OLD | NEW |
| (Empty) |
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #include "chrome/browser/autocomplete/scored_history_match.h" | |
6 | |
7 #include <math.h> | |
8 | |
9 #include <algorithm> | |
10 #include <vector> | |
11 | |
12 #include "base/logging.h" | |
13 #include "base/numerics/safe_conversions.h" | |
14 #include "base/strings/string_number_conversions.h" | |
15 #include "base/strings/string_split.h" | |
16 #include "base/strings/string_util.h" | |
17 #include "base/strings/utf_offset_string_conversions.h" | |
18 #include "base/strings/utf_string_conversions.h" | |
19 #include "chrome/browser/autocomplete/history_url_provider.h" | |
20 #include "components/bookmarks/browser/bookmark_utils.h" | |
21 #include "components/omnibox/omnibox_field_trial.h" | |
22 #include "components/omnibox/url_prefix.h" | |
23 | |
24 namespace { | |
25 | |
26 // The number of days of recency scores to precompute. | |
27 const int kDaysToPrecomputeRecencyScoresFor = 366; | |
28 | |
29 // The number of raw term score buckets use; raw term scores greater this are | |
30 // capped at the score of the largest bucket. | |
31 const int kMaxRawTermScore = 30; | |
32 | |
33 // Pre-computed information to speed up calculating recency scores. | |
34 // |days_ago_to_recency_score| is a simple array mapping how long ago a page was | |
35 // visited (in days) to the recency score we should assign it. This allows easy | |
36 // lookups of scores without requiring math. This is initialized by | |
37 // InitDaysAgoToRecencyScoreArray called by | |
38 // ScoredHistoryMatch::Init(). | |
39 float days_ago_to_recency_score[kDaysToPrecomputeRecencyScoresFor]; | |
40 | |
41 // Pre-computed information to speed up calculating topicality scores. | |
42 // |raw_term_score_to_topicality_score| is a simple array mapping how raw terms | |
43 // scores (a weighted sum of the number of hits for the term, weighted by how | |
44 // important the hit is: hostname, path, etc.) to the topicality score we should | |
45 // assign it. This allows easy lookups of scores without requiring math. This | |
46 // is initialized by InitRawTermScoreToTopicalityScoreArray() called from | |
47 // ScoredHistoryMatch::Init(). | |
48 float raw_term_score_to_topicality_score[kMaxRawTermScore]; | |
49 | |
50 // Precalculates raw_term_score_to_topicality_score, used in | |
51 // GetTopicalityScore(). | |
52 void InitRawTermScoreToTopicalityScoreArray() { | |
53 for (int term_score = 0; term_score < kMaxRawTermScore; ++term_score) { | |
54 float topicality_score; | |
55 if (term_score < 10) { | |
56 // If the term scores less than 10 points (no full-credit hit, or | |
57 // no combination of hits that score that well), then the topicality | |
58 // score is linear in the term score. | |
59 topicality_score = 0.1 * term_score; | |
60 } else { | |
61 // For term scores of at least ten points, pass them through a log | |
62 // function so a score of 10 points gets a 1.0 (to meet up exactly | |
63 // with the linear component) and increases logarithmically until | |
64 // maxing out at 30 points, with computes to a score around 2.1. | |
65 topicality_score = (1.0 + 2.25 * log10(0.1 * term_score)); | |
66 } | |
67 raw_term_score_to_topicality_score[term_score] = topicality_score; | |
68 } | |
69 } | |
70 | |
71 // Pre-calculates days_ago_to_recency_score, used in GetRecencyScore(). | |
72 void InitDaysAgoToRecencyScoreArray() { | |
73 for (int days_ago = 0; days_ago < kDaysToPrecomputeRecencyScoresFor; | |
74 days_ago++) { | |
75 int unnormalized_recency_score; | |
76 if (days_ago <= 4) { | |
77 unnormalized_recency_score = 100; | |
78 } else if (days_ago <= 14) { | |
79 // Linearly extrapolate between 4 and 14 days so 14 days has a score | |
80 // of 70. | |
81 unnormalized_recency_score = 70 + (14 - days_ago) * (100 - 70) / (14 - 4); | |
82 } else if (days_ago <= 31) { | |
83 // Linearly extrapolate between 14 and 31 days so 31 days has a score | |
84 // of 50. | |
85 unnormalized_recency_score = 50 + (31 - days_ago) * (70 - 50) / (31 - 14); | |
86 } else if (days_ago <= 90) { | |
87 // Linearly extrapolate between 30 and 90 days so 90 days has a score | |
88 // of 30. | |
89 unnormalized_recency_score = 30 + (90 - days_ago) * (50 - 30) / (90 - 30); | |
90 } else { | |
91 // Linearly extrapolate between 90 and 365 days so 365 days has a score | |
