| Index: src/gpu/GrAAConvexTessellator.cpp
|
| diff --git a/src/gpu/GrAAConvexTessellator.cpp b/src/gpu/GrAAConvexTessellator.cpp
|
| index 56a408d644d468c56fffe98e1b65e05018354385..85ce7ba9ed6bc17681cbc791d7134210861e0539 100644
|
| --- a/src/gpu/GrAAConvexTessellator.cpp
|
| +++ b/src/gpu/GrAAConvexTessellator.cpp
|
| @@ -13,7 +13,6 @@
|
| #include "GrPathUtils.h"
|
|
|
| // Next steps:
|
| -// use in AAConvexPathRenderer
|
| // add an interactive sample app slide
|
| // add debug check that all points are suitably far apart
|
| // test more degenerate cases
|
| @@ -22,10 +21,17 @@
|
| static const SkScalar kClose = (SK_Scalar1 / 16);
|
| static const SkScalar kCloseSqd = SkScalarMul(kClose, kClose);
|
|
|
| +// tesselation tolerance values, in device space pixels
|
| +static const SkScalar kQuadTolerance = 0.2f;
|
| +static const SkScalar kCubicTolerance = 0.2f;
|
| +static const SkScalar kConicTolerance = 0.5f;
|
| +
|
| +// dot product below which we use a round cap between curve segments
|
| +static const SkScalar kRoundCapThreshold = 0.8f;
|
| +
|
| static SkScalar intersect(const SkPoint& p0, const SkPoint& n0,
|
| const SkPoint& p1, const SkPoint& n1) {
|
| const SkPoint v = p1 - p0;
|
| -
|
| SkScalar perpDot = n0.fX * n1.fY - n0.fY * n1.fX;
|
| return (v.fX * n1.fY - v.fY * n1.fX) / perpDot;
|
| }
|
| @@ -52,13 +58,14 @@ static SkScalar abs_dist_from_line(const SkPoint& p0, const SkVector& v, const S
|
|
|
| int GrAAConvexTessellator::addPt(const SkPoint& pt,
|
| SkScalar depth,
|
| + SkScalar coverage,
|
| bool movable,
|
| bool isCurve) {
|
| this->validate();
|
|
|
| int index = fPts.count();
|
| *fPts.push() = pt;
|
| - *fDepths.push() = depth;
|
| + *fCoverages.push() = coverage;
|
| *fMovable.push() = movable;
|
| *fIsCurve.push() = isCurve;
|
|
|
| @@ -70,7 +77,7 @@ void GrAAConvexTessellator::popLastPt() {
|
| this->validate();
|
|
|
| fPts.pop();
|
| - fDepths.pop();
|
| + fCoverages.pop();
|
| fMovable.pop();
|
|
|
| this->validate();
|
| @@ -80,7 +87,7 @@ void GrAAConvexTessellator::popFirstPtShuffle() {
|
| this->validate();
|
|
|
| fPts.removeShuffle(0);
|
| - fDepths.removeShuffle(0);
|
| + fCoverages.removeShuffle(0);
|
| fMovable.removeShuffle(0);
|
|
|
| this->validate();
|
| @@ -88,12 +95,13 @@ void GrAAConvexTessellator::popFirstPtShuffle() {
|
|
|
| void GrAAConvexTessellator::updatePt(int index,
|
| const SkPoint& pt,
|
| - SkScalar depth) {
|
| + SkScalar depth,
|
| + SkScalar coverage) {
|
| this->validate();
|
| SkASSERT(fMovable[index]);
|
|
|
| fPts[index] = pt;
|
| - fDepths[index] = depth;
|
| + fCoverages[index] = coverage;
|
| }
|
|
|
| void GrAAConvexTessellator::addTri(int i0, int i1, int i2) {
|
| @@ -108,7 +116,7 @@ void GrAAConvexTessellator::addTri(int i0, int i1, int i2) {
|
|
|
| void GrAAConvexTessellator::rewind() {
|
| fPts.rewind();
|
| - fDepths.rewind();
|
| + fCoverages.rewind();
|
| fMovable.rewind();
|
| fIndices.rewind();
|
| fNorms.rewind();
|
| @@ -143,6 +151,44 @@ void GrAAConvexTessellator::computeBisectors() {
|
| }
|
| }
|
|
|
| +// Create as many rings as we need to (up to a predefined limit) to reach the specified target
|
| +// depth. If we are in fill mode, the final ring will automatically be fanned.
|
| +bool GrAAConvexTessellator::createInsetRings(Ring& previousRing, SkScalar initialDepth,
|
| + SkScalar initialCoverage, SkScalar targetDepth,
|
| + SkScalar targetCoverage, Ring** finalRing) {
|
| + static const int kMaxNumRings = 8;
|
| +
|
| + if (previousRing.numPts() < 3) {
|
| + return false;
|
| + }
|
| + Ring* currentRing = &previousRing;
|
| + int i;
|
| + for (i = 0; i < kMaxNumRings; ++i) {
|
| + Ring* nextRing = this->getNextRing(currentRing);
|
| + SkASSERT(nextRing != currentRing);
|
| +
|
| + bool done = this->createInsetRing(*currentRing, nextRing, initialDepth, initialCoverage,
|
| + targetDepth, targetCoverage, i == 0);
|
| + currentRing = nextRing;
|
| + if (done) {
|
| + break;
|
| + }
|
| + currentRing->init(*this);
|
| + }
|
| +
|
| + if (kMaxNumRings == i) {
|
| + // Bail if we've exceeded the amount of time we want to throw at this.
|
| + this->terminate(*currentRing);
|
| + return false;
|
| + }
|
| + bool done = currentRing->numPts() >= 3;
|
| + if (done) {
|
| + currentRing->init(*this);
|
| + }
|
| + *finalRing = currentRing;
|
| + return done;
|
| +}
|
| +
|
| // The general idea here is to, conceptually, start with the original polygon and slide
|
| // the vertices along the bisectors until the first intersection. At that
|
| // point two of the edges collapse and the process repeats on the new polygon.
