_double_or_smi) {
1302 Label is_smi, done; 1302 Label is_smi, done;
1303 __ testq(reg, Immediate(kSmiTagMask)); 1303 __ testq(reg, Immediate(kSmiTagMask));
1304 __ j(ZERO, &is_smi); 1304 __ j(ZERO, &is_smi);
1305 __ CompareClassId(reg, kDoubleCid); 1305 __ CompareClassId(reg, kDoubleCid);
1306 __ j(NOT_EQUAL, not_double_or_smi); 1306 __ j(NOT_EQUAL, not_double_or_smi);
1307 __ movsd(result, FieldAddress(reg, Double::value_offset())); 1307 __ movsd(result, FieldAddress(reg, Double::value_offset()));
1308 __ jmp(&done); 1308 __ jmp(&done);
1309 __ Bind(&is_smi); 1309 __ Bind(&is_smi);
1310 __ movq(temp, reg); 1310 __ movq(temp, reg);
1311 __ SmiUntag(temp); 1311 __ SmiUntag(temp);
1312 __ cvtsi2sd(result, temp); 1312 __ cvtsi2sd(result, temp);
1313 __ Bind(&done); 1313 __ Bind(&done);
1314 } 1314 }
1315 1315
1316 1316
1317 void FlowGraphCompiler::SaveLiveRegisters(LocationSummary* locs) { 1317 void FlowGraphCompiler::SaveLiveRegisters(LocationSummary* locs) {
1318 // TODO(vegorov): consider saving only caller save (volatile) registers. 1318 // TODO(vegorov): consider saving only caller save (volatile) registers.
1319 const intptr_t xmm_regs_count = locs->live_registers()->xmm_regs_count(); 1319 const intptr_t xmm_regs_count = locs->live_registers()->fpu_regs_count();
1320 if (xmm_regs_count > 0) { 1320 if (xmm_regs_count > 0) {
1321 __ subq(RSP, Immediate(xmm_regs_count * kDoubleSize)); 1321 __ subq(RSP, Immediate(xmm_regs_count * kDoubleSize));
1322 // Store XMM registers with the lowest register number at the lowest 1322 // Store XMM registers with the lowest register number at the lowest
1323 // address. 1323 // address.
1324 intptr_t offset = 0; 1324 intptr_t offset = 0;
1325 for (intptr_t reg_idx = 0; reg_idx < kNumberOfXmmRegisters; ++reg_idx) { 1325 for (intptr_t reg_idx = 0; reg_idx < kNumberOfXmmRegisters; ++reg_idx) {
1326 XmmRegister xmm_reg = static_cast<XmmRegister>(reg_idx); 1326 XmmRegister xmm_reg = static_cast<XmmRegister>(reg_idx);
1327 if (locs->live_registers()->ContainsXmmRegister(xmm_reg)) { 1327 if (locs->live_registers()->ContainsFpuRegister(xmm_reg)) {
1328 __ movsd(Address(RSP, offset), xmm_reg); 1328 __ movsd(Address(RSP, offset), xmm_reg);
1329 offset += kDoubleSize; 1329 offset += kDoubleSize;
1330 } 1330 }
1331 } 1331 }
1332 ASSERT(offset == (xmm_regs_count * kDoubleSize)); 1332 ASSERT(offset == (xmm_regs_count * kDoubleSize));
1333 } 1333 }
1334 1334
1335 // Store general purpose registers with the highest register number at the 1335 // Store general purpose registers with the highest register number at the
1336 // lowest address. 1336 // lowest address.
