| Index: chrome/browser/autocomplete/scored_history_match.cc
|
| diff --git a/chrome/browser/autocomplete/scored_history_match.cc b/chrome/browser/autocomplete/scored_history_match.cc
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..d90f930af7126127113fdb591d1c417c233364a3
|
| --- /dev/null
|
| +++ b/chrome/browser/autocomplete/scored_history_match.cc
|
| @@ -0,0 +1,699 @@
|
| +// Copyright (c) 2012 The Chromium Authors. All rights reserved.
|
| +// Use of this source code is governed by a BSD-style license that can be
|
| +// found in the LICENSE file.
|
| +
|
| +#include "chrome/browser/autocomplete/scored_history_match.h"
|
| +
|
| +#include <math.h>
|
| +
|
| +#include <algorithm>
|
| +#include <vector>
|
| +
|
| +#include "base/logging.h"
|
| +#include "base/numerics/safe_conversions.h"
|
| +#include "base/strings/string_number_conversions.h"
|
| +#include "base/strings/string_split.h"
|
| +#include "base/strings/string_util.h"
|
| +#include "base/strings/utf_offset_string_conversions.h"
|
| +#include "base/strings/utf_string_conversions.h"
|
| +#include "chrome/browser/autocomplete/history_url_provider.h"
|
| +#include "components/bookmarks/browser/bookmark_utils.h"
|
| +#include "components/omnibox/omnibox_field_trial.h"
|
| +#include "components/omnibox/url_prefix.h"
|
| +
|
| +namespace {
|
| +
|
| +// The number of days of recency scores to precompute.
|
| +const int kDaysToPrecomputeRecencyScoresFor = 366;
|
| +
|
| +// The number of raw term score buckets use; raw term scores greater this are
|
| +// capped at the score of the largest bucket.
|
| +const int kMaxRawTermScore = 30;
|
| +
|
| +// Pre-computed information to speed up calculating recency scores.
|
| +// |days_ago_to_recency_score| is a simple array mapping how long ago a page was
|
| +// visited (in days) to the recency score we should assign it. This allows easy
|
| +// lookups of scores without requiring math. This is initialized by
|
| +// InitDaysAgoToRecencyScoreArray called by
|
| +// ScoredHistoryMatch::Init().
|
| +float days_ago_to_recency_score[kDaysToPrecomputeRecencyScoresFor];
|
| +
|
| +// Pre-computed information to speed up calculating topicality scores.
|
| +// |raw_term_score_to_topicality_score| is a simple array mapping how raw terms
|
| +// scores (a weighted sum of the number of hits for the term, weighted by how
|
| +// important the hit is: hostname, path, etc.) to the topicality score we should
|
| +// assign it. This allows easy lookups of scores without requiring math. This
|
| +// is initialized by InitRawTermScoreToTopicalityScoreArray() called from
|
| +// ScoredHistoryMatch::Init().
|
| +float raw_term_score_to_topicality_score[kMaxRawTermScore];
|
| +
|
| +// Precalculates raw_term_score_to_topicality_score, used in
|
| +// GetTopicalityScore().
|
| +void InitRawTermScoreToTopicalityScoreArray() {
|
| + for (int term_score = 0; term_score < kMaxRawTermScore; ++term_score) {
|
| + float topicality_score;
|
| + if (term_score < 10) {
|
| + // If the term scores less than 10 points (no full-credit hit, or
|
| + // no combination of hits that score that well), then the topicality
|
| + // score is linear in the term score.
|
| + topicality_score = 0.1 * term_score;
|
| + } else {
|
| + // For term scores of at least ten points, pass them through a log
|
| + // function so a score of 10 points gets a 1.0 (to meet up exactly
|
| + // with the linear component) and increases logarithmically until
|
| + // maxing out at 30 points, with computes to a score around 2.1.
|
| + topicality_score = (1.0 + 2.25 * log10(0.1 * term_score));
|
| + }
|
| + raw_term_score_to_topicality_score[term_score] = topicality_score;
|
| + }
|
| +}
|
| +
|
| +// Pre-calculates days_ago_to_recency_score, used in GetRecencyScore().
|
| +void InitDaysAgoToRecencyScoreArray() {
|
| + for (int days_ago = 0; days_ago < kDaysToPrecomputeRecencyScoresFor;
|
| + days_ago++) {
|
| + int unnormalized_recency_score;
|
| + if (days_ago <= 4) {
|
| + unnormalized_recency_score = 100;
|
| + } else if (days_ago <= 14) {
|
| + // Linearly extrapolate between 4 and 14 days so 14 days has a score
|
| + // of 70.
|
| + unnormalized_recency_score = 70 + (14 - days_ago) * (100 - 70) / (14 - 4);
|
| + } else if (days_ago <= 31) {
|
| + // Linearly extrapolate between 14 and 31 days so 31 days has a score
|
| + // of 50.