|
| @@ -150,46 +196,40 @@ void GrAAConvexTessellator::computeBisectors() {
|
| // controls the iteration. The CandidateVerts holds the formative points for the
|
| // next ring.
|
| bool GrAAConvexTessellator::tessellate(const SkMatrix& m, const SkPath& path) {
|
| - static const int kMaxNumRings = 8;
|
| -
|
| - SkDEBUGCODE(fShouldCheckDepths = true;)
|
| -
|
| if (!this->extractFromPath(m, path)) {
|
| return false;
|
| }
|
|
|
| - this->createOuterRing();
|
| + SkScalar coverage = 1.0f;
|
| + if (fStrokeWidth >= 0.0f) {
|
| + Ring outerStrokeRing;
|
| + this->createOuterRing(fInitialRing, fStrokeWidth / 2 - kAntialiasingRadius, coverage,
|
| + &outerStrokeRing);
|
| + outerStrokeRing.init(*this);
|
| + Ring outerAARing;
|
| + this->createOuterRing(outerStrokeRing, kAntialiasingRadius * 2, 0.0f, &outerAARing);
|
| + } else {
|
| + Ring outerAARing;
|
| + this->createOuterRing(fInitialRing, kAntialiasingRadius, 0.0f, &outerAARing);
|
| + }
|
|
|
| // the bisectors are only needed for the computation of the outer ring
|
| fBisectors.rewind();
|
| -
|
| - Ring* lastRing = &fInitialRing;
|
| - int i;
|
| - for (i = 0; i < kMaxNumRings; ++i) {
|
| - Ring* nextRing = this->getNextRing(lastRing);
|
| -
|
| - if (this->createInsetRing(*lastRing, nextRing)) {
|
| - break;
|
| + if (fStrokeWidth >= 0.0f && fInitialRing.numPts() > 2) {
|
| + Ring* insetStrokeRing;
|
| + SkScalar strokeDepth = fStrokeWidth / 2 - kAntialiasingRadius;
|
| + if (this->createInsetRings(fInitialRing, 0.0f, coverage, strokeDepth, coverage,
|
| + &insetStrokeRing)) {
|
| + Ring* insetAARing;
|
| + this->createInsetRings(*insetStrokeRing, strokeDepth, coverage, strokeDepth +
|
| + kAntialiasingRadius * 2, 0.0f, &insetAARing);
|
| }
|
| -
|
| - nextRing->init(*this);
|
| - lastRing = nextRing;
|
| - }
|
| -
|
| - if (kMaxNumRings == i) {
|
| - // If we've exceeded the amount of time we want to throw at this, set
|
| - // the depth of all points in the final ring to 'fTargetDepth' and
|
| - // create a fan.
|
| - this->terminate(*lastRing);
|
| - SkDEBUGCODE(fShouldCheckDepths = false;)
|
| + } else {
|
| + Ring* insetAARing;
|
| + this->createInsetRings(fInitialRing, 0.0f, 0.5f, kAntialiasingRadius, 1.0f, &insetAARing);
|
| }
|
|
|
| -#ifdef SK_DEBUG
|
| - this->validate();
|
| - if (fShouldCheckDepths) {
|
| - SkDEBUGCODE(this->checkAllDepths();)
|
| - }
|
| -#endif
|
| + SkDEBUGCODE(this->validate();)
|
| return true;
|
| }
|
|
|
| @@ -198,7 +238,6 @@ SkScalar GrAAConvexTessellator::computeDepthFromEdge(int edgeIdx, const SkPoint&
|
|
|
| SkPoint v = p - fPts[edgeIdx];
|
| SkScalar depth = -fNorms[edgeIdx].dot(v);
|
| - SkASSERT(depth >= 0.0f);
|
| return depth;
|
| }
|
|
|
| @@ -213,13 +252,13 @@ bool GrAAConvexTessellator::computePtAlongBisector(int startIdx,
|
|
|
| // First find the point where the edge and the bisector intersect
|
| SkPoint newP;
|
| +
|
| SkScalar t = perp_intersect(fPts[startIdx], bisector, fPts[edgeIdx], norm);
|
| if (SkScalarNearlyEqual(t, 0.0f)) {
|
| // the start point was one of the original ring points
|
| - SkASSERT(startIdx < fNorms.count());
|
| + SkASSERT(startIdx < fPts.count());
|
| newP = fPts[startIdx];
|
| - } else if (t > 0.0f) {
|
| - SkASSERT(t < 0.0f);
|
| + } else if (t < 0.0f) {
|
| newP = bisector;
|
| newP.scale(t);
|
| newP += fPts[startIdx];
|
| @@ -228,13 +267,12 @@ bool GrAAConvexTessellator::computePtAlongBisector(int startIdx,
|
| }
|
|
|
| // Then offset along the bisector from that point the correct distance
|
| - t = -desiredDepth / bisector.dot(norm);
|
| - SkASSERT(t > 0.0f);
|
| + SkScalar dot = bisector.dot(norm);
|
| + t = -desiredDepth / dot;
|
| *result = bisector;
|
| result->scale(t);
|
| *result += newP;
|
|
|
| -
|
| return true;
|
| }
|
|
|
| @@ -252,9 +290,6 @@ bool GrAAConvexTessellator::extractFromPath(const SkMatrix& m, const SkPath& pat
|
|
|
| fNorms.setReserve(path.countPoints());
|
|
|
| - SkDEBUGCODE(fMinCross = SK_ScalarMax;)
|
| - SkDEBUGCODE(fMaxCross = -SK_ScalarMax;)
|
| -
|
| // TODO: is there a faster way to extract the points from the path? Perhaps
|
| // get all the points via a new entry point, transform them all in bulk
|
| // and then walk them to find duplicates?
