| Index: sdk/lib/collection_dev/sort.dart
|
| diff --git a/sdk/lib/collection_dev/sort.dart b/sdk/lib/collection_dev/sort.dart
|
| deleted file mode 100644
|
| index 9b89e638ff089472e18ec056b2d2f6ac8d985946..0000000000000000000000000000000000000000
|
| --- a/sdk/lib/collection_dev/sort.dart
|
| +++ /dev/null
|
| @@ -1,344 +0,0 @@
|
| -// Copyright (c) 2011, the Dart project authors. Please see the AUTHORS file
|
| -// for details. All rights reserved. Use of this source code is governed by a
|
| -// BSD-style license that can be found in the LICENSE file.
|
| -
|
| -part of dart.collection.dev;
|
| -
|
| -/**
|
| - * Dual-Pivot Quicksort algorithm.
|
| - *
|
| - * This class implements the dual-pivot quicksort algorithm as presented in
|
| - * Vladimir Yaroslavskiy's paper.
|
| - *
|
| - * Some improvements have been copied from Android's implementation.
|
| - */
|
| -class Sort {
|
| - // When a list has less then [:_INSERTION_SORT_THRESHOLD:] elements it will
|
| - // be sorted by an insertion sort.
|
| - static const int _INSERTION_SORT_THRESHOLD = 32;
|
| -
|
| - /**
|
| - * Sorts all elements of the given list [:a:] according to the given
|
| - * [:compare:] function.
|
| - *
|
| - * The [:compare:] function takes two arguments [:x:] and [:y:] and returns
|
| - * -1 if [:x < y:],
|
| - * 0 if [:x == y:], and
|
| - * 1 if [:x > y:].
|
| - *
|
| - * The function's behavior must be consistent. It must not return different
|
| - * results for the same values.
|
| - */
|
| - static void sort(List a, int compare(a, b)) {
|
| - _doSort(a, 0, a.length - 1, compare);
|
| - }
|
| -
|
| - /**
|
| - * Sorts all elements in the range [:from:] (inclusive) to [:to:] (exclusive)
|
| - * of the given list [:a:].
|
| - *
|
| - * If the given range is invalid an "OutOfRange" error is raised.
|
| - * TODO(floitsch): do we want an error?
|
| - *
|
| - * See [:sort:] for requirements of the [:compare:] function.
|
| - */
|
| - static void sortRange(List a, int from, int to, int compare(a, b)) {
|
| - if ((from < 0) || (to > a.length) || (to < from)) {
|
| - throw "OutOfRange";
|
| - }
|
| - _doSort(a, from, to - 1, compare);
|
| - }
|
| -
|
| - /**
|
| - * Sorts the list in the interval [:left:] to [:right:] (both inclusive).
|
| - */
|
| - static void _doSort(List a, int left, int right, int compare(a, b)) {
|
| - if ((right - left) <= _INSERTION_SORT_THRESHOLD) {
|
| - insertionSort_(a, left, right, compare);
|
| - } else {
|
| - _dualPivotQuicksort(a, left, right, compare);
|
| - }
|
| - }
|
| -
|
| - static void insertionSort_(List a, int left, int right, int compare(a, b)) {
|
| - for (int i = left + 1; i <= right; i++) {
|
| - var el = a[i];
|
| - int j = i;
|
| - while ((j > left) && (compare(a[j - 1], el) > 0)) {
|
| - a[j] = a[j - 1];
|
| - j--;
|
| - }
|
| - a[j] = el;
|
| - }
|
| - }
|
| -
|
| - static void _dualPivotQuicksort(List a,
|
| - int left, int right,
|
| - int compare(a, b)) {
|
| - assert(right - left > _INSERTION_SORT_THRESHOLD);
|
| -
|
| - // Compute the two pivots by looking at 5 elements.
|
| - int sixth = (right - left + 1) ~/ 6;
|
| - int index1 = left + sixth;
|
| - int index5 = right - sixth;
|
| - int index3 = (left + right) ~/ 2; // The midpoint.
|
| - int index2 = index3 - sixth;
|
| - int index4 = index3 + sixth;
|
| -
|
| - var el1 = a[index1];
|
| - var el2 = a[index2];
|
| - var el3 = a[index3];
|
| - var el4 = a[index4];
|
| - var el5 = a[index5];
|
| -
|
| - // Sort the selected 5 elements using a sorting network.
