Chromium Code Reviews| OLD | NEW |
|---|---|
| (Empty) | |
| 1 // Copyright (c) 2015, the Dart project authors. Please see the AUTHORS file | |
| 2 // for details. All rights reserved. Use of this source code is governed by a | |
| 3 // BSD-style license that can be found in the LICENSE file. | |
| 4 | |
| 5 /* This library defines the operations that define and manipulate Dart | |
| 6 * classes. Included in this are: | |
| 7 * - Generics | |
| 8 * - Class metadata | |
| 9 * - Extension methods | |
| 10 */ | |
| 11 | |
| 12 // TODO(leafp): Consider splitting some of this out. | |
| 13 loader.library('dart/classes', null, /* Imports */[ | |
|
vsm
2015/06/12 15:50:32
Perhaps rename 'dart/classes', etc., to 'dart/_cla
Leaf
2015/06/12 19:52:13
Done.
| |
| 14 ], /* Lazy Imports */[ | |
| 15 'dart/core', | |
| 16 'dart/dartx', | |
| 17 'dart/types', | |
| 18 'dart/rtti', | |
| 19 'dart/_interceptors' | |
| 20 ], function(exports, core, dartx, types, rtti, _interceptors) { | |
| 21 'use strict'; | |
| 22 | |
| 23 const assert = js_utils.assert; | |
| 24 const copyProperties = js_utils.copyProperties; | |
| 25 const copyTheseProperties = js_utils.copyTheseProperties; | |
| 26 const defineMemoizedGetter = js_utils.defineMemoizedGetter; | |
| 27 const defineProperty = js_utils.defineProperty; | |
| 28 const getOwnPropertyDescriptor = js_utils.getOwnPropertyDescriptor; | |
| 29 const getOwnPropertySymbols = js_utils.getOwnPropertySymbols; | |
| 30 const getOwnPropertyNames = js_utils.getOwnPropertyNames; | |
| 31 const safeGetOwnProperty = js_utils.safeGetOwnProperty; | |
| 32 const slice = js_utils.slice; | |
| 33 const throwRuntimeError = js_utils.throwRuntimeError; | |
| 34 | |
| 35 | |
| 36 /** The Symbol for storing type arguments on a specialized generic type. */ | |
| 37 let _mixins = Symbol('mixins'); | |
| 38 let _implements = Symbol('implements'); | |
| 39 exports.implements = _implements; | |
| 40 let _metadata = Symbol('metadata'); | |
| 41 exports.metadata = _metadata; | |
| 42 | |
| 43 /** | |
| 44 * Returns a new type that mixes members from base and all mixins. | |
| 45 * | |
| 46 * Each mixin applies in sequence, with further to the right ones overriding | |
| 47 * previous entries. | |
| 48 * | |
| 49 * For each mixin, we only take its own properties, not anything from its | |
| 50 * superclass (prototype). | |
| 51 */ | |
| 52 function mixin(base/*, ...mixins*/) { | |
| 53 // Create an initializer for the mixin, so when derived constructor calls | |
| 54 // super, we can correctly initialize base and mixins. | |
| 55 let mixins = slice.call(arguments, 1); | |
| 56 | |
| 57 // Create a class that will hold all of the mixin methods. | |
| 58 class Mixin extends base { | |
| 59 // Initializer method: run mixin initializers, then the base. | |
| 60 [base.name](/*...args*/) { | |
| 61 // Run mixin initializers. They cannot have arguments. | |
| 62 // Run them backwards so most-derived mixin is initialized first. | |
| 63 for (let i = mixins.length - 1; i >= 0; i--) { | |
| 64 let mixin = mixins[i]; | |
| 65 let init = mixin.prototype[mixin.name]; | |
| 66 if (init) init.call(this); | |
| 67 } | |
| 68 // Run base initializer. | |
| 69 let init = base.prototype[base.name]; | |
| 70 if (init) init.apply(this, arguments); | |
| 71 } | |
| 72 } | |
| 73 // Copy each mixin's methods, with later ones overwriting earlier entries. | |
| 74 for (let m of mixins) { | |
| 75 copyProperties(Mixin.prototype, m.prototype); | |
| 76 } | |
| 77 | |
| 78 // Set the signature of the Mixin class to be the composition | |
| 79 // of the signatures of the mixins. | |
| 80 setSignature(Mixin, { | |
| 81 methods: () => { | |
| 82 let s = {}; | |
| 83 for (let m of mixins) { | |
| 84 copyProperties(s, m[_methodSig]); | |
| 85 } | |
| 86 return s; | |
| 87 } | |
| 88 }); | |