|
| @@ -282,7 +317,7 @@ bool GrAAConvexTessellator::extractFromPath(const SkMatrix& m, const SkPath& pat
|
| }
|
| }
|
|
|
| - if (this->numPts() < 3) {
|
| + if (this->numPts() < 2) {
|
| return false;
|
| }
|
|
|
| @@ -293,23 +328,20 @@ bool GrAAConvexTessellator::extractFromPath(const SkMatrix& m, const SkPath& pat
|
| }
|
|
|
| SkASSERT(fPts.count() == fNorms.count()+1);
|
| - if (this->numPts() >= 3 &&
|
| - abs_dist_from_line(fPts.top(), fNorms.top(), fPts[0]) < kClose) {
|
| - // The last point is on the line from the second to last to the first point.
|
| - this->popLastPt();
|
| - fNorms.pop();
|
| - }
|
| + if (this->numPts() >= 3) {
|
| + if (abs_dist_from_line(fPts.top(), fNorms.top(), fPts[0]) < kClose) {
|
| + // The last point is on the line from the second to last to the first point.
|
| + this->popLastPt();
|
| + fNorms.pop();
|
| + }
|
|
|
| - if (this->numPts() < 3) {
|
| - return false;
|
| + *fNorms.push() = fPts[0] - fPts.top();
|
| + SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top());
|
| + SkASSERT(len > 0.0f);
|
| + SkASSERT(fPts.count() == fNorms.count());
|
| }
|
|
|
| - *fNorms.push() = fPts[0] - fPts.top();
|
| - SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top());
|
| - SkASSERT(len > 0.0f);
|
| - SkASSERT(fPts.count() == fNorms.count());
|
| -
|
| - if (abs_dist_from_line(fPts[0], fNorms.top(), fPts[1]) < kClose) {
|
| + if (this->numPts() >= 3 && abs_dist_from_line(fPts[0], fNorms.top(), fPts[1]) < kClose) {
|
| // The first point is on the line from the last to the second.
|
| this->popFirstPtShuffle();
|
| fNorms.removeShuffle(0);
|
| @@ -319,28 +351,44 @@ bool GrAAConvexTessellator::extractFromPath(const SkMatrix& m, const SkPath& pat
|
| SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[0].length()));
|
| }
|
|
|
| - if (this->numPts() < 3) {
|
| - return false;
|
| - }
|
| + if (this->numPts() >= 3) {
|
| + // Check the cross product of the final trio
|
| + SkScalar cross = SkPoint::CrossProduct(fNorms[0], fNorms.top());
|
| + if (cross > 0.0f) {
|
| + fSide = SkPoint::kRight_Side;
|
| + } else {
|
| + fSide = SkPoint::kLeft_Side;
|
| + }
|
|
|
| - // Check the cross product of the final trio
|
| - SkScalar cross = SkPoint::CrossProduct(fNorms[0], fNorms.top());
|
| - SkDEBUGCODE(fMaxCross = SkTMax(fMaxCross, cross));
|
| - SkDEBUGCODE(fMinCross = SkTMin(fMinCross, cross));
|
| - SkASSERT((fMaxCross >= 0.0f) == (fMinCross >= 0.0f));
|
| - if (cross > 0.0f) {
|
| - fSide = SkPoint::kRight_Side;
|
| - } else {
|
| + // Make all the normals face outwards rather than along the edge
|
| + for (int cur = 0; cur < fNorms.count(); ++cur) {
|
| + fNorms[cur].setOrthog(fNorms[cur], fSide);
|
| + SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[cur].length()));
|
| + }
|
| +
|
| + this->computeBisectors();
|
| + } else if (this->numPts() == 2) {
|
| + // We've got two points, so we're degenerate.
|
| + if (fStrokeWidth < 0.0f) {
|
| + // it's a fill, so we don't need to worry about degenerate paths
|
| + return false;
|
| + }
|
| + // For stroking, we still need to process the degenerate path, so fix it up
|
| fSide = SkPoint::kLeft_Side;
|
| - }
|
|
|
| - // Make all the normals face outwards rather than along the edge
|
| - for (int cur = 0; cur < fNorms.count(); ++cur) {
|
| - fNorms[cur].setOrthog(fNorms[cur], fSide);
|
| - SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[cur].length()));
|
| - }
|
| + // Make all the normals face outwards rather than along the edge
|
| + for (int cur = 0; cur < fNorms.count(); ++cur) {
|
| + fNorms[cur].setOrthog(fNorms[cur], fSide);
|
| + SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[cur].length()));
|
| + }
|
|
|
| - this->computeBisectors();
|
| + fNorms.push(SkPoint::Make(-fNorms[0].fX, -fNorms[0].fY));
|
| + // we won't actually use the bisectors, so just push zeroes
|
| + fBisectors.push(SkPoint::Make(0.0, 0.0));
|
| + fBisectors.push(SkPoint::Make(0.0, 0.0));
|
| + } else {
|
| + return false;
|
| + }
|
|
|
| fCandidateVerts.setReserve(this->numPts());
|
| fInitialRing.setReserve(this->numPts());
|
| @@ -370,138 +418,172 @@ GrAAConvexTessellator::Ring* GrAAConvexTessellator::getNextRing(Ring* lastRing)
|
|
|
| void GrAAConvexTessellator::fanRing(const Ring& ring) {
|
| // fan out from point 0
|
| - for (int cur = 1; cur < ring.numPts()-1; ++cur) {
|
| - this->addTri(ring.index(0), ring.index(cur), ring.index(cur+1));
|
| + int startIdx = ring.index(0);
|
| + for (int cur = ring.numPts() - 2; cur >= 0; --cur) {
|
| + this->addTri(startIdx, ring.index(cur), ring.index(cur + 1));
|
| }
|
| }
|
|
|
| -void GrAAConvexTessellator::createOuterRing() {
|
| - // For now, we're only generating one outer ring (at the start). This
|
| - // could be relaxed for stroking use cases.