|
| - if (compare(el1, el2) > 0) { var t = el1; el1 = el2; el2 = t; }
|
| - if (compare(el4, el5) > 0) { var t = el4; el4 = el5; el5 = t; }
|
| - if (compare(el1, el3) > 0) { var t = el1; el1 = el3; el3 = t; }
|
| - if (compare(el2, el3) > 0) { var t = el2; el2 = el3; el3 = t; }
|
| - if (compare(el1, el4) > 0) { var t = el1; el1 = el4; el4 = t; }
|
| - if (compare(el3, el4) > 0) { var t = el3; el3 = el4; el4 = t; }
|
| - if (compare(el2, el5) > 0) { var t = el2; el2 = el5; el5 = t; }
|
| - if (compare(el2, el3) > 0) { var t = el2; el2 = el3; el3 = t; }
|
| - if (compare(el4, el5) > 0) { var t = el4; el4 = el5; el5 = t; }
|
| -
|
| - var pivot1 = el2;
|
| - var pivot2 = el4;
|
| -
|
| - // el2 and el4 have been saved in the pivot variables. They will be written
|
| - // back, once the partioning is finished.
|
| - a[index1] = el1;
|
| - a[index3] = el3;
|
| - a[index5] = el5;
|
| -
|
| - a[index2] = a[left];
|
| - a[index4] = a[right];
|
| -
|
| - int less = left + 1; // First element in the middle partition.
|
| - int great = right - 1; // Last element in the middle partition.
|
| -
|
| - bool pivots_are_equal = (compare(pivot1, pivot2) == 0);
|
| - if (pivots_are_equal) {
|
| - var pivot = pivot1;
|
| - // Degenerated case where the partioning becomes a dutch national flag
|
| - // problem.
|
| - //
|
| - // [ | < pivot | == pivot | unpartitioned | > pivot | ]
|
| - // ^ ^ ^ ^ ^
|
| - // left less k great right
|
| - //
|
| - // a[left] and a[right] are undefined and are filled after the
|
| - // partitioning.
|
| - //
|
| - // Invariants:
|
| - // 1) for x in ]left, less[ : x < pivot.
|
| - // 2) for x in [less, k[ : x == pivot.
|
| - // 3) for x in ]great, right[ : x > pivot.
|
| - for (int k = less; k <= great; k++) {
|
| - var ak = a[k];
|
| - int comp = compare(ak, pivot);
|
| - if (comp == 0) continue;
|
| - if (comp < 0) {
|
| - if (k != less) {
|
| - a[k] = a[less];
|
| - a[less] = ak;
|
| - }
|
| - less++;
|
| - } else {
|
| - // comp > 0.
|
| - //
|
| - // Find the first element <= pivot in the range [k - 1, great] and
|
| - // put [:ak:] there. We know that such an element must exist:
|
| - // When k == less, then el3 (which is equal to pivot) lies in the
|
| - // interval. Otherwise a[k - 1] == pivot and the search stops at k-1.
|
| - // Note that in the latter case invariant 2 will be violated for a
|
| - // short amount of time. The invariant will be restored when the
|
| - // pivots are put into their final positions.
|
| - while (true) {
|
| - comp = compare(a[great], pivot);
|
| - if (comp > 0) {
|
| - great--;
|
| - // This is the only location in the while-loop where a new
|
| - // iteration is started.
|
| - continue;
|
| - } else if (comp < 0) {
|
| - // Triple exchange.
|
| - a[k] = a[less];
|
| - a[less++] = a[great];
|
| - a[great--] = ak;
|
| - break;
|
| - } else {
|
| - // comp == 0;
|
| - a[k] = a[great];
|
| - a[great--] = ak;
|
| - // Note: if great < k then we will exit the outer loop and fix
|
| - // invariant 2 (which we just violated).
|
| - break;
|
| - }
|
| - }
|
| - }
|
| - }
|
| - } else {
|
| - // We partition the list into three parts:
|
| - // 1. < pivot1
|
| - // 2. >= pivot1 && <= pivot2
|
| - // 3. > pivot2
|
| - //
|
| - // During the loop we have:
|
| - // [ | < pivot1 | >= pivot1 && <= pivot2 | unpartitioned | > pivot2 | ]
|
| - // ^ ^ ^ ^ ^
|
| - // left less k great right
|
| - //
|
| - // a[left] and a[right] are undefined and are filled after the
|
| - // partitioning.
|
| - //
|
| - // Invariants:
|
| - // 1. for x in ]left, less[ : x < pivot1
|
| - // 2. for x in [less, k[ : pivot1 <= x && x <= pivot2
|
| - // 3. for x in ]great, right[ : x > pivot2
|
| - for (int k = less; k <= great; k++) {
|
| - var ak = a[k];
|
| - int comp_pivot1 = compare(ak, pivot1);
|
| - if (comp_pivot1 < 0) {
|
| - if (k != less) {
|
| - a[k] = a[less];
|
| - a[less] = ak;
|
| - }
|
| - less++;
|
| - } else {
|
| - int comp_pivot2 = compare(ak, pivot2);
|
| - if (comp_pivot2 > 0) {
|
| - while (true) {
|
| - int comp = compare(a[great], pivot2);
|
| - if (comp > 0) {
|
| - great--;
|
| - if (great < k) break;
|
| - // This is the only location inside the loop where a new
|
| - // iteration is started.