92 // of 10. | |
93 unnormalized_recency_score = | |
94 10 + (365 - days_ago) * (20 - 10) / (365 - 90); | |
95 } | |
96 days_ago_to_recency_score[days_ago] = unnormalized_recency_score / 100.0; | |
97 if (days_ago > 0) { | |
98 DCHECK_LE(days_ago_to_recency_score[days_ago], | |
99 days_ago_to_recency_score[days_ago - 1]); | |
100 } | |
101 } | |
102 } | |
103 | |
104 } // namespace | |
105 | |
106 // static | |
107 const size_t ScoredHistoryMatch::kMaxVisitsToScore = 10; | |
108 bool ScoredHistoryMatch::also_do_hup_like_scoring_ = false; | |
109 int ScoredHistoryMatch::bookmark_value_ = 1; | |
110 bool ScoredHistoryMatch::fix_frequency_bugs_ = false; | |
111 bool ScoredHistoryMatch::allow_tld_matches_ = false; | |
112 bool ScoredHistoryMatch::allow_scheme_matches_ = false; | |
113 size_t ScoredHistoryMatch::num_title_words_to_allow_ = 10u; | |
114 bool ScoredHistoryMatch::hqp_experimental_scoring_enabled_ = false; | |
115 float ScoredHistoryMatch::topicality_threshold_ = -1; | |
116 std::vector<ScoredHistoryMatch::ScoreMaxRelevance>* | |
117 ScoredHistoryMatch::hqp_relevance_buckets_ = nullptr; | |
118 | |
119 ScoredHistoryMatch::ScoredHistoryMatch() | |
120 : ScoredHistoryMatch(history::URLRow(), | |
121 VisitInfoVector(), | |
122 std::string(), | |
123 base::string16(), | |
124 String16Vector(), | |
125 WordStarts(), | |
126 RowWordStarts(), | |
127 false, | |
128 base::Time::Max()) { | |
129 } | |
130 | |
131 ScoredHistoryMatch::ScoredHistoryMatch( | |
132 const history::URLRow& row, | |
133 const VisitInfoVector& visits, | |
134 const std::string& languages, | |
135 const base::string16& lower_string, | |
136 const String16Vector& terms_vector, | |
137 const WordStarts& terms_to_word_starts_offsets, | |
138 const RowWordStarts& word_starts, | |
139 bool is_url_bookmarked, | |
140 base::Time now) | |
141 : HistoryMatch(row, 0, false, false), raw_score(0), can_inline(false) { | |
142 // NOTE: Call Init() before doing any validity checking to ensure that the | |
143 // class is always initialized after an instance has been constructed. In | |
144 // particular, this ensures that the class is initialized after an instance | |
145 // has been constructed via the no-args constructor. | |
146 ScoredHistoryMatch::Init(); | |
147 | |
148 GURL gurl = row.url(); | |
149 if (!gurl.is_valid()) | |
150 return; | |
151 | |
152 // Figure out where each search term appears in the URL and/or page title | |
153 // so that we can score as well as provide autocomplete highlighting. | |
154 base::OffsetAdjuster::Adjustments adjustments; | |
155 base::string16 url = | |
156 bookmarks::CleanUpUrlForMatching(gurl, languages, &adjustments); | |
157 base::string16 title = bookmarks::CleanUpTitleForMatching(row.title()); | |
158 int term_num = 0; | |
159 for (const auto& term : terms_vector) { | |
160 TermMatches url_term_matches = MatchTermInString(term, url, term_num); | |
161 TermMatches title_term_matches = MatchTermInString(term, title, term_num); | |
162 if (url_term_matches.empty() && title_term_matches.empty()) { | |
163 // A term was not found in either URL or title - reject. | |
164 return; | |
165 } | |
166 url_matches.insert(url_matches.end(), url_term_matches.begin(), | |
167 url_term_matches.end()); | |
168 title_matches.insert(title_matches.end(), title_term_matches.begin(), | |
169 title_term_matches.end()); | |
170 ++term_num; | |
171 } | |
172 | |
173 // Sort matches by offset and eliminate any which overlap. | |
174 // TODO(mpearson): Investigate whether this has any meaningful | |
175 // effect on scoring. (It's necessary at some point: removing | |
176 // overlaps and sorting is needed to decide what to highlight in the | |
177 // suggestion string. But this sort and de-overlap doesn't have to | |
178 // be done before scoring.) | |
179 url_matches = SortAndDeoverlapMatches(url_matches); | |
180 title_matches = SortAndDeoverlapMatches(title_matches); | |
181 | |
182 // We can inline autocomplete a match if: | |
183 // 1) there is only one search term | |
184 // 2) AND the match begins immediately after one of the prefixes in | |
185 // URLPrefix such as http://www and https:// (note that one of these | |
186 // is the empty prefix, for cases where the user has typed the scheme) | |