|
| - SkASSERT(0 == fIndices.count());
|
| - SkASSERT(fPts.count() == fNorms.count());
|
| -
|
| - const int numPts = fPts.count();
|
| +void GrAAConvexTessellator::createOuterRing(const Ring& previousRing, SkScalar outset,
|
| + SkScalar coverage, Ring* nextRing) {
|
| + const int numPts = previousRing.numPts();
|
| + if (numPts == 0) {
|
| + return;
|
| + }
|
|
|
| int prev = numPts - 1;
|
| - int lastPerpIdx = -1, firstPerpIdx = -1, newIdx0, newIdx1, newIdx2;
|
| - for (int cur = 0; cur < numPts; ++cur) {
|
| - if (fIsCurve[cur]) {
|
| - // Inside a curve, we assume that the curvature is shallow enough (due to tesselation)
|
| - // that we only need one corner point. Mathematically, the distance the corner point
|
| - // gets shifted out should depend on the angle between the two line segments (as in
|
| - // mitering), but again due to tesselation we assume that this angle is small and
|
| - // therefore the correction factor is negligible and we do not bother with it.
|
| -
|
| - // The bisector outset point
|
| - SkPoint temp = fBisectors[cur];
|
| - temp.scale(-fTargetDepth); // the bisectors point in
|
| - temp += fPts[cur];
|
| -
|
| - // double-check our "sufficiently flat" assumption; we want the bisector point to be
|
| - // close to the normal point.
|
| - #define kFlatnessTolerance 1.0f
|
| - SkDEBUGCODE(SkPoint prevNormal = fNorms[prev];)
|
| - SkDEBUGCODE(prevNormal.scale(fTargetDepth);)
|
| - SkDEBUGCODE(prevNormal += fPts[cur];)
|
| - SkASSERT((temp - prevNormal).length() < kFlatnessTolerance);
|
| -
|
| - newIdx1 = this->addPt(temp, -fTargetDepth, false, true);
|
| -
|
| - if (0 == cur) {
|
| - // Store the index of the first perpendicular point to finish up
|
| - firstPerpIdx = newIdx1;
|
| - SkASSERT(-1 == lastPerpIdx);
|
| - } else {
|
| - // The triangles for the previous edge
|
| - this->addTri(prev, newIdx1, cur);
|
| - this->addTri(prev, lastPerpIdx, newIdx1);
|
| - }
|
| + int lastPerpIdx = -1, firstPerpIdx = -1;
|
|
|
| - prev = cur;
|
| - // Track the last perpendicular outset point so we can construct the
|
| - // trailing edge triangles.
|
| - lastPerpIdx = newIdx1;
|
| + const SkScalar outsetSq = SkScalarMul(outset, outset);
|
| + SkScalar miterLimitSq = SkScalarMul(outset, fMiterLimit);
|
| + miterLimitSq = SkScalarMul(miterLimitSq, miterLimitSq);
|
| + for (int cur = 0; cur < numPts; ++cur) {
|
| + int originalIdx = previousRing.index(cur);
|
| + // For each vertex of the original polygon we add at least two points to the
|
| + // outset polygon - one extending perpendicular to each impinging edge. Connecting these
|
| + // two points yields a bevel join. We need one additional point for a mitered join, and
|
| + // a round join requires one or more points depending upon curvature.
|
| +
|
| + // The perpendicular point for the last edge
|
| + SkPoint normal1 = previousRing.norm(prev);
|
| + SkPoint perp1 = normal1;
|
| + perp1.scale(outset);
|
| + perp1 += this->point(originalIdx);
|
| +
|
| + // The perpendicular point for the next edge.
|
| + SkPoint normal2 = previousRing.norm(cur);
|
| + SkPoint perp2 = normal2;
|
| + perp2.scale(outset);
|
| + perp2 += fPts[originalIdx];
|
| +
|
| + bool isCurve = fIsCurve[originalIdx];
|
| +
|
| + // We know it isn't a duplicate of the prior point (since it and this
|
| + // one are just perpendicular offsets from the non-merged polygon points)
|
| + int perp1Idx = this->addPt(perp1, -outset, coverage, false, isCurve);
|
| + nextRing->addIdx(perp1Idx, originalIdx);
|
| +
|
| + int perp2Idx;
|
| + // For very shallow angles all the corner points could fuse.
|
| + if (duplicate_pt(perp2, this->point(perp1Idx))) {
|
| + perp2Idx = perp1Idx;
|
| + } else {
|
| + perp2Idx = this->addPt(perp2, -outset, coverage, false, isCurve);
|
| }
|
| - else {
|
| - // For each vertex of the original polygon we add three points to the
|
| - // outset polygon - one extending perpendicular to each impinging edge
|
| - // and one along the bisector. Two triangles are added for each corner
|
| - // and two are added along each edge.
|
| -
|
| - // The perpendicular point for the last edge
|
| - SkPoint temp = fNorms[prev];
|
| - temp.scale(fTargetDepth);
|
| - temp += fPts[cur];
|
| -
|
| - // We know it isn't a duplicate of the prior point (since it and this
|
| - // one are just perpendicular offsets from the non-merged polygon points)
|
| - newIdx0 = this->addPt(temp, -fTargetDepth, false, false);
|
| -
|
| - // The bisector outset point
|
| - temp = fBisectors[cur];
|
| - temp.scale(-fTargetDepth); // the bisectors point in
|
| - temp += fPts[cur];
|
| -
|
| - // For very shallow angles all the corner points could fuse
|
| - if (duplicate_pt(temp, this->point(newIdx0))) {
|
| - newIdx1 = newIdx0;
|
| - } else {
|
| - newIdx1 = this->addPt(temp, -fTargetDepth, false, false);
|
| - }
|
| -
|
| - // The perpendicular point for the next edge.