| 89 | |
| 90 // Save mixins for reflection | |
| 91 Mixin[_mixins] = mixins; | |
| 92 return Mixin; | |
| 93 } | |
| 94 exports.mixin = mixin; | |
| 95 | |
| 96 function getMixins (clazz) { | |
| 97 return clazz[_mixins]; | |
| 98 } | |
| 99 exports.getMixins = getMixins; | |
| 100 | |
| 101 function getImplements (clazz) { | |
| 102 return clazz[_implements]; | |
| 103 } | |
| 104 exports.getImplements = getImplements; | |
| 105 | |
| 106 /** The Symbol for storing type arguments on a specialized generic type. */ | |
| 107 let _typeArguments = Symbol('typeArguments'); | |
| 108 let _originalDeclaration = Symbol('originalDeclaration'); | |
| 109 | |
| 110 /** Memoize a generic type constructor function. */ | |
| 111 function generic(typeConstructor) { | |
| 112 let length = typeConstructor.length; | |
| 113 if (length < 1) throwRuntimeError('must have at least one generic type argum ent'); | |
| 114 | |
| 115 let resultMap = new Map(); | |
| 116 function makeGenericType(/*...arguments*/) { | |
| 117 if (arguments.length != length && arguments.length != 0) { | |
| 118 throwRuntimeError('requires ' + length + ' or 0 type arguments'); | |
| 119 } | |
| 120 let args = slice.call(arguments); | |
| 121 // TODO(leafp): This should really be core.Object for | |
| 122 // consistency, but Object is not attached to core | |
| 123 // until the entire core library has been processed, | |
| 124 // which is too late. | |
| 125 while (args.length < length) args.push(types.dynamic); | |
| 126 | |
| 127 let value = resultMap; | |
| 128 for (let i = 0; i < length; i++) { | |
| 129 let arg = args[i]; | |
| 130 if (arg == null) { | |
| 131 throwRuntimeError('type arguments should not be null: ' + typeConstruc tor); | |
|
vsm
2015/06/12 15:50:32
nit: length
Leaf
2015/06/12 19:52:13
Done.
| |
| 132 } | |
| 133 let map = value; | |
| 134 value = map.get(arg); | |
| 135 if (value === void 0) { | |
| 136 if (i + 1 == length) { | |
| 137 value = typeConstructor.apply(null, args); | |
| 138 // Save the type constructor and arguments for reflection. | |
| 139 if (value) { | |
| 140 value[_typeArguments] = args; | |
| 141 value[_originalDeclaration] = makeGenericType; | |
| 142 } | |
| 143 } else { | |
| 144 value = new Map(); | |
| 145 } | |
| 146 map.set(arg, value); | |
| 147 } | |
| 148 } | |
| 149 return value; | |
| 150 } | |
| 151 return makeGenericType; | |
| 152 } | |
| 153 exports.generic = generic; | |
| 154 | |
| 155 function getGenericClass(type) { | |
| 156 return safeGetOwnProperty(type, _originalDeclaration); | |
| 157 }; | |
| 158 exports.getGenericClass = getGenericClass; | |
| 159 | |
| 160 function getGenericArgs(type) { | |
| 161 return safeGetOwnProperty(type, _typeArguments); | |
| 162 }; | |
| 163 exports.getGenericArgs = getGenericArgs; | |
| 164 | |
| 165 let _constructorSig = Symbol('sigCtor'); | |
| 166 let _methodSig = Symbol("sig"); | |
| 167 let _staticSig = Symbol("sigStatic"); | |
| 168 | |
| 169 /// Get the type of a method using the stored signature | |
| 170 function _getMethodType(obj, name) { | |
| 171 if (obj === void 0) return void 0; | |
| 172 if (obj == null) return void 0; | |
| 173 let sigObj = obj.__proto__.constructor[_methodSig]; | |
| 174 if (sigObj === void 0) return void 0; | |
| 175 let parts = sigObj[name]; | |
| 176 if (parts === void 0) return void 0; | |
| 177 return types.functionType.apply(null, parts); | |
| 178 } | |
| 179 | |
| 180 /// Get the type of a constructor from a class using the stored signature | |
| 181 /// If name is undefined, returns the type of the default constructor | |
| 182 /// Returns undefined if the constructor is not found. | |
| 183 function _getConstructorType(cls, name) { | |
| 184 if(!name) name = cls.name; | |
| 185 if (cls === void 0) return void 0; | |
| 186 if (cls == null) return void 0; | |