|
| + unnormalized_recency_score = 50 + (31 - days_ago) * (70 - 50) / (31 - 14);
|
| + } else if (days_ago <= 90) {
|
| + // Linearly extrapolate between 30 and 90 days so 90 days has a score
|
| + // of 30.
|
| + unnormalized_recency_score = 30 + (90 - days_ago) * (50 - 30) / (90 - 30);
|
| + } else {
|
| + // Linearly extrapolate between 90 and 365 days so 365 days has a score
|
| + // of 10.
|
| + unnormalized_recency_score =
|
| + 10 + (365 - days_ago) * (20 - 10) / (365 - 90);
|
| + }
|
| + days_ago_to_recency_score[days_ago] = unnormalized_recency_score / 100.0;
|
| + if (days_ago > 0) {
|
| + DCHECK_LE(days_ago_to_recency_score[days_ago],
|
| + days_ago_to_recency_score[days_ago - 1]);
|
| + }
|
| + }
|
| +}
|
| +
|
| +} // namespace
|
| +
|
| +// static
|
| +const size_t ScoredHistoryMatch::kMaxVisitsToScore = 10;
|
| +bool ScoredHistoryMatch::also_do_hup_like_scoring_ = false;
|
| +int ScoredHistoryMatch::bookmark_value_ = 1;
|
| +bool ScoredHistoryMatch::fix_frequency_bugs_ = false;
|
| +bool ScoredHistoryMatch::allow_tld_matches_ = false;
|
| +bool ScoredHistoryMatch::allow_scheme_matches_ = false;
|
| +size_t ScoredHistoryMatch::num_title_words_to_allow_ = 10u;
|
| +bool ScoredHistoryMatch::hqp_experimental_scoring_enabled_ = false;
|
| +float ScoredHistoryMatch::topicality_threshold_ = -1;
|
| +std::vector<ScoredHistoryMatch::ScoreMaxRelevance>*
|
| + ScoredHistoryMatch::hqp_relevance_buckets_ = nullptr;
|
| +
|
| +ScoredHistoryMatch::ScoredHistoryMatch()
|
| + : ScoredHistoryMatch(history::URLRow(),
|
| + VisitInfoVector(),
|
| + std::string(),
|
| + base::string16(),
|
| + String16Vector(),
|
| + WordStarts(),
|
| + RowWordStarts(),
|
| + false,
|
| + base::Time::Max()) {
|
| +}
|
| +
|
| +ScoredHistoryMatch::ScoredHistoryMatch(
|
| + const history::URLRow& row,
|
| + const VisitInfoVector& visits,
|
| + const std::string& languages,
|
| + const base::string16& lower_string,
|
| + const String16Vector& terms_vector,
|
| + const WordStarts& terms_to_word_starts_offsets,
|
| + const RowWordStarts& word_starts,
|
| + bool is_url_bookmarked,
|
| + base::Time now)
|
| + : HistoryMatch(row, 0, false, false), raw_score(0), can_inline(false) {
|
| + // NOTE: Call Init() before doing any validity checking to ensure that the
|
| + // class is always initialized after an instance has been constructed. In
|
| + // particular, this ensures that the class is initialized after an instance
|
| + // has been constructed via the no-args constructor.
|
| + ScoredHistoryMatch::Init();
|
| +
|
| + GURL gurl = row.url();
|
| + if (!gurl.is_valid())
|
| + return;
|
| +
|
| + // Figure out where each search term appears in the URL and/or page title
|
| + // so that we can score as well as provide autocomplete highlighting.
|
| + base::OffsetAdjuster::Adjustments adjustments;
|
| + base::string16 url =
|
| + bookmarks::CleanUpUrlForMatching(gurl, languages, &adjustments);
|
| + base::string16 title = bookmarks::CleanUpTitleForMatching(row.title());
|
| + int term_num = 0;
|
| + for (const auto& term : terms_vector) {
|
| + TermMatches url_term_matches = MatchTermInString(term, url, term_num);
|
| + TermMatches title_term_matches = MatchTermInString(term, title, term_num);
|
| + if (url_term_matches.empty() && title_term_matches.empty()) {
|
| + // A term was not found in either URL or title - reject.
|
| + return;
|
| + }
|
| + url_matches.insert(url_matches.end(), url_term_matches.begin(),
|
| + url_term_matches.end());
|
| + title_matches.insert(title_matches.end(), title_term_matches.begin(),
|
| + title_term_matches.end());
|
| + ++term_num;
|
| + }
|
| +
|
| + // Sort matches by offset and eliminate any which overlap.