187 // 3) AND the search string does not end in whitespace (making it look to | |
188 // the IMUI as though there is a single search term when actually there | |
189 // is a second, empty term). | |
190 // |best_inlineable_prefix| stores the inlineable prefix computed in | |
191 // clause (2) or NULL if no such prefix exists. (The URL is not inlineable.) | |
192 // Note that using the best prefix here means that when multiple | |
193 // prefixes match, we'll choose to inline following the longest one. | |
194 // For a URL like "http://www.washingtonmutual.com", this means | |
195 // typing "w" will inline "ashington..." instead of "ww.washington...". | |
196 if (!url_matches.empty() && (terms_vector.size() == 1) && | |
197 !IsWhitespace(*lower_string.rbegin())) { | |
198 const base::string16 gurl_spec = base::UTF8ToUTF16(gurl.spec()); | |
199 const URLPrefix* best_inlineable_prefix = | |
200 URLPrefix::BestURLPrefix(gurl_spec, terms_vector[0]); | |
201 if (best_inlineable_prefix) { | |
202 // When inline autocompleting this match, we're going to use the part of | |
203 // the URL following the end of the matching text. However, it's possible | |
204 // that FormatUrl(), when formatting this suggestion for display, | |
205 // mucks with the text. We need to ensure that the text we're thinking | |
206 // about highlighting isn't in the middle of a mucked sequence. In | |
207 // particular, for the omnibox input of "x" or "xn", we may get a match | |
208 // in a punycoded domain name such as http://www.xn--blahblah.com/. | |
209 // When FormatUrl() processes the xn--blahblah part of the hostname, it'll | |
210 // transform the whole thing into a series of unicode characters. It's | |
211 // impossible to give the user an inline autocompletion of the text | |
212 // following "x" or "xn" in this case because those characters no longer | |
213 // exist in the displayed URL string. | |
214 size_t offset = | |
215 best_inlineable_prefix->prefix.length() + terms_vector[0].length(); | |
216 base::OffsetAdjuster::UnadjustOffset(adjustments, &offset); | |
217 if (offset != base::string16::npos) { | |
218 // Initialize innermost_match. | |
219 // The idea here is that matches that occur in the scheme or | |
220 // "www." are worse than matches which don't. For the URLs | |
221 // "http://www.google.com" and "http://wellsfargo.com", we want | |
222 // the omnibox input "w" to cause the latter URL to rank higher | |
223 // than the former. Note that this is not the same as checking | |
224 // whether one match's inlinable prefix has more components than | |
225 // the other match's, since in this example, both matches would | |
226 // have an inlinable prefix of "http://", which is one component. | |
227 // | |
228 // Instead, we look for the overall best (i.e., most components) | |
229 // prefix of the current URL, and then check whether the inlinable | |
230 // prefix has that many components. If it does, this is an | |
231 // "innermost" match, and should be boosted. In the example | |
232 // above, the best prefixes for the two URLs have two and one | |
233 // components respectively, while the inlinable prefixes each | |
234 // have one component; this means the first match is not innermost | |
235 // and the second match is innermost, resulting in us boosting the | |
236 // second match. | |
237 // | |
238 // Now, the code that implements this. | |
239 // The deepest prefix for this URL regardless of where the match is. | |
240 const URLPrefix* best_prefix = | |
241 URLPrefix::BestURLPrefix(gurl_spec, base::string16()); | |
242 DCHECK(best_prefix); | |
243 // If the URL is inlineable, we must have a match. Note the prefix that | |
244 // makes it inlineable may be empty. | |
245 can_inline = true; | |
246 innermost_match = (best_inlineable_prefix->num_components == | |
247 best_prefix->num_components); | |
248 } | |
249 } | |
250 } | |
251 | |
252 const float topicality_score = GetTopicalityScore( | |
253 terms_vector.size(), url, terms_to_word_starts_offsets, word_starts); | |
254 const float frequency_score = GetFrequency(now, is_url_bookmarked, visits); | |
255 raw_score = base::saturated_cast<int>(GetFinalRelevancyScore( | |
256 topicality_score, frequency_score, *hqp_relevance_buckets_)); | |
257 | |
258 if (also_do_hup_like_scoring_ && can_inline) { | |
259 // HistoryURL-provider-like scoring gives any match that is | |