|
| - continue;
|
| - } else {
|
| - // a[great] <= pivot2.
|
| - comp = compare(a[great], pivot1);
|
| - if (comp < 0) {
|
| - // Triple exchange.
|
| - a[k] = a[less];
|
| - a[less++] = a[great];
|
| - a[great--] = ak;
|
| - } else {
|
| - // a[great] >= pivot1.
|
| - a[k] = a[great];
|
| - a[great--] = ak;
|
| - }
|
| - break;
|
| - }
|
| - }
|
| - }
|
| - }
|
| - }
|
| - }
|
| -
|
| - // Move pivots into their final positions.
|
| - // We shrunk the list from both sides (a[left] and a[right] have
|
| - // meaningless values in them) and now we move elements from the first
|
| - // and third partition into these locations so that we can store the
|
| - // pivots.
|
| - a[left] = a[less - 1];
|
| - a[less - 1] = pivot1;
|
| - a[right] = a[great + 1];
|
| - a[great + 1] = pivot2;
|
| -
|
| - // The list is now partitioned into three partitions:
|
| - // [ < pivot1 | >= pivot1 && <= pivot2 | > pivot2 ]
|
| - // ^ ^ ^ ^
|
| - // left less great right
|
| -
|
| - // Recursive descent. (Don't include the pivot values.)
|
| - _doSort(a, left, less - 2, compare);
|
| - _doSort(a, great + 2, right, compare);
|
| -
|
| - if (pivots_are_equal) {
|
| - // All elements in the second partition are equal to the pivot. No
|
| - // need to sort them.
|
| - return;
|
| - }
|
| -
|
| - // In theory it should be enough to call _doSort recursively on the second
|
| - // partition.
|
| - // The Android source however removes the pivot elements from the recursive
|
| - // call if the second partition is too large (more than 2/3 of the list).
|
| - if (less < index1 && great > index5) {
|
| - while (compare(a[less], pivot1) == 0) { less++; }
|
| - while (compare(a[great], pivot2) == 0) { great--; }
|
| -
|
| - // Copy paste of the previous 3-way partitioning with adaptions.
|
| - //
|
| - // We partition the list into three parts:
|
| - // 1. == pivot1
|
| - // 2. > pivot1 && < pivot2
|
| - // 3. == pivot2
|
| - //
|
| - // During the loop we have:
|
| - // [ == pivot1 | > pivot1 && < pivot2 | unpartitioned | == pivot2 ]
|
| - // ^ ^ ^
|
| - // less k great
|
| - //
|
| - // Invariants:
|
| - // 1. for x in [ *, less[ : x == pivot1
|
| - // 2. for x in [less, k[ : pivot1 < x && x < pivot2
|
| - // 3. for x in ]great, * ] : x == pivot2
|
| - for (int k = less; k <= great; k++) {
|
| - var ak = a[k];
|
| - int comp_pivot1 = compare(ak, pivot1);
|
| - if (comp_pivot1 == 0) {
|
| - if (k != less) {
|
| - a[k] = a[less];
|
| - a[less] = ak;
|
| - }
|
| - less++;
|
| - } else {
|
| - int comp_pivot2 = compare(ak, pivot2);
|
| - if (comp_pivot2 == 0) {
|
| - while (true) {
|
| - int comp = compare(a[great], pivot2);
|
| - if (comp == 0) {
|
| - great--;
|
| - if (great < k) break;
|
| - // This is the only location inside the loop where a new
|
| - // iteration is started.
|
| - continue;
|
| - } else {
|
| - // a[great] < pivot2.
|
| - comp = compare(a[great], pivot1);
|
| - if (comp < 0) {
|
| - // Triple exchange.
|
| - a[k] = a[less];
|
| - a[less++] = a[great];
|
| - a[great--] = ak;
|
| - } else {
|
| - // a[great] == pivot1.
|
| - a[k] = a[great];
|
| - a[great--] = ak;
|
| - }
|
| - break;
|
| - }
|
| - }
|
| - }
|
| - }
|
| - }
|
| - // The second partition has now been cleared of pivot elements and looks
|
| - // as follows:
|
| - // [ * | > pivot1 && < pivot2 | * ]
|
| - // ^ ^
|
| - // less great
|
| - // Sort the second partition using recursive descent.
|
| - _doSort(a, less, great, compare);
|
| - } else {
|
| - // The second partition looks as follows:
|
| - // [ * | >= pivot1 && <= pivot2 | * ]
|
| - // ^ ^
|
| - // less great
|
| - // Simply sort it by recursive descent.
|
| - _doSort(a, less, great, compare);
|
| - }
|
| - }
|
| -}
|
|
|