|
| + // TODO(mpearson): Investigate whether this has any meaningful
|
| + // effect on scoring. (It's necessary at some point: removing
|
| + // overlaps and sorting is needed to decide what to highlight in the
|
| + // suggestion string. But this sort and de-overlap doesn't have to
|
| + // be done before scoring.)
|
| + url_matches = SortAndDeoverlapMatches(url_matches);
|
| + title_matches = SortAndDeoverlapMatches(title_matches);
|
| +
|
| + // We can inline autocomplete a match if:
|
| + // 1) there is only one search term
|
| + // 2) AND the match begins immediately after one of the prefixes in
|
| + // URLPrefix such as http://www and https:// (note that one of these
|
| + // is the empty prefix, for cases where the user has typed the scheme)
|
| + // 3) AND the search string does not end in whitespace (making it look to
|
| + // the IMUI as though there is a single search term when actually there
|
| + // is a second, empty term).
|
| + // |best_inlineable_prefix| stores the inlineable prefix computed in
|
| + // clause (2) or NULL if no such prefix exists. (The URL is not inlineable.)
|
| + // Note that using the best prefix here means that when multiple
|
| + // prefixes match, we'll choose to inline following the longest one.
|
| + // For a URL like "http://www.washingtonmutual.com", this means
|
| + // typing "w" will inline "ashington..." instead of "ww.washington...".
|
| + if (!url_matches.empty() && (terms_vector.size() == 1) &&
|
| + !IsWhitespace(*lower_string.rbegin())) {
|
| + const base::string16 gurl_spec = base::UTF8ToUTF16(gurl.spec());
|
| + const URLPrefix* best_inlineable_prefix =
|
| + URLPrefix::BestURLPrefix(gurl_spec, terms_vector[0]);
|
| + if (best_inlineable_prefix) {
|
| + // When inline autocompleting this match, we're going to use the part of
|
| + // the URL following the end of the matching text. However, it's possible
|
| + // that FormatUrl(), when formatting this suggestion for display,
|
| + // mucks with the text. We need to ensure that the text we're thinking
|
| + // about highlighting isn't in the middle of a mucked sequence. In
|
| + // particular, for the omnibox input of "x" or "xn", we may get a match
|
| + // in a punycoded domain name such as http://www.xn--blahblah.com/.
|
| + // When FormatUrl() processes the xn--blahblah part of the hostname, it'll
|
| + // transform the whole thing into a series of unicode characters. It's
|
| + // impossible to give the user an inline autocompletion of the text
|
| + // following "x" or "xn" in this case because those characters no longer
|
| + // exist in the displayed URL string.
|
| + size_t offset =
|
| + best_inlineable_prefix->prefix.length() + terms_vector[0].length();
|
| + base::OffsetAdjuster::UnadjustOffset(adjustments, &offset);
|
| + if (offset != base::string16::npos) {
|
| + // Initialize innermost_match.
|
| + // The idea here is that matches that occur in the scheme or
|
| + // "www." are worse than matches which don't. For the URLs
|
| + // "http://www.google.com" and "http://wellsfargo.com", we want
|
| + // the omnibox input "w" to cause the latter URL to rank higher
|
| + // than the former. Note that this is not the same as checking
|
| + // whether one match's inlinable prefix has more components than
|
| + // the other match's, since in this example, both matches would
|
| + // have an inlinable prefix of "http://", which is one component.
|
| + //
|
| + // Instead, we look for the overall best (i.e., most components)
|
| + // prefix of the current URL, and then check whether the inlinable
|
| + // prefix has that many components. If it does, this is an
|
| + // "innermost" match, and should be boosted. In the example
|
| + // above, the best prefixes for the two URLs have two and one
|
| + // components respectively, while the inlinable prefixes each
|
| + // have one component; this means the first match is not innermost
|
| + // and the second match is innermost, resulting in us boosting the
|
| + // second match.
|
| + //
|
| + // Now, the code that implements this.
|
| + // The deepest prefix for this URL regardless of where the match is.
|
| + const URLPrefix* best_prefix =
|
| + URLPrefix::BestURLPrefix(gurl_spec, base::string16());
|
| + DCHECK(best_prefix);
|
| + // If the URL is inlineable, we must have a match. Note the prefix that
|
| + // makes it inlineable may be empty.
|
| + can_inline = true;
|
| + innermost_match = (best_inlineable_prefix->num_components ==
|
| + best_prefix->num_components);
|
| + }
|
| + }
|
| + }
|
| +
|
| + const float topicality_score = GetTopicalityScore(
|
| + terms_vector.size(), url, terms_to_word_starts_offsets, word_starts);
|
| + const float frequency_score = GetFrequency(now, is_url_bookmarked, visits);
|
| + raw_score = base::saturated_cast<int>(GetFinalRelevancyScore(
|
| + topicality_score, frequency_score, *hqp_relevance_buckets_));
|
| +
|
| + if (also_do_hup_like_scoring_ && can_inline) {
|
| + // HistoryURL-provider-like scoring gives any match that is
|
| + // capable of being inlined a certain minimum score. Some of these
|
| + // are given a higher score that lets them be shown in inline.