260 // capable of being inlined a certain minimum score. Some of these | |
261 // are given a higher score that lets them be shown in inline. | |
262 // This test here derives from the test in | |
263 // HistoryURLProvider::PromoteMatchForInlineAutocomplete(). | |
264 const bool promote_to_inline = | |
265 (row.typed_count() > 1) || (IsHostOnly() && (row.typed_count() == 1)); | |
266 int hup_like_score = | |
267 promote_to_inline | |
268 ? HistoryURLProvider::kScoreForBestInlineableResult | |
269 : HistoryURLProvider::kBaseScoreForNonInlineableResult; | |
270 | |
271 // Also, if the user types the hostname of a host with a typed | |
272 // visit, then everything from that host get given inlineable scores | |
273 // (because the URL-that-you-typed will go first and everything | |
274 // else will be assigned one minus the previous score, as coded | |
275 // at the end of HistoryURLProvider::DoAutocomplete(). | |
276 if (base::UTF8ToUTF16(gurl.host()) == terms_vector[0]) | |
277 hup_like_score = HistoryURLProvider::kScoreForBestInlineableResult; | |
278 | |
279 // HistoryURLProvider has the function PromoteOrCreateShorterSuggestion() | |
280 // that's meant to promote prefixes of the best match (if they've | |
281 // been visited enough related to the best match) or | |
282 // create/promote host-only suggestions (even if they've never | |
283 // been typed). The code is complicated and we don't try to | |
284 // duplicate the logic here. Instead, we handle a simple case: in | |
285 // low-typed-count ranges, give host-only matches (i.e., | |
286 // http://www.foo.com/ vs. http://www.foo.com/bar.html) a boost so | |
287 // that the host-only match outscores all the other matches that | |
288 // would normally have the same base score. This behavior is not | |
289 // identical to what happens in HistoryURLProvider even in these | |
290 // low typed count ranges--sometimes it will create/promote when | |
291 // this test does not (indeed, we cannot create matches like HUP | |
292 // can) and vice versa--but the underlying philosophy is similar. | |
293 if (!promote_to_inline && IsHostOnly()) | |
294 hup_like_score++; | |
295 | |
296 // All the other logic to goes into hup-like-scoring happens in | |
297 // the tie-breaker case of MatchScoreGreater(). | |
298 | |
299 // Incorporate hup_like_score into raw_score. | |
300 raw_score = std::max(raw_score, hup_like_score); | |
301 } | |
302 | |
303 // Now that we're done processing this entry, correct the offsets of the | |
304 // matches in |url_matches| so they point to offsets in the original URL | |
305 // spec, not the cleaned-up URL string that we used for matching. | |
306 std::vector<size_t> offsets = OffsetsFromTermMatches(url_matches); | |
307 base::OffsetAdjuster::UnadjustOffsets(adjustments, &offsets); | |
308 url_matches = ReplaceOffsetsInTermMatches(url_matches, offsets); | |
309 } | |
310 | |
311 ScoredHistoryMatch::~ScoredHistoryMatch() { | |
312 } | |
313 | |
314 // Comparison function for sorting ScoredMatches by their scores with | |
315 // intelligent tie-breaking. | |
316 bool ScoredHistoryMatch::MatchScoreGreater(const ScoredHistoryMatch& m1, | |
317 const ScoredHistoryMatch& m2) { | |
318 if (m1.raw_score != m2.raw_score) | |
319 return m1.raw_score > m2.raw_score; | |
320 | |
321 // This tie-breaking logic is inspired by / largely copied from the | |
322 // ordering logic in history_url_provider.cc CompareHistoryMatch(). | |
323 | |
324 // A URL that has been typed at all is better than one that has never been | |
325 // typed. (Note "!"s on each side.) | |
326 if (!m1.url_info.typed_count() != !m2.url_info.typed_count()) | |
327 return m1.url_info.typed_count() > m2.url_info.typed_count(); | |
328 | |
329 // Innermost matches (matches after any scheme or "www.") are better than | |
330 // non-innermost matches. | |
331 if (m1.innermost_match != m2.innermost_match) | |
332 return m1.innermost_match; | |
333 | |
334 // URLs that have been typed more often are better. | |
335 if (m1.url_info.typed_count() != m2.url_info.typed_count()) | |
336 return m1.url_info.typed_count() > m2.url_info.typed_count(); | |
337 | |
338 // For URLs that have each been typed once, a host (alone) is better | |
339 // than a page inside. | |
340 if (m1.url_info.typed_count() == 1) { | |