|
| - temp = fNorms[cur];
|
| - temp.scale(fTargetDepth);
|
| - temp += fPts[cur];
|
| -
|
| - // For very shallow angles all the corner points could fuse.
|
| - if (duplicate_pt(temp, this->point(newIdx1))) {
|
| - newIdx2 = newIdx1;
|
| - } else {
|
| - newIdx2 = this->addPt(temp, -fTargetDepth, false, false);
|
| - }
|
|
|
| - if (0 == cur) {
|
| - // Store the index of the first perpendicular point to finish up
|
| - firstPerpIdx = newIdx0;
|
| - SkASSERT(-1 == lastPerpIdx);
|
| + if (perp2Idx != perp1Idx) {
|
| + if (isCurve) {
|
| + // bevel or round depending upon curvature
|
| + SkScalar dotProd = normal1.dot(normal2);
|
| + if (dotProd < kRoundCapThreshold) {
|
| + // Currently we "round" by creating a single extra point, which produces
|
| + // good results for common cases. For thick strokes with high curvature, we will
|
| + // need to add more points; for the time being we simply fall back to software
|
| + // rendering for thick strokes.
|
| + SkPoint miter = previousRing.bisector(cur);
|
| + miter.setLength(-outset);
|
| + miter += fPts[originalIdx];
|
| +
|
| + // For very shallow angles all the corner points could fuse
|
| + if (!duplicate_pt(miter, this->point(perp1Idx))) {
|
| + int miterIdx;
|
| + miterIdx = this->addPt(miter, -outset, coverage, false, false);
|
| + nextRing->addIdx(miterIdx, originalIdx);
|
| + // The two triangles for the corner
|
| + this->addTri(originalIdx, perp1Idx, miterIdx);
|
| + this->addTri(originalIdx, miterIdx, perp2Idx);
|
| + }
|
| + } else {
|
| + this->addTri(originalIdx, perp1Idx, perp2Idx);
|
| + }
|
| } else {
|
| - // The triangles for the previous edge
|
| - this->addTri(prev, newIdx0, cur);
|
| - this->addTri(prev, lastPerpIdx, newIdx0);
|
| + switch (fJoin) {
|
| + case SkPaint::Join::kMiter_Join: {
|
| + // The bisector outset point
|
| + SkPoint miter = previousRing.bisector(cur);
|
| + SkScalar dotProd = normal1.dot(normal2);
|
| + SkScalar sinHalfAngleSq = SkScalarHalf(SK_Scalar1 + dotProd);
|
| + SkScalar lengthSq = outsetSq / sinHalfAngleSq;
|
| + if (lengthSq > miterLimitSq) {
|
| + // just bevel it
|
| + this->addTri(originalIdx, perp1Idx, perp2Idx);
|
| + break;
|
| + }
|
| + miter.setLength(-SkScalarSqrt(lengthSq));
|
| + miter += fPts[originalIdx];
|
| +
|
| + // For very shallow angles all the corner points could fuse
|
| + if (!duplicate_pt(miter, this->point(perp1Idx))) {
|
| + int miterIdx;
|
| + miterIdx = this->addPt(miter, -outset, coverage, false, false);
|
| + nextRing->addIdx(miterIdx, originalIdx);
|
| + // The two triangles for the corner
|
| + this->addTri(originalIdx, perp1Idx, miterIdx);
|
| + this->addTri(originalIdx, miterIdx, perp2Idx);
|
| + }
|
| + break;
|
| + }
|
| + case SkPaint::Join::kBevel_Join:
|
| + this->addTri(originalIdx, perp1Idx, perp2Idx);
|
| + break;
|
| + default:
|
| + // kRound_Join is unsupported for now. GrAALinearizingConvexPathRenderer is
|
| + // only willing to draw mitered or beveled, so we should never get here.
|
| + SkASSERT(false);
|
| + }
|
| }
|
|
|
| - // The two triangles for the corner
|
| - this->addTri(cur, newIdx0, newIdx1);
|
| - this->addTri(cur, newIdx1, newIdx2);
|
| + nextRing->addIdx(perp2Idx, originalIdx);
|
| + }
|
|
|
| - prev = cur;
|
| - // Track the last perpendicular outset point so we can construct the
|
| - // trailing edge triangles.
|
| - lastPerpIdx = newIdx2;
|
| + if (0 == cur) {
|
| + // Store the index of the first perpendicular point to finish up
|
| + firstPerpIdx = perp1Idx;
|
| + SkASSERT(-1 == lastPerpIdx);
|
| + } else {
|
| + // The triangles for the previous edge
|
| + int prevIdx = previousRing.index(prev);
|
| + this->addTri(prevIdx, perp1Idx, originalIdx);
|
| + this->addTri(prevIdx, lastPerpIdx, perp1Idx);
|
| }
|
| +
|
| + // Track the last perpendicular outset point so we can construct the
|
| + // trailing edge triangles.
|
| + lastPerpIdx = perp2Idx;
|
| + prev = cur;
|
| }
|
|
|
| // pick up the final edge rect
|
| - this->addTri(numPts - 1, firstPerpIdx, 0);
|
| - this->addTri(numPts - 1, lastPerpIdx, firstPerpIdx);
|
| + int lastIdx = previousRing.index(numPts - 1);
|
| + this->addTri(lastIdx, firstPerpIdx, previousRing.index(0));
|
| + this->addTri(lastIdx, lastPerpIdx, firstPerpIdx);
|
|
|
| this->validate();
|
| }
|
|
|
| -// Something went wrong in the creation of the next ring. Mark the last good
|
| -// ring as being at the desired depth and fan it.
|
| +// Something went wrong in the creation of the next ring. If we're filling the shape, just go ahead
|
| +// and fan it.