| 187 let sigCtor = cls[_constructorSig]; | |
| 188 if (sigCtor === void 0) return void 0; | |
| 189 let parts = sigCtor[name]; | |
| 190 if (parts === void 0) return void 0; | |
| 191 return types.functionType.apply(null, parts); | |
| 192 } | |
| 193 exports.classGetConstructorType = _getConstructorType; | |
| 194 | |
| 195 /// Given an object and a method name, tear off the method. | |
| 196 /// Sets the runtime type of the torn off method appropriately, | |
| 197 /// and also binds the object. | |
| 198 /// TODO(leafp): Consider caching the tearoff on the object? | |
| 199 function bind(obj, name) { | |
| 200 let f = obj[name].bind(obj); | |
| 201 let sig = _getMethodType(obj, name); | |
| 202 assert(sig); | |
| 203 rtti.tag(f, sig); | |
| 204 return f; | |
| 205 } | |
| 206 exports.bind = bind; | |
| 207 | |
| 208 // Set up the method signature field on the constructor | |
| 209 function _setMethodSignature(f, sigF) { | |
| 210 defineMemoizedGetter(f, _methodSig, () => { | |
| 211 let sigObj = sigF(); | |
| 212 sigObj.__proto__ = f.__proto__[_methodSig]; | |
| 213 return sigObj; | |
| 214 }); | |
| 215 } | |
| 216 | |
| 217 // Set up the constructor signature field on the constructor | |
| 218 function _setConstructorSignature(f, sigF) { | |
| 219 defineMemoizedGetter(f, _constructorSig, sigF); | |
| 220 } | |
| 221 | |
| 222 // Set up the static signature field on the constructor | |
| 223 function _setStaticSignature(f, sigF) { | |
| 224 defineMemoizedGetter(f, _staticSig, sigF); | |
| 225 } | |
| 226 | |
| 227 // Set the lazily computed runtime type field on static methods | |
| 228 function _setStaticTypes(f, names) { | |
| 229 for (let name of names) { | |
| 230 rtti.tagMemoized(f[name], function() { | |
| 231 let parts = f[_staticSig][name]; | |
| 232 return types.functionType.apply(null, parts); | |
| 233 }) | |
| 234 } | |
| 235 } | |
| 236 | |
| 237 /// Set up the type signature of a class (constructor object) | |
| 238 /// f is a constructor object | |
| 239 /// signature is an object containing optional properties as follows: | |
| 240 /// methods: A function returning an object mapping method names | |
| 241 /// to method types. The function is evaluated lazily and cached. | |
| 242 /// statics: A function returning an object mapping static method | |
| 243 /// names to types. The function is evalutated lazily and cached. | |
| 244 /// names: An array of the names of the static methods. Used to | |
| 245 /// permit eagerly setting the runtimeType field on the methods | |
| 246 /// while still lazily computing the type descriptor object. | |
| 247 function setSignature(f, signature) { | |
| 248 let constructors = | |
| 249 ('constructors' in signature) ? signature.constructors : () => ({}); | |
| 250 let methods = | |
| 251 ('methods' in signature) ? signature.methods : () => ({}); | |
| 252 let statics = | |
| 253 ('statics' in signature) ? signature.statics : () => ({}); | |
| 254 let names = | |
| 255 ('names' in signature) ? signature.names : []; | |
| 256 _setConstructorSignature(f, constructors); | |
| 257 _setMethodSignature(f, methods); | |
| 258 _setStaticSignature(f, statics); | |
| 259 _setStaticTypes(f, names); | |
| 260 rtti.tagMemoized(f, () => core.Type); | |
| 261 } | |
| 262 exports.setSignature = setSignature; | |
| 263 | |
| 264 function hasMethod(obj, name) { | |
| 265 return _getMethodType(obj, name) !== void 0; | |
| 266 } | |
| 267 exports.hasMethod = hasMethod; | |
| 268 | |
| 269 exports.getMethodType = _getMethodType; | |
| 270 | |
| 271 /** | |
| 272 * This is called whenever a derived class needs to introduce a new field, | |
| 273 * shadowing a field or getter/setter pair on its parent. | |
| 274 * | |
| 275 * This is important because otherwise, trying to read or write the field | |