341 if (m1.IsHostOnly() != m2.IsHostOnly()) | |
342 return m1.IsHostOnly(); | |
343 } | |
344 | |
345 // URLs that have been visited more often are better. | |
346 if (m1.url_info.visit_count() != m2.url_info.visit_count()) | |
347 return m1.url_info.visit_count() > m2.url_info.visit_count(); | |
348 | |
349 // URLs that have been visited more recently are better. | |
350 return m1.url_info.last_visit() > m2.url_info.last_visit(); | |
351 } | |
352 | |
353 // static | |
354 TermMatches ScoredHistoryMatch::FilterTermMatchesByWordStarts( | |
355 const TermMatches& term_matches, | |
356 const WordStarts& terms_to_word_starts_offsets, | |
357 const WordStarts& word_starts, | |
358 size_t start_pos, | |
359 size_t end_pos) { | |
360 // Return early if no filtering is needed. | |
361 if (start_pos == std::string::npos) | |
362 return term_matches; | |
363 TermMatches filtered_matches; | |
364 WordStarts::const_iterator next_word_starts = word_starts.begin(); | |
365 WordStarts::const_iterator end_word_starts = word_starts.end(); | |
366 for (const auto& term_match : term_matches) { | |
367 const size_t term_offset = | |
368 terms_to_word_starts_offsets[term_match.term_num]; | |
369 // Advance next_word_starts until it's >= the position of the term we're | |
370 // considering (adjusted for where the word begins within the term). | |
371 while ((next_word_starts != end_word_starts) && | |
372 (*next_word_starts < (term_match.offset + term_offset))) | |
373 ++next_word_starts; | |
374 // Add the match if it's before the position we start filtering at or | |
375 // after the position we stop filtering at (assuming we have a position | |
376 // to stop filtering at) or if it's at a word boundary. | |
377 if ((term_match.offset < start_pos) || | |
378 ((end_pos != std::string::npos) && (term_match.offset >= end_pos)) || | |
379 ((next_word_starts != end_word_starts) && | |
380 (*next_word_starts == term_match.offset + term_offset))) | |
381 filtered_matches.push_back(term_match); | |
382 } | |
383 return filtered_matches; | |
384 } | |
385 | |
386 // static | |
387 void ScoredHistoryMatch::Init() { | |
388 static bool initialized = false; | |
389 | |
390 if (initialized) | |
391 return; | |
392 | |
393 initialized = true; | |
394 also_do_hup_like_scoring_ = OmniboxFieldTrial::HQPAlsoDoHUPLikeScoring(); | |
395 bookmark_value_ = OmniboxFieldTrial::HQPBookmarkValue(); | |
396 fix_frequency_bugs_ = OmniboxFieldTrial::HQPFixFrequencyScoringBugs(); | |
397 allow_tld_matches_ = OmniboxFieldTrial::HQPAllowMatchInTLDValue(); | |
398 allow_scheme_matches_ = OmniboxFieldTrial::HQPAllowMatchInSchemeValue(); | |
399 num_title_words_to_allow_ = OmniboxFieldTrial::HQPNumTitleWordsToAllow(); | |
400 | |
401 InitRawTermScoreToTopicalityScoreArray(); | |
402 InitDaysAgoToRecencyScoreArray(); | |
403 InitHQPExperimentalParams(); | |
404 } | |
405 | |
406 float ScoredHistoryMatch::GetTopicalityScore( | |
407 const int num_terms, | |
408 const base::string16& url, | |
409 const WordStarts& terms_to_word_starts_offsets, | |
410 const RowWordStarts& word_starts) { | |
411 // A vector that accumulates per-term scores. The strongest match--a | |
412 // match in the hostname at a word boundary--is worth 10 points. | |
413 // Everything else is less. In general, a match that's not at a word | |
414 // boundary is worth about 1/4th or 1/5th of a match at the word boundary | |
415 // in the same part of the URL/title. | |
416 DCHECK_GT(num_terms, 0); | |
417 std::vector<int> term_scores(num_terms, 0); | |
418 WordStarts::const_iterator next_word_starts = | |
419 word_starts.url_word_starts_.begin(); | |
420 WordStarts::const_iterator end_word_starts = | |
421 word_starts.url_word_starts_.end(); | |
422 const size_t question_mark_pos = url.find('?'); | |
423 const size_t colon_pos = url.find(':'); | |
424 // The + 3 skips the // that probably appears in the protocol | |
425 // after the colon. If the protocol doesn't have two slashes after | |
426 // the colon, that's okay--all this ends up doing is starting our | |
427 // search for the next / a few characters into the hostname. The | |
428 // only times this can cause problems is if we have a protocol without | |
429 // a // after the colon and the hostname is only one or two characters. | |
430 // This isn't worth worrying about. | |