1337 for (intptr_t reg_idx = 0; reg_idx < kNumberOfCpuRegisters; ++reg_idx) { 1337 for (intptr_t reg_idx = 0; reg_idx < kNumberOfCpuRegisters; ++reg_idx) {
1338 Register reg = static_cast<Register>(reg_idx); 1338 Register reg = static_cast<Register>(reg_idx);
1339 if (locs->live_registers()->ContainsRegister(reg)) { 1339 if (locs->live_registers()->ContainsRegister(reg)) {
1340 __ pushq(reg); 1340 __ pushq(reg);
1341 } 1341 }
1342 } 1342 }
1343 } 1343 }
1344 1344
1345 1345
1346 void FlowGraphCompiler::RestoreLiveRegisters(LocationSummary* locs) { 1346 void FlowGraphCompiler::RestoreLiveRegisters(LocationSummary* locs) {
1347 // General purpose registers have the highest register number at the 1347 // General purpose registers have the highest register number at the
1348 // lowest address. 1348 // lowest address.
1349 for (intptr_t reg_idx = kNumberOfCpuRegisters - 1; reg_idx >= 0; --reg_idx) { 1349 for (intptr_t reg_idx = kNumberOfCpuRegisters - 1; reg_idx >= 0; --reg_idx) {
1350 Register reg = static_cast<Register>(reg_idx); 1350 Register reg = static_cast<Register>(reg_idx);
1351 if (locs->live_registers()->ContainsRegister(reg)) { 1351 if (locs->live_registers()->ContainsRegister(reg)) {
1352 __ popq(reg); 1352 __ popq(reg);
1353 } 1353 }
1354 } 1354 }
1355 1355
1356 const intptr_t xmm_regs_count = locs->live_registers()->xmm_regs_count(); 1356 const intptr_t xmm_regs_count = locs->live_registers()->fpu_regs_count();
1357 if (xmm_regs_count > 0) { 1357 if (xmm_regs_count > 0) {
1358 // XMM registers have the lowest register number at the lowest address. 1358 // XMM registers have the lowest register number at the lowest address.
1359 intptr_t offset = 0; 1359 intptr_t offset = 0;
1360 for (intptr_t reg_idx = 0; reg_idx < kNumberOfXmmRegisters; ++reg_idx) { 1360 for (intptr_t reg_idx = 0; reg_idx < kNumberOfXmmRegisters; ++reg_idx) {
1361 XmmRegister xmm_reg = static_cast<XmmRegister>(reg_idx); 1361 XmmRegister xmm_reg = static_cast<XmmRegister>(reg_idx);
1362 if (locs->live_registers()->ContainsXmmRegister(xmm_reg)) { 1362 if (locs->live_registers()->ContainsFpuRegister(xmm_reg)) {
1363 __ movsd(xmm_reg, Address(RSP, offset)); 1363 __ movsd(xmm_reg, Address(RSP, offset));
1364 offset += kDoubleSize; 1364 offset += kDoubleSize;
1365 } 1365 }
1366 } 1366 }
1367 ASSERT(offset == (xmm_regs_count * kDoubleSize)); 1367 ASSERT(offset == (xmm_regs_count * kDoubleSize));
1368 __ addq(RSP, Immediate(offset)); 1368 __ addq(RSP, Immediate(offset));
1369 } 1369 }
1370 } 1370 }
1371 1371
1372 1372
1373 struct CidTarget {
1374 intptr_t cid;
1375 Function* target;
1376 intptr_t count;
1377 CidTarget(intptr_t cid_arg,
1378 Function* target_arg,
1379 intptr_t count_arg)
1380 : cid(cid_arg), target(target_arg), count(count_arg) {}
1381 };
1382
1383
1384 // Returns 'sorted' array in decreasing count order.
1385 // The expected number of elements to sort is less than 10.