| 276 * would end up calling the getter or setter, and one of those might not even | |
| 277 * exist, resulting in a runtime error. Even if they did exist, that's the | |
| 278 * wrong behavior if a new field was declared. | |
| 279 */ | |
| 280 function virtualField(subclass, fieldName) { | |
| 281 // If the field is already overridden, do nothing. | |
| 282 let prop = getOwnPropertyDescriptor(subclass.prototype, fieldName); | |
| 283 if (prop) return; | |
| 284 | |
| 285 let symbol = Symbol(subclass.name + '.' + fieldName); | |
| 286 defineProperty(subclass.prototype, fieldName, { | |
| 287 get: function() { return this[symbol]; }, | |
| 288 set: function(x) { this[symbol] = x; } | |
| 289 }); | |
| 290 } | |
| 291 exports.virtualField = virtualField; | |
| 292 | |
| 293 /** | |
| 294 * Given a class and an initializer method name, creates a constructor | |
| 295 * function with the same name. For example `new SomeClass.name(args)`. | |
| 296 */ | |
| 297 function defineNamedConstructor(clazz, name) { | |
| 298 let proto = clazz.prototype; | |
| 299 let initMethod = proto[name]; | |
| 300 let ctor = function() { return initMethod.apply(this, arguments); }; | |
| 301 ctor.prototype = proto; | |
| 302 // Use defineProperty so we don't hit a property defined on Function, | |
| 303 // like `caller` and `arguments`. | |
| 304 defineProperty(clazz, name, { value: ctor, configurable: true }); | |
| 305 } | |
| 306 exports.defineNamedConstructor = defineNamedConstructor; | |
| 307 | |
| 308 let _extensionType = Symbol('extensionType'); | |
| 309 | |
| 310 function getExtensionSymbol(name) { | |
| 311 let sym = dartx[name]; | |
| 312 if (!sym) dartx[name] = sym = Symbol('dartx.' + name); | |
| 313 return sym; | |
| 314 } | |
| 315 | |
| 316 function defineExtensionNames(names) { | |
| 317 names.forEach(getExtensionSymbol); | |
| 318 } | |
| 319 exports.defineExtensionNames = defineExtensionNames; | |
| 320 | |
| 321 /** | |
| 322 * Copy symbols from the prototype of the source to destination. | |
| 323 * These are the only properties safe to copy onto an existing public | |
| 324 * JavaScript class. | |
| 325 */ | |
| 326 function registerExtension(jsType, dartExtType) { | |
| 327 let extProto = dartExtType.prototype; | |
| 328 let jsProto = jsType.prototype; | |
| 329 | |
| 330 // Mark the JS type's instances so we can easily check for extensions. | |
| 331 assert(jsProto[_extensionType] === void 0); | |
| 332 jsProto[_extensionType] = extProto; | |
| 333 | |
| 334 let dartObjProto = core.Object.prototype; | |
| 335 while (extProto !== dartObjProto && extProto !== jsProto) { | |
| 336 copyTheseProperties(jsProto, extProto, getOwnPropertySymbols(extProto)); | |
| 337 extProto = extProto.__proto__; | |
| 338 } | |
| 339 } | |
| 340 exports.registerExtension = registerExtension; | |
| 341 | |
| 342 /** | |
| 343 * Mark a concrete type as implementing extension methods. | |
| 344 * For example: `class MyIter implements Iterable`. | |
| 345 * | |
| 346 * This takes a list of names, which are the extension methods implemented. | |
| 347 * It will add a forwarder, so the extension method name redirects to the | |
| 348 * normal Dart method name. For example: | |
| 349 * | |
| 350 * defineExtensionMembers(MyType, ['add', 'remove']); | |
| 351 * | |
| 352 * Results in: | |
| 353 * | |
| 354 * MyType.prototype[dartx.add] = MyType.prototype.add; | |
| 355 * MyType.prototype[dartx.remove] = MyType.prototype.remove; | |
| 356 */ | |
| 357 // TODO(jmesserly): essentially this gives two names to the same method. | |
| 358 // This benefit is roughly equivalent call performance either way, but the | |
| 359 // cost is we need to call defineExtensionMEmbers any time a subclass override s | |
|
vsm
2015/06/12 15:50:32
nit: line len && fix cap on MEmbers
Leaf
2015/06/12 19:52:13
Done.