431 const size_t end_of_hostname_pos = (colon_pos != std::string::npos) | |
432 ? url.find('/', colon_pos + 3) | |
433 : url.find('/'); | |
434 size_t last_part_of_hostname_pos = (end_of_hostname_pos != std::string::npos) | |
435 ? url.rfind('.', end_of_hostname_pos) | |
436 : url.rfind('.'); | |
437 // Loop through all URL matches and score them appropriately. | |
438 // First, filter all matches not at a word boundary and in the path (or | |
439 // later). | |
440 url_matches = FilterTermMatchesByWordStarts( | |
441 url_matches, terms_to_word_starts_offsets, word_starts.url_word_starts_, | |
442 end_of_hostname_pos, std::string::npos); | |
443 if (colon_pos != std::string::npos) { | |
444 // Also filter matches not at a word boundary and in the scheme. | |
445 url_matches = FilterTermMatchesByWordStarts( | |
446 url_matches, terms_to_word_starts_offsets, word_starts.url_word_starts_, | |
447 0, colon_pos); | |
448 } | |
449 for (const auto& url_match : url_matches) { | |
450 const size_t term_offset = terms_to_word_starts_offsets[url_match.term_num]; | |
451 // Advance next_word_starts until it's >= the position of the term we're | |
452 // considering (adjusted for where the word begins within the term). | |
453 while ((next_word_starts != end_word_starts) && | |
454 (*next_word_starts < (url_match.offset + term_offset))) { | |
455 ++next_word_starts; | |
456 } | |
457 const bool at_word_boundary = | |
458 (next_word_starts != end_word_starts) && | |
459 (*next_word_starts == url_match.offset + term_offset); | |
460 if ((question_mark_pos != std::string::npos) && | |
461 (url_match.offset > question_mark_pos)) { | |
462 // The match is in a CGI ?... fragment. | |
463 DCHECK(at_word_boundary); | |
464 term_scores[url_match.term_num] += 5; | |
465 } else if ((end_of_hostname_pos != std::string::npos) && | |
466 (url_match.offset > end_of_hostname_pos)) { | |
467 // The match is in the path. | |
468 DCHECK(at_word_boundary); | |
469 term_scores[url_match.term_num] += 8; | |
470 } else if ((colon_pos == std::string::npos) || | |
471 (url_match.offset > colon_pos)) { | |
472 // The match is in the hostname. | |
473 if ((last_part_of_hostname_pos == std::string::npos) || | |
474 (url_match.offset < last_part_of_hostname_pos)) { | |
475 // Either there are no dots in the hostname or this match isn't | |
476 // the last dotted component. | |
477 term_scores[url_match.term_num] += at_word_boundary ? 10 : 2; | |
478 } else { | |
479 // The match is in the last part of a dotted hostname (usually this | |
480 // is the top-level domain .com, .net, etc.). | |
481 if (allow_tld_matches_) | |
482 term_scores[url_match.term_num] += at_word_boundary ? 10 : 0; | |
483 } | |
484 } else { | |
485 // The match is in the protocol (a.k.a. scheme). | |
486 // Matches not at a word boundary should have been filtered already. | |
487 DCHECK(at_word_boundary); | |
488 match_in_scheme = true; | |
489 if (allow_scheme_matches_) | |
490 term_scores[url_match.term_num] += 10; | |
491 } | |
492 } | |
493 // Now do the analogous loop over all matches in the title. | |
494 next_word_starts = word_starts.title_word_starts_.begin(); | |
495 end_word_starts = word_starts.title_word_starts_.end(); | |
496 size_t word_num = 0; | |
497 title_matches = FilterTermMatchesByWordStarts( | |
498 title_matches, terms_to_word_starts_offsets, | |
499 word_starts.title_word_starts_, 0, std::string::npos); | |
500 for (const auto& title_match : title_matches) { | |
501 const size_t term_offset = | |
502 terms_to_word_starts_offsets[title_match.term_num]; | |
503 // Advance next_word_starts until it's >= the position of the term we're | |
504 // considering (adjusted for where the word begins within the term). | |
505 while ((next_word_starts != end_word_starts) && | |
506 (*next_word_starts < (title_match.offset + term_offset))) { | |
507 ++next_word_starts; | |
508 ++word_num; | |
509 } | |
510 if (word_num >= num_title_words_to_allow_) | |
511 break; // only count the first ten words | |
512 DCHECK(next_word_starts != end_word_starts); | |
513 DCHECK_EQ(*next_word_starts, title_match.offset + term_offset) | |
514 << "not at word boundary"; | |
515 term_scores[title_match.term_num] += 8; | |
516 } | |
517 // TODO(mpearson): Restore logic for penalizing out-of-order matches. | |