1386 static void SortICDataByCount(const ICData& ic_data,
1387 GrowableArray<CidTarget>* sorted) {
1388 ASSERT(ic_data.num_args_tested() == 1);
1389 const intptr_t len = ic_data.NumberOfChecks();
1390 sorted->Clear();
1391
1392 for (int i = 0; i < len; i++) {
1393 sorted->Add(CidTarget(ic_data.GetReceiverClassIdAt(i),
1394 &Function::ZoneHandle(ic_data.GetTargetAt(i)),
1395 ic_data.GetCountAt(i)));
1396 }
1397 for (int i = 0; i < len; i++) {
1398 intptr_t largest_ix = i;
1399 for (int k = i + 1; k < len; k++) {
1400 if ((*sorted)[largest_ix].count < (*sorted)[k].count) {
1401 largest_ix = k;
1402 }
1403 }
1404 if (i != largest_ix) {
1405 // Swap.
1406 CidTarget temp = (*sorted)[i];
1407 (*sorted)[i] = (*sorted)[largest_ix];
1408 (*sorted)[largest_ix] = temp;
1409 }
1410 }
1411 }
1412
1413
1414 void FlowGraphCompiler::EmitTestAndCall(const ICData& ic_data,
1415 Register class_id_reg,
1416 intptr_t arg_count,
1417 const Array& arg_names,
1418 Label* deopt,
1419 intptr_t deopt_id,
1420 intptr_t token_index,
1421 LocationSummary* locs) {
1422 ASSERT(!ic_data.IsNull() && (ic_data.NumberOfChecks() > 0));
1423 Label match_found;
1424 const intptr_t len = ic_data.NumberOfChecks();
1425 GrowableArray<CidTarget> sorted(len);
1426 SortICDataByCount(ic_data, &sorted);
1427 for (intptr_t i = 0; i < len; i++) {
1428 const bool is_last_check = (i == (len - 1));
1429 Label next_test;
1430 assembler()->cmpl(class_id_reg, Immediate(sorted[i].cid));
1431 if (is_last_check) {
1432 assembler()->j(NOT_EQUAL, deopt);
1433 } else {
1434 assembler()->j(NOT_EQUAL, &next_test);
1435 }
1436 GenerateStaticCall(deopt_id,
1437 token_index,
1438 *sorted[i].target,
1439 arg_count,
1440 arg_names,
1441 locs);
1442 if (!is_last_check) {
1443 assembler()->jmp(&match_found);
1444 }
1445 assembler()->Bind(&next_test);
1446 }
1447 assembler()->Bind(&match_found);
1448 }
1449
1450
1451 void FlowGraphCompiler::EmitDoubleCompareBranch(Condition true_condition,
1452 FpuRegister left,
1453 FpuRegister right,
1454 BranchInstr* branch) {
1455 ASSERT(branch != NULL);
1456 assembler()->comisd(left, right);
1457 BlockEntryInstr* nan_result = (true_condition == NOT_EQUAL) ?
1458 branch->true_successor() : branch->false_successor();
1459 assembler()->j(PARITY_EVEN, GetBlockLabel(nan_result));
1460 branch->EmitBranchOnCondition(this, true_condition);
1461 }
1462
1463
1464
1465 void FlowGraphCompiler::EmitDoubleCompareBool(Condition true_condition,
1466 FpuRegister left,
1467 FpuRegister right,
1468 Register result) {
1469 assembler()->comisd(left, right);
1470 Label is_false, is_true, done;
1471 assembler()->j(PARITY_EVEN, &is_false, Assembler::kNearJump); // NaN false;
1472 assembler()->j(true_condition, &is_true, Assembler::kNearJump);
1473 assembler()->Bind(&is_false);
1474 assembler()->LoadObject(result, Bool::False());
1475 assembler()->jmp(&done);
1476 assembler()->Bind(&is_true);
1477 assembler()->LoadObject(result, Bool::True());
1478 assembler()->Bind(&done);
1479 }
1480
1481
1482 Condition FlowGraphCompiler::FlipCondition(Condition condition) {
1483 switch (condition) {
1484 case EQUAL: return EQUAL;
1485 case NOT_EQUAL: return NOT_EQUAL;