|
| + // This test here derives from the test in
|
| + // HistoryURLProvider::PromoteMatchForInlineAutocomplete().
|
| + const bool promote_to_inline =
|
| + (row.typed_count() > 1) || (IsHostOnly() && (row.typed_count() == 1));
|
| + int hup_like_score =
|
| + promote_to_inline
|
| + ? HistoryURLProvider::kScoreForBestInlineableResult
|
| + : HistoryURLProvider::kBaseScoreForNonInlineableResult;
|
| +
|
| + // Also, if the user types the hostname of a host with a typed
|
| + // visit, then everything from that host get given inlineable scores
|
| + // (because the URL-that-you-typed will go first and everything
|
| + // else will be assigned one minus the previous score, as coded
|
| + // at the end of HistoryURLProvider::DoAutocomplete().
|
| + if (base::UTF8ToUTF16(gurl.host()) == terms_vector[0])
|
| + hup_like_score = HistoryURLProvider::kScoreForBestInlineableResult;
|
| +
|
| + // HistoryURLProvider has the function PromoteOrCreateShorterSuggestion()
|
| + // that's meant to promote prefixes of the best match (if they've
|
| + // been visited enough related to the best match) or
|
| + // create/promote host-only suggestions (even if they've never
|
| + // been typed). The code is complicated and we don't try to
|
| + // duplicate the logic here. Instead, we handle a simple case: in
|
| + // low-typed-count ranges, give host-only matches (i.e.,
|
| + // http://www.foo.com/ vs. http://www.foo.com/bar.html) a boost so
|
| + // that the host-only match outscores all the other matches that
|
| + // would normally have the same base score. This behavior is not
|
| + // identical to what happens in HistoryURLProvider even in these
|
| + // low typed count ranges--sometimes it will create/promote when
|
| + // this test does not (indeed, we cannot create matches like HUP
|
| + // can) and vice versa--but the underlying philosophy is similar.
|
| + if (!promote_to_inline && IsHostOnly())
|
| + hup_like_score++;
|
| +
|
| + // All the other logic to goes into hup-like-scoring happens in
|
| + // the tie-breaker case of MatchScoreGreater().
|
| +
|
| + // Incorporate hup_like_score into raw_score.
|
| + raw_score = std::max(raw_score, hup_like_score);
|
| + }
|
| +
|
| + // Now that we're done processing this entry, correct the offsets of the
|
| + // matches in |url_matches| so they point to offsets in the original URL
|
| + // spec, not the cleaned-up URL string that we used for matching.
|
| + std::vector<size_t> offsets = OffsetsFromTermMatches(url_matches);
|
| + base::OffsetAdjuster::UnadjustOffsets(adjustments, &offsets);
|
| + url_matches = ReplaceOffsetsInTermMatches(url_matches, offsets);
|
| +}
|
| +
|
| +ScoredHistoryMatch::~ScoredHistoryMatch() {
|
| +}
|
| +
|
| +// Comparison function for sorting ScoredMatches by their scores with
|
| +// intelligent tie-breaking.
|
| +bool ScoredHistoryMatch::MatchScoreGreater(const ScoredHistoryMatch& m1,
|
| + const ScoredHistoryMatch& m2) {
|
| + if (m1.raw_score != m2.raw_score)
|
| + return m1.raw_score > m2.raw_score;
|
| +
|
| + // This tie-breaking logic is inspired by / largely copied from the
|
| + // ordering logic in history_url_provider.cc CompareHistoryMatch().
|
| +
|
| + // A URL that has been typed at all is better than one that has never been
|
| + // typed. (Note "!"s on each side.)
|
| + if (!m1.url_info.typed_count() != !m2.url_info.typed_count())
|
| + return m1.url_info.typed_count() > m2.url_info.typed_count();
|
| +
|
| + // Innermost matches (matches after any scheme or "www.") are better than
|
| + // non-innermost matches.
|
| + if (m1.innermost_match != m2.innermost_match)
|
| + return m1.innermost_match;
|
| +
|
| + // URLs that have been typed more often are better.
|
| + if (m1.url_info.typed_count() != m2.url_info.typed_count())
|
| + return m1.url_info.typed_count() > m2.url_info.typed_count();
|
| +
|
| + // For URLs that have each been typed once, a host (alone) is better
|
| + // than a page inside.
|
| + if (m1.url_info.typed_count() == 1) {
|
| + if (m1.IsHostOnly() != m2.IsHostOnly())
|
| + return m1.IsHostOnly();
|
| + }
|
| +
|
| + // URLs that have been visited more often are better.