518 // (Perhaps discount them by 0.8?) | |
519 // TODO(mpearson): Consider: if the earliest match occurs late in the string, | |
520 // should we discount it? | |
521 // TODO(mpearson): Consider: do we want to score based on how much of the | |
522 // input string the input covers? (I'm leaning toward no.) | |
523 | |
524 // Compute the topicality_score as the sum of transformed term_scores. | |
525 float topicality_score = 0; | |
526 for (int term_score : term_scores) { | |
527 // Drop this URL if it seems like a term didn't appear or, more precisely, | |
528 // didn't appear in a part of the URL or title that we trust enough | |
529 // to give it credit for. For instance, terms that appear in the middle | |
530 // of a CGI parameter get no credit. Almost all the matches dropped | |
531 // due to this test would look stupid if shown to the user. | |
532 if (term_score == 0) | |
533 return 0; | |
534 topicality_score += raw_term_score_to_topicality_score[std::min( | |
535 term_score, kMaxRawTermScore - 1)]; | |
536 } | |
537 // TODO(mpearson): If there are multiple terms, consider taking the | |
538 // geometric mean of per-term scores rather than the arithmetic mean. | |
539 | |
540 const float final_topicality_score = topicality_score / num_terms; | |
541 | |
542 // Demote the URL if the topicality score is less than threshold. | |
543 if (hqp_experimental_scoring_enabled_ && | |
544 (final_topicality_score < topicality_threshold_)) { | |
545 return 0.0; | |
546 } | |
547 | |
548 return final_topicality_score; | |
549 } | |
550 | |
551 float ScoredHistoryMatch::GetRecencyScore(int last_visit_days_ago) const { | |
552 // Lookup the score in days_ago_to_recency_score, treating | |
553 // everything older than what we've precomputed as the oldest thing | |
554 // we've precomputed. The std::max is to protect against corruption | |
555 // in the database (in case last_visit_days_ago is negative). | |
556 return days_ago_to_recency_score[std::max( | |
557 std::min(last_visit_days_ago, kDaysToPrecomputeRecencyScoresFor - 1), 0)]; | |
558 } | |
559 | |
560 float ScoredHistoryMatch::GetFrequency(const base::Time& now, | |
561 const bool bookmarked, | |
562 const VisitInfoVector& visits) const { | |
563 // Compute the weighted average |value_of_transition| over the last at | |
564 // most kMaxVisitsToScore visits, where each visit is weighted using | |
565 // GetRecencyScore() based on how many days ago it happened. Use | |
566 // kMaxVisitsToScore as the denominator for the average regardless of | |
567 // how many visits there were in order to penalize a match that has | |
568 // fewer visits than kMaxVisitsToScore. | |
569 float summed_visit_points = 0; | |
570 const size_t max_visit_to_score = | |
571 std::min(visits.size(), ScoredHistoryMatch::kMaxVisitsToScore); | |
572 for (size_t i = 0; i < max_visit_to_score; ++i) { | |
573 const ui::PageTransition page_transition = fix_frequency_bugs_ ? | |
574 ui::PageTransitionStripQualifier(visits[i].second) : visits[i].second; | |
575 int value_of_transition = | |
576 (page_transition == ui::PAGE_TRANSITION_TYPED) ? 20 : 1; | |
577 if (bookmarked) | |
578 value_of_transition = std::max(value_of_transition, bookmark_value_); | |
579 const float bucket_weight = | |
580 GetRecencyScore((now - visits[i].first).InDays()); | |
581 summed_visit_points += (value_of_transition * bucket_weight); | |
582 } | |
583 if (fix_frequency_bugs_) | |
584 return summed_visit_points / ScoredHistoryMatch::kMaxVisitsToScore; | |
585 return visits.size() * summed_visit_points / | |
586 ScoredHistoryMatch::kMaxVisitsToScore; | |
587 } | |
588 | |
589 // static | |
590 float ScoredHistoryMatch::GetFinalRelevancyScore( | |
591 float topicality_score, | |
592 float frequency_score, | |
593 const std::vector<ScoreMaxRelevance>& hqp_relevance_buckets) { | |
594 DCHECK(hqp_relevance_buckets.size() > 0); | |
595 DCHECK_EQ(hqp_relevance_buckets[0].first, 0.0); | |
596 | |
597 if (topicality_score == 0) | |
598 return 0; | |
599 // Here's how to interpret intermediate_score: Suppose the omnibox | |
600 // has one input term. Suppose we have a URL for which the omnibox | |
601 // input term has a single URL hostname hit at a word boundary. (This | |
602 // implies topicality_score = 1.0.). Then the intermediate_score for | |