|
| void GrAAConvexTessellator::terminate(const Ring& ring) {
|
| - for (int i = 0; i < ring.numPts(); ++i) {
|
| - fDepths[ring.index(i)] = fTargetDepth;
|
| + if (fStrokeWidth < 0.0f) {
|
| + this->fanRing(ring);
|
| }
|
| +}
|
|
|
| - this->fanRing(ring);
|
| +static SkScalar compute_coverage(SkScalar depth, SkScalar initialDepth, SkScalar initialCoverage,
|
| + SkScalar targetDepth, SkScalar targetCoverage) {
|
| + if (SkScalarNearlyEqual(initialDepth, targetDepth)) {
|
| + return targetCoverage;
|
| + }
|
| + SkScalar result = (depth - initialDepth) / (targetDepth - initialDepth) *
|
| + (targetCoverage - initialCoverage) + initialCoverage;
|
| + return SkScalarClampMax(result, 1.0f);
|
| }
|
|
|
| // return true when processing is complete
|
| -bool GrAAConvexTessellator::createInsetRing(const Ring& lastRing, Ring* nextRing) {
|
| +bool GrAAConvexTessellator::createInsetRing(const Ring& lastRing, Ring* nextRing,
|
| + SkScalar initialDepth, SkScalar initialCoverage,
|
| + SkScalar targetDepth, SkScalar targetCoverage,
|
| + bool forceNew) {
|
| bool done = false;
|
|
|
| fCandidateVerts.rewind();
|
| @@ -512,7 +594,6 @@ bool GrAAConvexTessellator::createInsetRing(const Ring& lastRing, Ring* nextRing
|
|
|
| for (int cur = 0; cur < lastRing.numPts(); ++cur) {
|
| int next = (cur + 1) % lastRing.numPts();
|
| -
|
| SkScalar t = intersect(this->point(lastRing.index(cur)), lastRing.bisector(cur),
|
| this->point(lastRing.index(next)), lastRing.bisector(next));
|
| SkScalar dist = -t * lastRing.norm(cur).dot(lastRing.bisector(cur));
|
| @@ -524,15 +605,18 @@ bool GrAAConvexTessellator::createInsetRing(const Ring& lastRing, Ring* nextRing
|
| }
|
| }
|
|
|
| + if (minEdgeIdx == -1) {
|
| + return false;
|
| + }
|
| SkPoint newPt = lastRing.bisector(minEdgeIdx);
|
| newPt.scale(minT);
|
| newPt += this->point(lastRing.index(minEdgeIdx));
|
|
|
| SkScalar depth = this->computeDepthFromEdge(lastRing.origEdgeID(minEdgeIdx), newPt);
|
| - if (depth >= fTargetDepth) {
|
| + if (depth >= targetDepth) {
|
| // None of the bisectors intersect before reaching the desired depth.
|
| // Just step them all to the desired depth
|
| - depth = fTargetDepth;
|
| + depth = targetDepth;
|
| done = true;
|
| }
|
|
|
| @@ -547,7 +631,6 @@ bool GrAAConvexTessellator::createInsetRing(const Ring& lastRing, Ring* nextRing
|
| lastRing.origEdgeID(0),
|
| depth, &newPt)) {
|
| this->terminate(lastRing);
|
| - SkDEBUGCODE(fShouldCheckDepths = false;)
|
| return true;
|
| }
|
| dst[0] = fCandidateVerts.addNewPt(newPt,
|
| @@ -561,7 +644,6 @@ bool GrAAConvexTessellator::createInsetRing(const Ring& lastRing, Ring* nextRing
|
| lastRing.origEdgeID(cur),
|
| depth, &newPt)) {
|
| this->terminate(lastRing);
|
| - SkDEBUGCODE(fShouldCheckDepths = false;)
|
| return true;
|
| }
|
| if (!duplicate_pt(newPt, fCandidateVerts.lastPoint())) {
|
| @@ -580,7 +662,6 @@ bool GrAAConvexTessellator::createInsetRing(const Ring& lastRing, Ring* nextRing
|
| lastRing.origEdgeID(cur),
|
| depth, &newPt)) {
|
| this->terminate(lastRing);
|
| - SkDEBUGCODE(fShouldCheckDepths = false;)
|
| return true;
|
| }
|
| bool dupPrev = duplicate_pt(newPt, fCandidateVerts.lastPoint());
|
| @@ -607,14 +688,17 @@ bool GrAAConvexTessellator::createInsetRing(const Ring& lastRing, Ring* nextRing
|
| // Fold the new ring's points into the global pool
|
| for (int i = 0; i < fCandidateVerts.numPts(); ++i) {
|
| int newIdx;
|
| - if (fCandidateVerts.needsToBeNew(i)) {
|
| + if (fCandidateVerts.needsToBeNew(i) || forceNew) {
|
| // if the originating index is still valid then this point wasn't
|
| // fused (and is thus movable)
|
| - newIdx = this->addPt(fCandidateVerts.point(i), depth,
|
| + SkScalar coverage = compute_coverage(depth, initialDepth, initialCoverage,
|
| + targetDepth, targetCoverage);
|
| + newIdx = this->addPt(fCandidateVerts.point(i), depth, coverage,
|
| fCandidateVerts.originatingIdx(i) != -1, false);
|
| } else {
|
| SkASSERT(fCandidateVerts.originatingIdx(i) != -1);
|
| - this->updatePt(fCandidateVerts.originatingIdx(i), fCandidateVerts.point(i), depth);
|