| |
| 360 // one of these methods. | |
| 361 function defineExtensionMembers(type, methodNames) { | |
| 362 let proto = type.prototype; | |
| 363 for (let name of methodNames) { | |
| 364 let method = getOwnPropertyDescriptor(proto, name); | |
| 365 defineProperty(proto, getExtensionSymbol(name), method); | |
| 366 } | |
| 367 // Ensure the signature is available too. | |
| 368 // TODO(jmesserly): not sure if we can do this in a cleaner way. Essentially | |
| 369 // we need to copy the signature (and in the future, other data like | |
| 370 // annotations) any time we copy a method as part of our metaprogramming. | |
| 371 // It might be more friendly to JS metaprogramming if we include this info | |
| 372 // on the function. | |
| 373 let originalSigFn = getOwnPropertyDescriptor(type, _methodSig).get; | |
| 374 defineMemoizedGetter(type, _methodSig, function() { | |
| 375 let sig = originalSigFn(); | |
| 376 for (let name of methodNames) { | |
| 377 sig[getExtensionSymbol(name)] = sig[name]; | |
| 378 } | |
| 379 return sig; | |
| 380 }); | |
| 381 } | |
| 382 exports.defineExtensionMembers = defineExtensionMembers; | |
| 383 | |
| 384 function canonicalMember(obj, name) { | |
| 385 if (obj[_extensionType]) return dartx[name]; | |
| 386 return name; | |
| 387 } | |
| 388 exports.canonicalMember = canonicalMember; | |
| 389 | |
| 390 // TODO(vsm): Rationalize these type methods. We're currently using the | |
| 391 // setType / proto scheme for nominal types (e.g., classes) and the | |
| 392 // setRuntimeType / field scheme for structural types (e.g., functions | |
|
vsm
2015/06/12 15:50:32
I think setRuntimeType is gone. Can you either re
Leaf
2015/06/12 19:52:13
Done.
| |
| 393 // - and only in tests for now). | |
| 394 // See: https://github.com/dart-lang/dev_compiler/issues/172 | |
| 395 | |
| 396 /** Sets the type of `obj` to be `type` */ | |
| 397 function setType(obj, type) { | |
| 398 obj.__proto__ = type.prototype; | |
| 399 return obj; | |
| 400 } | |
| 401 exports.setType = setType; | |
| 402 | |
| 403 /** Sets the element type of a list literal. */ | |
| 404 function list(obj, elementType) { | |
| 405 return setType(obj, _interceptors.JSArray$(elementType)); | |
| 406 } | |
| 407 exports.list = list; | |
| 408 | |
| 409 function setBaseClass(derived, base) { | |
| 410 // Link the extension to the type it's extending as a base class. | |
| 411 derived.prototype.__proto__ = base.prototype; | |
| 412 } | |
| 413 exports.setBaseClass = setBaseClass; | |
| 414 | |
| 415 }); | |
| OLD | NEW |