603 // this URL will depend entirely on the frequency_score with | |
604 // this interpretation: | |
605 // - a single typed visit more than three months ago, no other visits -> 0.2 | |
606 // - a visit every three days, no typed visits -> 0.706 | |
607 // - a visit every day, no typed visits -> 0.916 | |
608 // - a single typed visit yesterday, no other visits -> 2.0 | |
609 // - a typed visit once a week -> 11.77 | |
610 // - a typed visit every three days -> 14.12 | |
611 // - at least ten typed visits today -> 20.0 (maximum score) | |
612 // | |
613 // The below code maps intermediate_score to the range [0, 1399]. | |
614 // For example: | |
615 // HQP default scoring buckets: "0.0:400,1.5:600,12.0:1300,20.0:1399" | |
616 // We will linearly interpolate the scores between: | |
617 // 0 to 1.5 --> 400 to 600 | |
618 // 1.5 to 12.0 --> 600 to 1300 | |
619 // 12.0 to 20.0 --> 1300 to 1399 | |
620 // >= 20.0 --> 1399 | |
621 // | |
622 // The score maxes out at 1399 (i.e., cannot beat a good inlineable result | |
623 // from HistoryURL provider). | |
624 const float intermediate_score = topicality_score * frequency_score; | |
625 | |
626 // Find the threshold where intermediate score is greater than bucket. | |
627 size_t i = 1; | |
628 for (; i < hqp_relevance_buckets.size(); ++i) { | |
629 const ScoreMaxRelevance& hqp_bucket = hqp_relevance_buckets[i]; | |
630 if (intermediate_score >= hqp_bucket.first) { | |
631 continue; | |
632 } | |
633 const ScoreMaxRelevance& previous_bucket = hqp_relevance_buckets[i - 1]; | |
634 const float slope = ((hqp_bucket.second - previous_bucket.second) / | |
635 (hqp_bucket.first - previous_bucket.first)); | |
636 return (previous_bucket.second + | |
637 (slope * (intermediate_score - previous_bucket.first))); | |
638 } | |
639 // It will reach this stage when the score is > highest bucket score. | |
640 // Return the highest bucket score. | |
641 return hqp_relevance_buckets[i - 1].second; | |
642 } | |
643 | |
644 // static | |
645 void ScoredHistoryMatch::InitHQPExperimentalParams() { | |
646 // These are default HQP relevance scoring buckets. | |
647 // See GetFinalRelevancyScore() for details. | |
648 std::string hqp_relevance_buckets_str = "0.0:400,1.5:600,12.0:1300,20.0:1399"; | |
649 | |
650 // Fetch the experiment params if they are any. | |
651 hqp_experimental_scoring_enabled_ = | |
652 OmniboxFieldTrial::HQPExperimentalScoringEnabled(); | |
653 | |
654 if (hqp_experimental_scoring_enabled_) { | |
655 // Add the topicality threshold from experiment params. | |
656 float hqp_experimental_topicality_threhold = | |
657 OmniboxFieldTrial::HQPExperimentalTopicalityThreshold(); | |
658 topicality_threshold_ = hqp_experimental_topicality_threhold; | |
659 | |
660 // Add the HQP experimental scoring buckets. | |
661 std::string hqp_experimental_scoring_buckets = | |
662 OmniboxFieldTrial::HQPExperimentalScoringBuckets(); | |
663 if (!hqp_experimental_scoring_buckets.empty()) | |
664 hqp_relevance_buckets_str = hqp_experimental_scoring_buckets; | |
665 } | |
666 | |
667 // Parse the hqp_relevance_buckets_str string once and store them in vector | |
668 // which is easy to access. | |
669 hqp_relevance_buckets_ = | |
670 new std::vector<ScoredHistoryMatch::ScoreMaxRelevance>(); | |
671 | |
672 bool is_valid_bucket_str = GetHQPBucketsFromString(hqp_relevance_buckets_str, | |
673 hqp_relevance_buckets_); | |
674 DCHECK(is_valid_bucket_str); | |
675 } | |
676 | |
677 // static | |
678 bool ScoredHistoryMatch::GetHQPBucketsFromString( | |
679 const std::string& buckets_str, | |
680 std::vector<ScoreMaxRelevance>* hqp_buckets) { | |
681 DCHECK(hqp_buckets != NULL); | |
682 DCHECK(!buckets_str.empty()); | |
683 | |
684 base::StringPairs kv_pairs; | |
685 if (base::SplitStringIntoKeyValuePairs(buckets_str, ':', ',', &kv_pairs)) { | |
686 for (base::StringPairs::const_iterator it = kv_pairs.begin(); | |
687 it != kv_pairs.end(); ++it) { | |
688 ScoreMaxRelevance bucket; | |
689 bool is_valid_intermediate_score = | |
690 base::StringToDouble(it->first, &bucket.first); | |
691 DCHECK(is_valid_intermediate_score); | |
692 bool is_valid_hqp_score = base::StringToInt(it->second, &bucket.second); | |
693 DCHECK(is_valid_hqp_score); | |
694 hqp_buckets->push_back(bucket); | |
695 } | |
696 return true; | |
697 } | |
698 return false; | |
699 } | |
OLD | NEW |