|
| + if (m1.url_info.visit_count() != m2.url_info.visit_count())
|
| + return m1.url_info.visit_count() > m2.url_info.visit_count();
|
| +
|
| + // URLs that have been visited more recently are better.
|
| + return m1.url_info.last_visit() > m2.url_info.last_visit();
|
| +}
|
| +
|
| +// static
|
| +TermMatches ScoredHistoryMatch::FilterTermMatchesByWordStarts(
|
| + const TermMatches& term_matches,
|
| + const WordStarts& terms_to_word_starts_offsets,
|
| + const WordStarts& word_starts,
|
| + size_t start_pos,
|
| + size_t end_pos) {
|
| + // Return early if no filtering is needed.
|
| + if (start_pos == std::string::npos)
|
| + return term_matches;
|
| + TermMatches filtered_matches;
|
| + WordStarts::const_iterator next_word_starts = word_starts.begin();
|
| + WordStarts::const_iterator end_word_starts = word_starts.end();
|
| + for (const auto& term_match : term_matches) {
|
| + const size_t term_offset =
|
| + terms_to_word_starts_offsets[term_match.term_num];
|
| + // Advance next_word_starts until it's >= the position of the term we're
|
| + // considering (adjusted for where the word begins within the term).
|
| + while ((next_word_starts != end_word_starts) &&
|
| + (*next_word_starts < (term_match.offset + term_offset)))
|
| + ++next_word_starts;
|
| + // Add the match if it's before the position we start filtering at or
|
| + // after the position we stop filtering at (assuming we have a position
|
| + // to stop filtering at) or if it's at a word boundary.
|
| + if ((term_match.offset < start_pos) ||
|
| + ((end_pos != std::string::npos) && (term_match.offset >= end_pos)) ||
|
| + ((next_word_starts != end_word_starts) &&
|
| + (*next_word_starts == term_match.offset + term_offset)))
|
| + filtered_matches.push_back(term_match);
|
| + }
|
| + return filtered_matches;
|
| +}
|
| +
|
| +// static
|
| +void ScoredHistoryMatch::Init() {
|
| + static bool initialized = false;
|
| +
|
| + if (initialized)
|
| + return;
|
| +
|
| + initialized = true;
|
| + also_do_hup_like_scoring_ = OmniboxFieldTrial::HQPAlsoDoHUPLikeScoring();
|
| + bookmark_value_ = OmniboxFieldTrial::HQPBookmarkValue();
|
| + fix_frequency_bugs_ = OmniboxFieldTrial::HQPFixFrequencyScoringBugs();
|
| + allow_tld_matches_ = OmniboxFieldTrial::HQPAllowMatchInTLDValue();
|
| + allow_scheme_matches_ = OmniboxFieldTrial::HQPAllowMatchInSchemeValue();
|
| + num_title_words_to_allow_ = OmniboxFieldTrial::HQPNumTitleWordsToAllow();
|
| +
|
| + InitRawTermScoreToTopicalityScoreArray();
|
| + InitDaysAgoToRecencyScoreArray();
|
| + InitHQPExperimentalParams();
|
| +}
|
| +
|
| +float ScoredHistoryMatch::GetTopicalityScore(
|
| + const int num_terms,
|
| + const base::string16& url,
|
| + const WordStarts& terms_to_word_starts_offsets,
|
| + const RowWordStarts& word_starts) {
|
| + // A vector that accumulates per-term scores. The strongest match--a
|
| + // match in the hostname at a word boundary--is worth 10 points.
|
| + // Everything else is less. In general, a match that's not at a word
|
| + // boundary is worth about 1/4th or 1/5th of a match at the word boundary
|
| + // in the same part of the URL/title.
|
| + DCHECK_GT(num_terms, 0);
|
| + std::vector<int> term_scores(num_terms, 0);
|
| + WordStarts::const_iterator next_word_starts =
|
| + word_starts.url_word_starts_.begin();
|
| + WordStarts::const_iterator end_word_starts =
|
| + word_starts.url_word_starts_.end();
|
| + const size_t question_mark_pos = url.find('?');
|
| + const size_t colon_pos = url.find(':');
|
| + // The + 3 skips the // that probably appears in the protocol
|
| + // after the colon. If the protocol doesn't have two slashes after
|
| + // the colon, that's okay--all this ends up doing is starting our
|
| + // search for the next / a few characters into the hostname. The
|
| + // only times this can cause problems is if we have a protocol without
|
| + // a // after the colon and the hostname is only one or two characters.
|
| + // This isn't worth worrying about.