| + this->updatePt(fCandidateVerts.originatingIdx(i), fCandidateVerts.point(i), depth,
|
| + targetCoverage);
|
| newIdx = fCandidateVerts.originatingIdx(i);
|
| }
|
|
|
| @@ -634,19 +718,18 @@ bool GrAAConvexTessellator::createInsetRing(const Ring& lastRing, Ring* nextRing
|
| this->addTri(lastRing.index(cur), dst[next], dst[cur]);
|
| }
|
|
|
| - if (done) {
|
| + if (done && fStrokeWidth < 0.0f) {
|
| + // fill
|
| this->fanRing(*nextRing);
|
| }
|
|
|
| if (nextRing->numPts() < 3) {
|
| done = true;
|
| }
|
| -
|
| return done;
|
| }
|
|
|
| void GrAAConvexTessellator::validate() const {
|
| - SkASSERT(fPts.count() == fDepths.count());
|
| SkASSERT(fPts.count() == fMovable.count());
|
| SkASSERT(0 == (fIndices.count() % 3));
|
| }
|
| @@ -655,7 +738,6 @@ void GrAAConvexTessellator::validate() const {
|
| void GrAAConvexTessellator::Ring::init(const GrAAConvexTessellator& tess) {
|
| this->computeNormals(tess);
|
| this->computeBisectors(tess);
|
| - SkASSERT(this->isConvex(tess));
|
| }
|
|
|
| void GrAAConvexTessellator::Ring::init(const SkTDArray<SkVector>& norms,
|
| @@ -672,11 +754,8 @@ void GrAAConvexTessellator::Ring::computeNormals(const GrAAConvexTessellator& te
|
| int next = (cur + 1) % fPts.count();
|
|
|
| fPts[cur].fNorm = tess.point(fPts[next].fIndex) - tess.point(fPts[cur].fIndex);
|
| - SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fPts[cur].fNorm);
|
| - SkASSERT(len > 0.0f);
|
| + SkPoint::Normalize(&fPts[cur].fNorm);
|
| fPts[cur].fNorm.setOrthog(fPts[cur].fNorm, tess.side());
|
| -
|
| - SkASSERT(SkScalarNearlyEqual(1.0f, fPts[cur].fNorm.length()));
|
| }
|
| }
|
|
|
| @@ -694,9 +773,7 @@ void GrAAConvexTessellator::Ring::computeBisectors(const GrAAConvexTessellator&
|
| } else {
|
| fPts[cur].fBisector.negate(); // make the bisector face in
|
| }
|
| -
|
| - SkASSERT(SkScalarNearlyEqual(1.0f, fPts[cur].fBisector.length()));
|
| - }
|
| + }
|
| }
|
|
|
| //////////////////////////////////////////////////////////////////////////////
|
| @@ -704,7 +781,7 @@ void GrAAConvexTessellator::Ring::computeBisectors(const GrAAConvexTessellator&
|
| // Is this ring convex?
|
| bool GrAAConvexTessellator::Ring::isConvex(const GrAAConvexTessellator& tess) const {
|
| if (fPts.count() < 3) {
|
| - return false;
|
| + return true;
|
| }
|
|
|
| SkPoint prev = tess.point(fPts[0].fIndex) - tess.point(fPts.top().fIndex);
|
| @@ -725,74 +802,18 @@ bool GrAAConvexTessellator::Ring::isConvex(const GrAAConvexTessellator& tess) co
|
| prev = cur;
|
| }
|
|
|
| - return (maxDot > 0.0f) == (minDot >= 0.0f);
|
| -}
|
| -
|
| -static SkScalar capsule_depth(const SkPoint& p0, const SkPoint& p1,
|
| - const SkPoint& test, SkPoint::Side side,
|
| - int* sign) {
|
| - *sign = -1;
|
| - SkPoint edge = p1 - p0;
|
| - SkScalar len = SkPoint::Normalize(&edge);
|
| -
|
| - SkPoint testVec = test - p0;
|
| -
|
| - SkScalar d0 = edge.dot(testVec);
|
| - if (d0 < 0.0f) {
|
| - return SkPoint::Distance(p0, test);
|
| - }
|
| - if (d0 > len) {
|
| - return SkPoint::Distance(p1, test);
|
| - }
|
| -
|
| - SkScalar perpDist = testVec.fY * edge.fX - testVec.fX * edge.fY;
|
| - if (SkPoint::kRight_Side == side) {
|
| - perpDist = -perpDist;
|
| - }
|
| -
|
| - if (perpDist < 0.0f) {
|
| - perpDist = -perpDist;
|
| - } else {
|
| - *sign = 1;
|
| + if (SkScalarNearlyEqual(maxDot, 0.0f, 0.005f)) {
|
| + maxDot = 0;
|
| }
|
| - return perpDist;
|
| -}
|
| -
|
| -SkScalar GrAAConvexTessellator::computeRealDepth(const SkPoint& p) const {
|
| - SkScalar minDist = SK_ScalarMax;
|
| - int closestSign, sign;
|
| -
|
| - for (int edge = 0; edge < fNorms.count(); ++edge) {
|
| - SkScalar dist = capsule_depth(this->point(edge),
|
| - this->point((edge+1) % fNorms.count()),
|
| - p, fSide, &sign);
|
| - SkASSERT(dist >= 0.0f);
|
| -
|
| - if (minDist > dist) {
|
| - minDist = dist;
|
| - closestSign = sign;
|
| - }
|
| + if (SkScalarNearlyEqual(minDot, 0.0f, 0.005f)) {
|
| + minDot = 0;
|
| }
|
| -
|
| - return closestSign * minDist;
|
| + return (maxDot >= 0.0f) == (minDot >= 0.0f);
|
| }
|
|
|
| -// Verify that the incrementally computed depths are close to the actual depths.
