Index: src/mips/stub-cache-mips.cc |
diff --git a/src/mips/stub-cache-mips.cc b/src/mips/stub-cache-mips.cc |
index 323933b5de4cd10657a6a8f6b12dd16bb1293222..cea15f401dce3554f60a99bd1086203829a16279 100644 |
--- a/src/mips/stub-cache-mips.cc |
+++ b/src/mips/stub-cache-mips.cc |
@@ -1054,46 +1054,6 @@ static void StoreIntAsFloat(MacroAssembler* masm, |
} |
-// Convert unsigned integer with specified number of leading zeroes in binary |
-// representation to IEEE 754 double. |
-// Integer to convert is passed in register hiword. |
-// Resulting double is returned in registers hiword:loword. |
-// This functions does not work correctly for 0. |
-static void GenerateUInt2Double(MacroAssembler* masm, |
- Register hiword, |
- Register loword, |
- Register scratch, |
- int leading_zeroes) { |
- const int meaningful_bits = kBitsPerInt - leading_zeroes - 1; |
- const int biased_exponent = HeapNumber::kExponentBias + meaningful_bits; |
- |
- const int mantissa_shift_for_hi_word = |
- meaningful_bits - HeapNumber::kMantissaBitsInTopWord; |
- |
- const int mantissa_shift_for_lo_word = |
- kBitsPerInt - mantissa_shift_for_hi_word; |
- |
- __ li(scratch, biased_exponent << HeapNumber::kExponentShift); |
- if (mantissa_shift_for_hi_word > 0) { |
- __ sll(loword, hiword, mantissa_shift_for_lo_word); |
- __ srl(hiword, hiword, mantissa_shift_for_hi_word); |
- __ or_(hiword, scratch, hiword); |
- } else { |
- __ mov(loword, zero_reg); |
- __ sll(hiword, hiword, mantissa_shift_for_hi_word); |
- __ or_(hiword, scratch, hiword); |
- } |
- |
- // If least significant bit of biased exponent was not 1 it was corrupted |
- // by most significant bit of mantissa so we should fix that. |
- if (!(biased_exponent & 1)) { |
- __ li(scratch, 1 << HeapNumber::kExponentShift); |
- __ nor(scratch, scratch, scratch); |
- __ and_(hiword, hiword, scratch); |
- } |
-} |
- |
- |
#undef __ |
#define __ ACCESS_MASM(masm()) |
@@ -3316,9 +3276,17 @@ Handle<Code> KeyedLoadStubCompiler::CompileLoadElement( |
// -- a1 : receiver |
// ----------------------------------- |
ElementsKind elements_kind = receiver_map->elements_kind(); |
- Handle<Code> stub = KeyedLoadElementStub(elements_kind).GetCode(); |
- |
- __ DispatchMap(a1, a2, receiver_map, stub, DO_SMI_CHECK); |
+ if (receiver_map->has_fast_elements() || |
+ receiver_map->has_external_array_elements()) { |
+ Handle<Code> stub = KeyedLoadFastElementStub( |
+ receiver_map->instance_type() == JS_ARRAY_TYPE, |
+ elements_kind).GetCode(); |
+ __ DispatchMap(a1, a2, receiver_map, stub, DO_SMI_CHECK); |
+ } else { |
+ Handle<Code> stub = |
+ KeyedLoadDictionaryElementStub().GetCode(); |
+ __ DispatchMap(a1, a2, receiver_map, stub, DO_SMI_CHECK); |
+ } |
Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Miss(); |
__ Jump(ic, RelocInfo::CODE_TARGET); |
@@ -3730,355 +3698,6 @@ static void GenerateSmiKeyCheck(MacroAssembler* masm, |
} |
-void KeyedLoadStubCompiler::GenerateLoadExternalArray( |
- MacroAssembler* masm, |
- ElementsKind elements_kind) { |
- // ---------- S t a t e -------------- |
- // -- ra : return address |
- // -- a0 : key |
- // -- a1 : receiver |
- // ----------------------------------- |
- Label miss_force_generic, slow, failed_allocation; |
- |
- Register key = a0; |
- Register receiver = a1; |
- |