|
| + const size_t end_of_hostname_pos = (colon_pos != std::string::npos)
|
| + ? url.find('/', colon_pos + 3)
|
| + : url.find('/');
|
| + size_t last_part_of_hostname_pos = (end_of_hostname_pos != std::string::npos)
|
| + ? url.rfind('.', end_of_hostname_pos)
|
| + : url.rfind('.');
|
| + // Loop through all URL matches and score them appropriately.
|
| + // First, filter all matches not at a word boundary and in the path (or
|
| + // later).
|
| + url_matches = FilterTermMatchesByWordStarts(
|
| + url_matches, terms_to_word_starts_offsets, word_starts.url_word_starts_,
|
| + end_of_hostname_pos, std::string::npos);
|
| + if (colon_pos != std::string::npos) {
|
| + // Also filter matches not at a word boundary and in the scheme.
|
| + url_matches = FilterTermMatchesByWordStarts(
|
| + url_matches, terms_to_word_starts_offsets, word_starts.url_word_starts_,
|
| + 0, colon_pos);
|
| + }
|
| + for (const auto& url_match : url_matches) {
|
| + const size_t term_offset = terms_to_word_starts_offsets[url_match.term_num];
|
| + // Advance next_word_starts until it's >= the position of the term we're
|
| + // considering (adjusted for where the word begins within the term).
|
| + while ((next_word_starts != end_word_starts) &&
|
| + (*next_word_starts < (url_match.offset + term_offset))) {
|
| + ++next_word_starts;
|
| + }
|
| + const bool at_word_boundary =
|
| + (next_word_starts != end_word_starts) &&
|
| + (*next_word_starts == url_match.offset + term_offset);
|
| + if ((question_mark_pos != std::string::npos) &&
|
| + (url_match.offset > question_mark_pos)) {
|
| + // The match is in a CGI ?... fragment.
|
| + DCHECK(at_word_boundary);
|
| + term_scores[url_match.term_num] += 5;
|
| + } else if ((end_of_hostname_pos != std::string::npos) &&
|
| + (url_match.offset > end_of_hostname_pos)) {
|
| + // The match is in the path.
|
| + DCHECK(at_word_boundary);
|
| + term_scores[url_match.term_num] += 8;
|
| + } else if ((colon_pos == std::string::npos) ||
|
| + (url_match.offset > colon_pos)) {
|
| + // The match is in the hostname.
|
| + if ((last_part_of_hostname_pos == std::string::npos) ||
|
| + (url_match.offset < last_part_of_hostname_pos)) {
|
| + // Either there are no dots in the hostname or this match isn't
|
| + // the last dotted component.
|
| + term_scores[url_match.term_num] += at_word_boundary ? 10 : 2;
|
| + } else {
|
| + // The match is in the last part of a dotted hostname (usually this
|
| + // is the top-level domain .com, .net, etc.).
|
| + if (allow_tld_matches_)
|
| + term_scores[url_match.term_num] += at_word_boundary ? 10 : 0;
|
| + }
|
| + } else {
|
| + // The match is in the protocol (a.k.a. scheme).
|
| + // Matches not at a word boundary should have been filtered already.
|
| + DCHECK(at_word_boundary);
|
| + match_in_scheme = true;
|
| + if (allow_scheme_matches_)
|
| + term_scores[url_match.term_num] += 10;
|
| + }
|
| + }
|
| + // Now do the analogous loop over all matches in the title.
|
| + next_word_starts = word_starts.title_word_starts_.begin();
|
| + end_word_starts = word_starts.title_word_starts_.end();
|
| + size_t word_num = 0;
|
| + title_matches = FilterTermMatchesByWordStarts(
|
| + title_matches, terms_to_word_starts_offsets,
|
| + word_starts.title_word_starts_, 0, std::string::npos);
|
| + for (const auto& title_match : title_matches) {
|
| + const size_t term_offset =
|
| + terms_to_word_starts_offsets[title_match.term_num];
|
| + // Advance next_word_starts until it's >= the position of the term we're
|
| + // considering (adjusted for where the word begins within the term).
|
| + while ((next_word_starts != end_word_starts) &&
|
| + (*next_word_starts < (title_match.offset + term_offset))) {
|
| + ++next_word_starts;
|
| + ++word_num;
|
| + }
|
| + if (word_num >= num_title_words_to_allow_)
|
| + break; // only count the first ten words
|
| + DCHECK(next_word_starts != end_word_starts);
|
| + DCHECK_EQ(*next_word_starts, title_match.offset + term_offset)
|
| + << "not at word boundary";
|
| + term_scores[title_match.term_num] += 8;
|
| + }
|
| + // TODO(mpearson): Restore logic for penalizing out-of-order matches.
|
| + // (Perhaps discount them by 0.8?)
|
| + // TODO(mpearson): Consider: if the earliest match occurs late in the string,
|
| + // should we discount it?