|
| -void GrAAConvexTessellator::checkAllDepths() const {
|
| - for (int cur = 0; cur < this->numPts(); ++cur) {
|
| - SkScalar realDepth = this->computeRealDepth(this->point(cur));
|
| - SkScalar computedDepth = this->depth(cur);
|
| - SkASSERT(SkScalarNearlyEqual(realDepth, computedDepth, 0.01f));
|
| - }
|
| -}
|
| #endif
|
|
|
| -#define kQuadTolerance 0.2f
|
| -#define kCubicTolerance 0.2f
|
| -#define kConicTolerance 0.5f
|
| -
|
| -void GrAAConvexTessellator::lineTo(const SkMatrix& m, SkPoint p, bool isCurve) {
|
| - m.mapPoints(&p, 1);
|
| +void GrAAConvexTessellator::lineTo(SkPoint p, bool isCurve) {
|
| if (this->numPts() > 0 && duplicate_pt(p, this->lastPoint())) {
|
| return;
|
| }
|
| @@ -805,24 +826,22 @@ void GrAAConvexTessellator::lineTo(const SkMatrix& m, SkPoint p, bool isCurve) {
|
| fNorms.pop();
|
| fIsCurve.pop();
|
| }
|
| - this->addPt(p, 0.0f, false, isCurve);
|
| + SkScalar initialRingCoverage = fStrokeWidth < 0.0f ? 0.5f : 1.0f;
|
| + this->addPt(p, 0.0f, initialRingCoverage, false, isCurve);
|
| if (this->numPts() > 1) {
|
| *fNorms.push() = fPts.top() - fPts[fPts.count()-2];
|
| SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top());
|
| SkASSERT(len > 0.0f);
|
| SkASSERT(SkScalarNearlyEqual(1.0f, fNorms.top().length()));
|
| }
|
| - SkDEBUGCODE(
|
| - if (this->numPts() >= 3) {
|
| - int cur = this->numPts()-1;
|
| - SkScalar cross = SkPoint::CrossProduct(fNorms[cur-1], fNorms[cur-2]);
|
| - fMaxCross = SkTMax(fMaxCross, cross);
|
| - fMinCross = SkTMin(fMinCross, cross);
|
| - }
|
| - )
|
| }
|
|
|
| -void GrAAConvexTessellator::quadTo(const SkMatrix& m, SkPoint pts[3]) {
|
| +void GrAAConvexTessellator::lineTo(const SkMatrix& m, SkPoint p, bool isCurve) {
|
| + m.mapPoints(&p, 1);
|
| + this->lineTo(p, isCurve);
|
| +}
|
| +
|
| +void GrAAConvexTessellator::quadTo(SkPoint pts[3]) {
|
| int maxCount = GrPathUtils::quadraticPointCount(pts, kQuadTolerance);
|
| fPointBuffer.setReserve(maxCount);
|
| SkPoint* target = fPointBuffer.begin();
|
| @@ -830,11 +849,21 @@ void GrAAConvexTessellator::quadTo(const SkMatrix& m, SkPoint pts[3]) {
|
| kQuadTolerance, &target, maxCount);
|
| fPointBuffer.setCount(count);
|
| for (int i = 0; i < count; i++) {
|
| - lineTo(m, fPointBuffer[i], true);
|
| + lineTo(fPointBuffer[i], true);
|
| }
|
| }
|
|
|
| +void GrAAConvexTessellator::quadTo(const SkMatrix& m, SkPoint pts[3]) {
|
| + SkPoint transformed[3];
|
| + transformed[0] = pts[0];
|
| + transformed[1] = pts[1];
|
| + transformed[2] = pts[2];
|
| + m.mapPoints(transformed, 3);
|
| + quadTo(transformed);
|
| +}
|
| +
|
| void GrAAConvexTessellator::cubicTo(const SkMatrix& m, SkPoint pts[4]) {
|
| + m.mapPoints(pts, 4);
|
| int maxCount = GrPathUtils::cubicPointCount(pts, kCubicTolerance);
|
| fPointBuffer.setReserve(maxCount);
|
| SkPoint* target = fPointBuffer.begin();
|
| @@ -842,14 +871,15 @@ void GrAAConvexTessellator::cubicTo(const SkMatrix& m, SkPoint pts[4]) {
|
| kCubicTolerance, &target, maxCount);
|
| fPointBuffer.setCount(count);
|
| for (int i = 0; i < count; i++) {
|
| - lineTo(m, fPointBuffer[i], true);
|
| + lineTo(fPointBuffer[i], true);
|
| }
|
| }
|
|
|
| // include down here to avoid compilation errors caused by "-" overload in SkGeometry.h
|
| #include "SkGeometry.h"
|
|
|
| -void GrAAConvexTessellator::conicTo(const SkMatrix& m, SkPoint* pts, SkScalar w) {
|
| +void GrAAConvexTessellator::conicTo(const SkMatrix& m, SkPoint pts[3], SkScalar w) {
|
| + m.mapPoints(pts, 3);
|
| SkAutoConicToQuads quadder;
|
| const SkPoint* quads = quadder.computeQuads(pts, w, kConicTolerance);
|
| SkPoint lastPoint = *(quads++);
|
| @@ -859,7 +889,7 @@ void GrAAConvexTessellator::conicTo(const SkMatrix& m, SkPoint* pts, SkScalar w)
|
| quadPts[0] = lastPoint;
|
| quadPts[1] = quads[0];
|
| quadPts[2] = i == count - 1 ? pts[2] : quads[1];
|
| - quadTo(m, quadPts);
|
| + quadTo(quadPts);
|
| lastPoint = quadPts[2];
|
| quads += 2;
|
| }
|
| @@ -965,13 +995,13 @@ void GrAAConvexTessellator::draw(SkCanvas* canvas) const {
|
|
|
| for (int i = 0; i < this->numPts(); ++i) {
|
| draw_point(canvas,
|
| - this->point(i), 0.5f + (this->depth(i)/(2*fTargetDepth)),
|
| + this->point(i), 0.5f + (this->depth(i)/(2 * kAntialiasingRadius)),
|
| !this->movable(i));
|
|
|
| SkPaint paint;
|
| paint.setTextSize(kPointTextSize);
|
| paint.setTextAlign(SkPaint::kCenter_Align);
|
| - if (this->depth(i) <= -fTargetDepth) {
|
| + if (this->depth(i) <= -kAntialiasingRadius) {
|
| paint.setColor(SK_ColorWHITE);
|
| }
|
|
|
|
|