- // This stub is meant to be tail-jumped to, the receiver must already |
- // have been verified by the caller to not be a smi. |
- |
- // Check that the key is a smi or a heap number convertible to a smi. |
- GenerateSmiKeyCheck(masm, key, t0, t1, f2, f4, &miss_force_generic); |
- |
- __ lw(a3, FieldMemOperand(receiver, JSObject::kElementsOffset)); |
- // a3: elements array |
- |
- // Check that the index is in range. |
- __ lw(t1, FieldMemOperand(a3, ExternalArray::kLengthOffset)); |
- __ sra(t2, key, kSmiTagSize); |
- // Unsigned comparison catches both negative and too-large values. |
- __ Branch(&miss_force_generic, Ugreater_equal, key, Operand(t1)); |
- |
- __ lw(a3, FieldMemOperand(a3, ExternalArray::kExternalPointerOffset)); |
- // a3: base pointer of external storage |
- |
- // We are not untagging smi key and instead work with it |
- // as if it was premultiplied by 2. |
- STATIC_ASSERT((kSmiTag == 0) && (kSmiTagSize == 1)); |
- |
- Register value = a2; |
- switch (elements_kind) { |
- case EXTERNAL_BYTE_ELEMENTS: |
- __ srl(t2, key, 1); |
- __ addu(t3, a3, t2); |
- __ lb(value, MemOperand(t3, 0)); |
- break; |
- case EXTERNAL_PIXEL_ELEMENTS: |
- case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: |
- __ srl(t2, key, 1); |
- __ addu(t3, a3, t2); |
- __ lbu(value, MemOperand(t3, 0)); |
- break; |
- case EXTERNAL_SHORT_ELEMENTS: |
- __ addu(t3, a3, key); |
- __ lh(value, MemOperand(t3, 0)); |
- break; |
- case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: |
- __ addu(t3, a3, key); |
- __ lhu(value, MemOperand(t3, 0)); |
- break; |
- case EXTERNAL_INT_ELEMENTS: |
- case EXTERNAL_UNSIGNED_INT_ELEMENTS: |
- __ sll(t2, key, 1); |
- __ addu(t3, a3, t2); |
- __ lw(value, MemOperand(t3, 0)); |
- break; |
- case EXTERNAL_FLOAT_ELEMENTS: |
- __ sll(t3, t2, 2); |
- __ addu(t3, a3, t3); |
- if (CpuFeatures::IsSupported(FPU)) { |
- CpuFeatures::Scope scope(FPU); |
- __ lwc1(f0, MemOperand(t3, 0)); |
- } else { |
- __ lw(value, MemOperand(t3, 0)); |
- } |
- break; |
- case EXTERNAL_DOUBLE_ELEMENTS: |
- __ sll(t2, key, 2); |
- __ addu(t3, a3, t2); |
- if (CpuFeatures::IsSupported(FPU)) { |
- CpuFeatures::Scope scope(FPU); |
- __ ldc1(f0, MemOperand(t3, 0)); |
- } else { |
- // t3: pointer to the beginning of the double we want to load. |
- __ lw(a2, MemOperand(t3, 0)); |
- __ lw(a3, MemOperand(t3, Register::kSizeInBytes)); |
- } |
- break; |
- case FAST_ELEMENTS: |
- case FAST_SMI_ELEMENTS: |
- case FAST_DOUBLE_ELEMENTS: |
- case FAST_HOLEY_ELEMENTS: |
- case FAST_HOLEY_SMI_ELEMENTS: |
- case FAST_HOLEY_DOUBLE_ELEMENTS: |
- case DICTIONARY_ELEMENTS: |
- case NON_STRICT_ARGUMENTS_ELEMENTS: |
- UNREACHABLE(); |
- break; |
- } |
- |
- // For integer array types: |
- // a2: value |
- // For float array type: |
- // f0: value (if FPU is supported) |
- // a2: value (if FPU is not supported) |
- // For double array type: |
- // f0: value (if FPU is supported) |
- // a2/a3: value (if FPU is not supported) |
- |
- if (elements_kind == EXTERNAL_INT_ELEMENTS) { |
- // For the Int and UnsignedInt array types, we need to see whether |
- // the value can be represented in a Smi. If not, we need to convert |
- // it to a HeapNumber. |
- Label box_int; |
- __ Subu(t3, value, Operand(0xC0000000)); // Non-smi value gives neg result. |