|
| + // TODO(mpearson): Consider: do we want to score based on how much of the
|
| + // input string the input covers? (I'm leaning toward no.)
|
| +
|
| + // Compute the topicality_score as the sum of transformed term_scores.
|
| + float topicality_score = 0;
|
| + for (int term_score : term_scores) {
|
| + // Drop this URL if it seems like a term didn't appear or, more precisely,
|
| + // didn't appear in a part of the URL or title that we trust enough
|
| + // to give it credit for. For instance, terms that appear in the middle
|
| + // of a CGI parameter get no credit. Almost all the matches dropped
|
| + // due to this test would look stupid if shown to the user.
|
| + if (term_score == 0)
|
| + return 0;
|
| + topicality_score += raw_term_score_to_topicality_score[std::min(
|
| + term_score, kMaxRawTermScore - 1)];
|
| + }
|
| + // TODO(mpearson): If there are multiple terms, consider taking the
|
| + // geometric mean of per-term scores rather than the arithmetic mean.
|
| +
|
| + const float final_topicality_score = topicality_score / num_terms;
|
| +
|
| + // Demote the URL if the topicality score is less than threshold.
|
| + if (hqp_experimental_scoring_enabled_ &&
|
| + (final_topicality_score < topicality_threshold_)) {
|
| + return 0.0;
|
| + }
|
| +
|
| + return final_topicality_score;
|
| +}
|
| +
|
| +float ScoredHistoryMatch::GetRecencyScore(int last_visit_days_ago) const {
|
| + // Lookup the score in days_ago_to_recency_score, treating
|
| + // everything older than what we've precomputed as the oldest thing
|
| + // we've precomputed. The std::max is to protect against corruption
|
| + // in the database (in case last_visit_days_ago is negative).
|
| + return days_ago_to_recency_score[std::max(
|
| + std::min(last_visit_days_ago, kDaysToPrecomputeRecencyScoresFor - 1), 0)];
|
| +}
|
| +
|
| +float ScoredHistoryMatch::GetFrequency(const base::Time& now,
|
| + const bool bookmarked,
|
| + const VisitInfoVector& visits) const {
|
| + // Compute the weighted average |value_of_transition| over the last at
|
| + // most kMaxVisitsToScore visits, where each visit is weighted using
|
| + // GetRecencyScore() based on how many days ago it happened. Use
|
| + // kMaxVisitsToScore as the denominator for the average regardless of
|
| + // how many visits there were in order to penalize a match that has
|
| + // fewer visits than kMaxVisitsToScore.
|
| + float summed_visit_points = 0;
|
| + const size_t max_visit_to_score =
|
| + std::min(visits.size(), ScoredHistoryMatch::kMaxVisitsToScore);
|
| + for (size_t i = 0; i < max_visit_to_score; ++i) {
|
| + const ui::PageTransition page_transition = fix_frequency_bugs_ ?
|
| + ui::PageTransitionStripQualifier(visits[i].second) : visits[i].second;
|
| + int value_of_transition =
|
| + (page_transition == ui::PAGE_TRANSITION_TYPED) ? 20 : 1;
|
| + if (bookmarked)
|
| + value_of_transition = std::max(value_of_transition, bookmark_value_);
|
| + const float bucket_weight =
|
| + GetRecencyScore((now - visits[i].first).InDays());
|
| + summed_visit_points += (value_of_transition * bucket_weight);
|
| + }
|
| + if (fix_frequency_bugs_)
|
| + return summed_visit_points / ScoredHistoryMatch::kMaxVisitsToScore;
|
| + return visits.size() * summed_visit_points /
|
| + ScoredHistoryMatch::kMaxVisitsToScore;
|
| +}
|
| +
|
| +// static
|
| +float ScoredHistoryMatch::GetFinalRelevancyScore(
|
| + float topicality_score,
|
| + float frequency_score,
|
| + const std::vector<ScoreMaxRelevance>& hqp_relevance_buckets) {
|
| + DCHECK(hqp_relevance_buckets.size() > 0);
|
| + DCHECK_EQ(hqp_relevance_buckets[0].first, 0.0);
|
| +
|
| + if (topicality_score == 0)
|
| + return 0;
|
| + // Here's how to interpret intermediate_score: Suppose the omnibox
|
| + // has one input term. Suppose we have a URL for which the omnibox
|
| + // input term has a single URL hostname hit at a word boundary. (This
|
| + // implies topicality_score = 1.0.). Then the intermediate_score for
|
| + // this URL will depend entirely on the frequency_score with
|
| + // this interpretation:
|
| + // - a single typed visit more than three months ago, no other visits -> 0.2
|
| + // - a visit every three days, no typed visits -> 0.706
|
| + // - a visit every day, no typed visits -> 0.916
|
| + // - a single typed visit yesterday, no other visits -> 2.0
|
| + // - a typed visit once a week -> 11.77
|
| + // - a typed visit every three days -> 14.12
|
| + // - at least ten typed visits today -> 20.0 (maximum score)
|
| + //
|
| + // The below code maps intermediate_score to the range [0, 1399].