1486 case LESS: return GREATER;
1487 case LESS_EQUAL: return GREATER_EQUAL;
1488 case GREATER: return LESS;
1489 case GREATER_EQUAL: return LESS_EQUAL;
1490 case BELOW: return ABOVE;
1491 case BELOW_EQUAL: return ABOVE_EQUAL;
1492 case ABOVE: return BELOW;
1493 case ABOVE_EQUAL: return BELOW_EQUAL;
1494 default:
1495 UNIMPLEMENTED();
1496 return EQUAL;
1497 }
1498 }
1499
1500
1501 bool FlowGraphCompiler::EvaluateCondition(Condition condition,
1502 intptr_t left,
1503 intptr_t right) {
1504 const uintptr_t unsigned_left = static_cast<uintptr_t>(left);
1505 const uintptr_t unsigned_right = static_cast<uintptr_t>(right);
1506 switch (condition) {
1507 case EQUAL: return left == right;
1508 case NOT_EQUAL: return left != right;
1509 case LESS: return left < right;
1510 case LESS_EQUAL: return left <= right;
1511 case GREATER: return left > right;
1512 case GREATER_EQUAL: return left >= right;
1513 case BELOW: return unsigned_left < unsigned_right;
1514 case BELOW_EQUAL: return unsigned_left <= unsigned_right;
1515 case ABOVE: return unsigned_left > unsigned_right;
1516 case ABOVE_EQUAL: return unsigned_left >= unsigned_right;
1517 default:
1518 UNIMPLEMENTED();
1519 return false;
1520 }
1521 }
1522
1523
1524 FieldAddress FlowGraphCompiler::ElementAddressForIntIndex(intptr_t cid,
1525 Register array,
1526 intptr_t index) {
1527 const int64_t disp =
1528 static_cast<int64_t>(index) * ElementSizeFor(cid) + DataOffsetFor(cid);
1529 ASSERT(Utils::IsInt(32, disp));
1530 return FieldAddress(array, static_cast<int32_t>(disp));
1531 }
1532
1533
1534 FieldAddress FlowGraphCompiler::ElementAddressForRegIndex(intptr_t cid,
1535 Register array,
1536 Register index) {
1537 // Note that index is smi-tagged, (i.e, times 2) for all arrays with element
1538 // size > 1. For Uint8Array and OneByteString the index is expected to be
1539 // untagged before accessing.
1540 ASSERT(kSmiTagShift == 1);
1541 switch (cid) {
1542 case kArrayCid:
1543 case kImmutableArrayCid:
1544 return FieldAddress(
1545 array, index, TIMES_HALF_WORD_SIZE, Array::data_offset());
1546 case kFloat32ArrayCid:
1547 return FieldAddress(array, index, TIMES_2, Float32Array::data_offset());
1548 case kFloat64ArrayCid:
1549 return FieldAddress(array, index, TIMES_4, Float64Array::data_offset());
1550 case kUint8ArrayCid:
1551 return FieldAddress(array, index, TIMES_1, Uint8Array::data_offset());
1552 case kUint8ClampedArrayCid:
1553 return
1554 FieldAddress(array, index, TIMES_1, Uint8ClampedArray::data_offset());
1555 case kOneByteStringCid:
1556 return FieldAddress(array, index, TIMES_1, OneByteString::data_offset());
1557 case kTwoByteStringCid:
1558 return FieldAddress(array, index, TIMES_1, TwoByteString::data_offset());
1559 default:
1560 UNIMPLEMENTED();
1561 return FieldAddress(SPREG, 0);
1562 }
1563 }
1564
1565
1373 #undef __ 1566 #undef __
1374 #define __ compiler_->assembler()-> 1567 #define __ compiler_->assembler()->
1375 1568
1376 1569
1377 void ParallelMoveResolver::EmitMove(int index) { 1570 void ParallelMoveResolver::EmitMove(int index) {
1378 MoveOperands* move = moves_[index]; 1571 MoveOperands* move = moves_[index];