- __ Branch(&box_int, lt, t3, Operand(zero_reg)); |
- // Tag integer as smi and return it. |
- __ sll(v0, value, kSmiTagSize); |
- __ Ret(); |
- |
- __ bind(&box_int); |
- |
- if (CpuFeatures::IsSupported(FPU)) { |
- CpuFeatures::Scope scope(FPU); |
- // Allocate a HeapNumber for the result and perform int-to-double |
- // conversion. |
- // The arm version uses a temporary here to save r0, but we don't need to |
- // (a0 is not modified). |
- __ LoadRoot(t1, Heap::kHeapNumberMapRootIndex); |
- __ AllocateHeapNumber(v0, a3, t0, t1, &slow, DONT_TAG_RESULT); |
- __ mtc1(value, f0); |
- __ cvt_d_w(f0, f0); |
- __ sdc1(f0, MemOperand(v0, HeapNumber::kValueOffset)); |
- __ Addu(v0, v0, kHeapObjectTag); |
- __ Ret(); |
- } else { |
- // Allocate a HeapNumber for the result and perform int-to-double |
- // conversion. |
- // The arm version uses a temporary here to save r0, but we don't need to |
- // (a0 is not modified). |
- __ LoadRoot(t1, Heap::kHeapNumberMapRootIndex); |
- __ AllocateHeapNumber(v0, a3, t0, t1, &slow, TAG_RESULT); |
- Register dst_mantissa = t2; |
- Register dst_exponent = t3; |
- FloatingPointHelper::Destination dest = |
- FloatingPointHelper::kCoreRegisters; |
- FloatingPointHelper::ConvertIntToDouble(masm, |
- value, |
- dest, |
- f0, |
- dst_mantissa, |
- dst_exponent, |
- t1, |
- f2); |
- __ sw(dst_mantissa, FieldMemOperand(v0, HeapNumber::kMantissaOffset)); |
- __ sw(dst_exponent, FieldMemOperand(v0, HeapNumber::kExponentOffset)); |
- __ Ret(); |
- } |
- } else if (elements_kind == EXTERNAL_UNSIGNED_INT_ELEMENTS) { |
- // The test is different for unsigned int values. Since we need |
- // the value to be in the range of a positive smi, we can't |
- // handle either of the top two bits being set in the value. |
- if (CpuFeatures::IsSupported(FPU)) { |
- CpuFeatures::Scope scope(FPU); |
- Label pl_box_int; |
- __ And(t2, value, Operand(0xC0000000)); |
- __ Branch(&pl_box_int, ne, t2, Operand(zero_reg)); |
- |
- // It can fit in an Smi. |
- // Tag integer as smi and return it. |
- __ sll(v0, value, kSmiTagSize); |
- __ Ret(); |
- |
- __ bind(&pl_box_int); |
- // Allocate a HeapNumber for the result and perform int-to-double |
- // conversion. Don't use a0 and a1 as AllocateHeapNumber clobbers all |
- // registers - also when jumping due to exhausted young space. |
- __ LoadRoot(t6, Heap::kHeapNumberMapRootIndex); |
- __ AllocateHeapNumber(v0, t2, t3, t6, &slow, DONT_TAG_RESULT); |
- |
- // This is replaced by a macro: |
- // __ mtc1(value, f0); // LS 32-bits. |
- // __ mtc1(zero_reg, f1); // MS 32-bits are all zero. |
- // __ cvt_d_l(f0, f0); // Use 64 bit conv to get correct unsigned 32-bit. |
- |
- __ Cvt_d_uw(f0, value, f22); |
- |
- __ sdc1(f0, MemOperand(v0, HeapNumber::kValueOffset)); |
- |
- __ Addu(v0, v0, kHeapObjectTag); |
- __ Ret(); |
- } else { |
- // Check whether unsigned integer fits into smi. |
- Label box_int_0, box_int_1, done; |
- __ And(t2, value, Operand(0x80000000)); |
- __ Branch(&box_int_0, ne, t2, Operand(zero_reg)); |
- __ And(t2, value, Operand(0x40000000)); |
- __ Branch(&box_int_1, ne, t2, Operand(zero_reg)); |
- |
- // Tag integer as smi and return it. |
- __ sll(v0, value, kSmiTagSize); |
- __ Ret(); |
- |
- Register hiword = value; // a2. |
- Register loword = a3; |