|
| + // For example:
|
| + // HQP default scoring buckets: "0.0:400,1.5:600,12.0:1300,20.0:1399"
|
| + // We will linearly interpolate the scores between:
|
| + // 0 to 1.5 --> 400 to 600
|
| + // 1.5 to 12.0 --> 600 to 1300
|
| + // 12.0 to 20.0 --> 1300 to 1399
|
| + // >= 20.0 --> 1399
|
| + //
|
| + // The score maxes out at 1399 (i.e., cannot beat a good inlineable result
|
| + // from HistoryURL provider).
|
| + const float intermediate_score = topicality_score * frequency_score;
|
| +
|
| + // Find the threshold where intermediate score is greater than bucket.
|
| + size_t i = 1;
|
| + for (; i < hqp_relevance_buckets.size(); ++i) {
|
| + const ScoreMaxRelevance& hqp_bucket = hqp_relevance_buckets[i];
|
| + if (intermediate_score >= hqp_bucket.first) {
|
| + continue;
|
| + }
|
| + const ScoreMaxRelevance& previous_bucket = hqp_relevance_buckets[i - 1];
|
| + const float slope = ((hqp_bucket.second - previous_bucket.second) /
|
| + (hqp_bucket.first - previous_bucket.first));
|
| + return (previous_bucket.second +
|
| + (slope * (intermediate_score - previous_bucket.first)));
|
| + }
|
| + // It will reach this stage when the score is > highest bucket score.
|
| + // Return the highest bucket score.
|
| + return hqp_relevance_buckets[i - 1].second;
|
| +}
|
| +
|
| +// static
|
| +void ScoredHistoryMatch::InitHQPExperimentalParams() {
|
| + // These are default HQP relevance scoring buckets.
|
| + // See GetFinalRelevancyScore() for details.
|
| + std::string hqp_relevance_buckets_str = "0.0:400,1.5:600,12.0:1300,20.0:1399";
|
| +
|
| + // Fetch the experiment params if they are any.
|
| + hqp_experimental_scoring_enabled_ =
|
| + OmniboxFieldTrial::HQPExperimentalScoringEnabled();
|
| +
|
| + if (hqp_experimental_scoring_enabled_) {
|
| + // Add the topicality threshold from experiment params.
|
| + float hqp_experimental_topicality_threhold =
|
| + OmniboxFieldTrial::HQPExperimentalTopicalityThreshold();
|
| + topicality_threshold_ = hqp_experimental_topicality_threhold;
|
| +
|
| + // Add the HQP experimental scoring buckets.
|
| + std::string hqp_experimental_scoring_buckets =
|
| + OmniboxFieldTrial::HQPExperimentalScoringBuckets();
|
| + if (!hqp_experimental_scoring_buckets.empty())
|
| + hqp_relevance_buckets_str = hqp_experimental_scoring_buckets;
|
| + }
|
| +
|
| + // Parse the hqp_relevance_buckets_str string once and store them in vector
|
| + // which is easy to access.
|
| + hqp_relevance_buckets_ =
|
| + new std::vector<ScoredHistoryMatch::ScoreMaxRelevance>();
|
| +
|
| + bool is_valid_bucket_str = GetHQPBucketsFromString(hqp_relevance_buckets_str,
|
| + hqp_relevance_buckets_);
|
| + DCHECK(is_valid_bucket_str);
|
| +}
|
| +
|
| +// static
|
| +bool ScoredHistoryMatch::GetHQPBucketsFromString(
|
| + const std::string& buckets_str,
|
| + std::vector<ScoreMaxRelevance>* hqp_buckets) {
|
| + DCHECK(hqp_buckets != NULL);
|
| + DCHECK(!buckets_str.empty());
|
| +
|
| + base::StringPairs kv_pairs;
|
| + if (base::SplitStringIntoKeyValuePairs(buckets_str, ':', ',', &kv_pairs)) {
|
| + for (base::StringPairs::const_iterator it = kv_pairs.begin();
|
| + it != kv_pairs.end(); ++it) {
|
| + ScoreMaxRelevance bucket;
|
| + bool is_valid_intermediate_score =
|
| + base::StringToDouble(it->first, &bucket.first);
|
| + DCHECK(is_valid_intermediate_score);
|
| + bool is_valid_hqp_score = base::StringToInt(it->second, &bucket.second);
|
| + DCHECK(is_valid_hqp_score);
|
| + hqp_buckets->push_back(bucket);
|
| + }
|
| + return true;
|
| + }
|
| + return false;
|
| +}
|
|
|