1379 const Location source = move->src(); 1572 const Location source = move->src();
1380 const Location destination = move->dest(); 1573 const Location destination = move->dest();
1381 1574
1382 if (source.IsRegister()) { 1575 if (source.IsRegister()) {
1383 if (destination.IsRegister()) { 1576 if (destination.IsRegister()) {
1384 __ movq(destination.reg(), source.reg()); 1577 __ movq(destination.reg(), source.reg());
1385 } else { 1578 } else {
1386 ASSERT(destination.IsStackSlot()); 1579 ASSERT(destination.IsStackSlot());
1387 __ movq(destination.ToStackSlotAddress(), source.reg()); 1580 __ movq(destination.ToStackSlotAddress(), source.reg());
1388 } 1581 }
1389 } else if (source.IsStackSlot()) { 1582 } else if (source.IsStackSlot()) {
1390 if (destination.IsRegister()) { 1583 if (destination.IsRegister()) {
1391 __ movq(destination.reg(), source.ToStackSlotAddress()); 1584 __ movq(destination.reg(), source.ToStackSlotAddress());
1392 } else { 1585 } else {
1393 ASSERT(destination.IsStackSlot()); 1586 ASSERT(destination.IsStackSlot());
1394 MoveMemoryToMemory(destination.ToStackSlotAddress(), 1587 MoveMemoryToMemory(destination.ToStackSlotAddress(),
1395 source.ToStackSlotAddress()); 1588 source.ToStackSlotAddress());
1396 } 1589 }
1397 } else if (source.IsXmmRegister()) { 1590 } else if (source.IsFpuRegister()) {
1398 if (destination.IsXmmRegister()) { 1591 if (destination.IsFpuRegister()) {
1399 // Optimization manual recommends using MOVAPS for register 1592 // Optimization manual recommends using MOVAPS for register
1400 // to register moves. 1593 // to register moves.
1401 __ movaps(destination.xmm_reg(), source.xmm_reg()); 1594 __ movaps(destination.fpu_reg(), source.fpu_reg());
1402 } else { 1595 } else {
1403 ASSERT(destination.IsDoubleStackSlot()); 1596 ASSERT(destination.IsDoubleStackSlot());
1404 __ movsd(destination.ToStackSlotAddress(), source.xmm_reg()); 1597 __ movsd(destination.ToStackSlotAddress(), source.fpu_reg());
1405 } 1598 }
1406 } else if (source.IsDoubleStackSlot()) { 1599 } else if (source.IsDoubleStackSlot()) {
1407 if (destination.IsXmmRegister()) { 1600 if (destination.IsFpuRegister()) {
1408 __ movsd(destination.xmm_reg(), source.ToStackSlotAddress()); 1601 __ movsd(destination.fpu_reg(), source.ToStackSlotAddress());
1409 } else { 1602 } else {
1410 ASSERT(destination.IsDoubleStackSlot()); 1603 ASSERT(destination.IsDoubleStackSlot());
1411 __ movsd(XMM0, source.ToStackSlotAddress()); 1604 __ movsd(XMM0, source.ToStackSlotAddress());
1412 __ movsd(destination.ToStackSlotAddress(), XMM0); 1605 __ movsd(destination.ToStackSlotAddress(), XMM0);
1413 } 1606 }
1414 } else { 1607 } else {
1415 ASSERT(source.IsConstant()); 1608 ASSERT(source.IsConstant());
1416 if (destination.IsRegister()) { 1609 if (destination.IsRegister()) {
1417 const Object& constant = source.constant(); 1610 const Object& constant = source.constant();
1418 if (constant.IsSmi() && (Smi::Cast(constant).Value() == 0)) { 1611 if (constant.IsSmi() && (Smi::Cast(constant).Value() == 0)) {
(...skipping 17 matching lines...) Expand all