- |
- __ bind(&box_int_0); |
- // Integer does not have leading zeros. |
- GenerateUInt2Double(masm, hiword, loword, t0, 0); |
- __ Branch(&done); |
- |
- __ bind(&box_int_1); |
- // Integer has one leading zero. |
- GenerateUInt2Double(masm, hiword, loword, t0, 1); |
- |
- |
- __ bind(&done); |
- // Integer was converted to double in registers hiword:loword. |
- // Wrap it into a HeapNumber. Don't use a0 and a1 as AllocateHeapNumber |
- // clobbers all registers - also when jumping due to exhausted young |
- // space. |
- __ LoadRoot(t6, Heap::kHeapNumberMapRootIndex); |
- __ AllocateHeapNumber(t2, t3, t5, t6, &slow, TAG_RESULT); |
- |
- __ sw(hiword, FieldMemOperand(t2, HeapNumber::kExponentOffset)); |
- __ sw(loword, FieldMemOperand(t2, HeapNumber::kMantissaOffset)); |
- |
- __ mov(v0, t2); |
- __ Ret(); |
- } |
- } else if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) { |
- // For the floating-point array type, we need to always allocate a |
- // HeapNumber. |
- if (CpuFeatures::IsSupported(FPU)) { |
- CpuFeatures::Scope scope(FPU); |
- // Allocate a HeapNumber for the result. Don't use a0 and a1 as |
- // AllocateHeapNumber clobbers all registers - also when jumping due to |
- // exhausted young space. |
- __ LoadRoot(t6, Heap::kHeapNumberMapRootIndex); |
- __ AllocateHeapNumber(v0, t3, t5, t6, &slow, DONT_TAG_RESULT); |
- // The float (single) value is already in fpu reg f0 (if we use float). |
- __ cvt_d_s(f0, f0); |
- __ sdc1(f0, MemOperand(v0, HeapNumber::kValueOffset)); |
- |
- __ Addu(v0, v0, kHeapObjectTag); |
- __ Ret(); |
- } else { |
- // Allocate a HeapNumber for the result. Don't use a0 and a1 as |
- // AllocateHeapNumber clobbers all registers - also when jumping due to |
- // exhausted young space. |
- __ LoadRoot(t6, Heap::kHeapNumberMapRootIndex); |
- __ AllocateHeapNumber(v0, t3, t5, t6, &slow, TAG_RESULT); |
- // FPU is not available, do manual single to double conversion. |
- |
- // a2: floating point value (binary32). |
- // v0: heap number for result |
- |
- // Extract mantissa to t4. |
- __ And(t4, value, Operand(kBinary32MantissaMask)); |
- |
- // Extract exponent to t5. |
- __ srl(t5, value, kBinary32MantissaBits); |
- __ And(t5, t5, Operand(kBinary32ExponentMask >> kBinary32MantissaBits)); |
- |
- Label exponent_rebiased; |
- __ Branch(&exponent_rebiased, eq, t5, Operand(zero_reg)); |
- |
- __ li(t0, 0x7ff); |
- __ Xor(t1, t5, Operand(0xFF)); |
- __ Movz(t5, t0, t1); // Set t5 to 0x7ff only if t5 is equal to 0xff. |
- __ Branch(&exponent_rebiased, eq, t1, Operand(zero_reg)); |
- |
- // Rebias exponent. |
- __ Addu(t5, |
- t5, |
- Operand(-kBinary32ExponentBias + HeapNumber::kExponentBias)); |
- |
- __ bind(&exponent_rebiased); |
- __ And(a2, value, Operand(kBinary32SignMask)); |
- value = no_reg; |
- __ sll(t0, t5, HeapNumber::kMantissaBitsInTopWord); |
- __ or_(a2, a2, t0); |
- |
- // Shift mantissa. |
- static const int kMantissaShiftForHiWord = |
- kBinary32MantissaBits - HeapNumber::kMantissaBitsInTopWord; |
- |
- static const int kMantissaShiftForLoWord = |
- kBitsPerInt - kMantissaShiftForHiWord; |
- |
- __ srl(t0, t4, kMantissaShiftForHiWord); |
- __ or_(a2, a2, t0); |
- __ sll(a0, t4, kMantissaShiftForLoWord); |
- |
- __ sw(a2, FieldMemOperand(v0, HeapNumber::kExponentOffset)); |