1436 const Location destination = move->dest(); 1629 const Location destination = move->dest();
1437 1630
1438 if (source.IsRegister() && destination.IsRegister()) { 1631 if (source.IsRegister() && destination.IsRegister()) {
1439 __ xchgq(destination.reg(), source.reg()); 1632 __ xchgq(destination.reg(), source.reg());
1440 } else if (source.IsRegister() && destination.IsStackSlot()) { 1633 } else if (source.IsRegister() && destination.IsStackSlot()) {
1441 Exchange(source.reg(), destination.ToStackSlotAddress()); 1634 Exchange(source.reg(), destination.ToStackSlotAddress());
1442 } else if (source.IsStackSlot() && destination.IsRegister()) { 1635 } else if (source.IsStackSlot() && destination.IsRegister()) {
1443 Exchange(destination.reg(), source.ToStackSlotAddress()); 1636 Exchange(destination.reg(), source.ToStackSlotAddress());
1444 } else if (source.IsStackSlot() && destination.IsStackSlot()) { 1637 } else if (source.IsStackSlot() && destination.IsStackSlot()) {
1445 Exchange(destination.ToStackSlotAddress(), source.ToStackSlotAddress()); 1638 Exchange(destination.ToStackSlotAddress(), source.ToStackSlotAddress());
1446 } else if (source.IsXmmRegister() && destination.IsXmmRegister()) { 1639 } else if (source.IsFpuRegister() && destination.IsFpuRegister()) {
1447 __ movaps(XMM0, source.xmm_reg()); 1640 __ movaps(XMM0, source.fpu_reg());
1448 __ movaps(source.xmm_reg(), destination.xmm_reg()); 1641 __ movaps(source.fpu_reg(), destination.fpu_reg());
1449 __ movaps(destination.xmm_reg(), XMM0); 1642 __ movaps(destination.fpu_reg(), XMM0);
1450 } else if (source.IsXmmRegister() || destination.IsXmmRegister()) { 1643 } else if (source.IsFpuRegister() || destination.IsFpuRegister()) {
1451 ASSERT(destination.IsDoubleStackSlot() || source.IsDoubleStackSlot()); 1644 ASSERT(destination.IsDoubleStackSlot() || source.IsDoubleStackSlot());
1452 XmmRegister reg = source.IsXmmRegister() ? source.xmm_reg() 1645 XmmRegister reg = source.IsFpuRegister() ? source.fpu_reg()
1453 : destination.xmm_reg(); 1646 : destination.fpu_reg();
1454 Address slot_address = source.IsXmmRegister() 1647 Address slot_address = source.IsFpuRegister()
1455 ? destination.ToStackSlotAddress() 1648 ? destination.ToStackSlotAddress()
1456 : source.ToStackSlotAddress(); 1649 : source.ToStackSlotAddress();
1457 1650
1458 __ movsd(XMM0, slot_address); 1651 __ movsd(XMM0, slot_address);
1459 __ movsd(slot_address, reg); 1652 __ movsd(slot_address, reg);
1460 __ movaps(reg, XMM0); 1653 __ movaps(reg, XMM0);
1461 } else { 1654 } else {
1462 UNREACHABLE(); 1655 UNREACHABLE();
1463 } 1656 }
1464 1657
(...skipping 34 matching lines...) Expand 10 before | Expand all | Expand 10 after
1499 void ParallelMoveResolver::Exchange(const Address& mem1, const Address& mem2) { 1692 void ParallelMoveResolver::Exchange(const Address& mem1, const Address& mem2) {
1500 __ Exchange(mem1, mem2); 1693 __ Exchange(mem1, mem2);
1501 } 1694 }
1502 1695
1503 1696
1504 #undef __ 1697 #undef __
1505 1698
1506 } // namespace dart 1699 } // namespace dart
1507 1700
1508 #endif // defined TARGET_ARCH_X64 1701 #endif // defined TARGET_ARCH_X64
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698