- __ sw(a0, FieldMemOperand(v0, HeapNumber::kMantissaOffset)); |
- __ Ret(); |
- } |
- |
- } else if (elements_kind == EXTERNAL_DOUBLE_ELEMENTS) { |
- if (CpuFeatures::IsSupported(FPU)) { |
- CpuFeatures::Scope scope(FPU); |
- // Allocate a HeapNumber for the result. Don't use a0 and a1 as |
- // AllocateHeapNumber clobbers all registers - also when jumping due to |
- // exhausted young space. |
- __ LoadRoot(t6, Heap::kHeapNumberMapRootIndex); |
- __ AllocateHeapNumber(v0, t3, t5, t6, &slow, DONT_TAG_RESULT); |
- // The double value is already in f0 |
- __ sdc1(f0, MemOperand(v0, HeapNumber::kValueOffset)); |
- |
- __ Addu(v0, v0, kHeapObjectTag); |
- __ Ret(); |
- } else { |
- // Allocate a HeapNumber for the result. Don't use a0 and a1 as |
- // AllocateHeapNumber clobbers all registers - also when jumping due to |
- // exhausted young space. |
- __ LoadRoot(t6, Heap::kHeapNumberMapRootIndex); |
- __ AllocateHeapNumber(v0, t3, t5, t6, &slow, TAG_RESULT); |
- |
- __ sw(a2, FieldMemOperand(v0, HeapNumber::kMantissaOffset)); |
- __ sw(a3, FieldMemOperand(v0, HeapNumber::kExponentOffset)); |
- __ Ret(); |
- } |
- |
- } else { |
- // Tag integer as smi and return it. |
- __ sll(v0, value, kSmiTagSize); |
- __ Ret(); |
- } |
- |
- // Slow case, key and receiver still in a0 and a1. |
- __ bind(&slow); |
- __ IncrementCounter( |
- masm->isolate()->counters()->keyed_load_external_array_slow(), |
- 1, a2, a3); |
- |
- // ---------- S t a t e -------------- |
- // -- ra : return address |
- // -- a0 : key |
- // -- a1 : receiver |
- // ----------------------------------- |
- |
- __ Push(a1, a0); |
- |
- __ TailCallRuntime(Runtime::kKeyedGetProperty, 2, 1); |
- |
- __ bind(&miss_force_generic); |
- Handle<Code> stub = |
- masm->isolate()->builtins()->KeyedLoadIC_MissForceGeneric(); |
- __ Jump(stub, RelocInfo::CODE_TARGET); |
-} |
- |
- |
void KeyedStoreStubCompiler::GenerateStoreExternalArray( |
MacroAssembler* masm, |
ElementsKind elements_kind) { |
@@ -4478,115 +4097,6 @@ void KeyedStoreStubCompiler::GenerateStoreExternalArray( |
} |
-void KeyedLoadStubCompiler::GenerateLoadFastElement(MacroAssembler* masm) { |
- // ----------- S t a t e ------------- |
- // -- ra : return address |
- // -- a0 : key |
- // -- a1 : receiver |
- // ----------------------------------- |
- Label miss_force_generic; |
- |
- // This stub is meant to be tail-jumped to, the receiver must already |
- // have been verified by the caller to not be a smi. |
- |
- // Check that the key is a smi or a heap number convertible to a smi. |
- GenerateSmiKeyCheck(masm, a0, t0, t1, f2, f4, &miss_force_generic); |
- |
- // Get the elements array. |
- __ lw(a2, FieldMemOperand(a1, JSObject::kElementsOffset)); |
- __ AssertFastElements(a2); |
- |
- // Check that the key is within bounds. |
- __ lw(a3, FieldMemOperand(a2, FixedArray::kLengthOffset)); |
- __ Branch(USE_DELAY_SLOT, &miss_force_generic, hs, a0, Operand(a3)); |
- |
- // Load the result and make sure it's not the hole. |
- __ Addu(a3, a2, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
- STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2); |
- __ sll(t0, a0, kPointerSizeLog2 - kSmiTagSize); |
- __ Addu(t0, t0, a3); |
- __ lw(t0, MemOperand(t0)); |
- __ LoadRoot(t1, Heap::kTheHoleValueRootIndex); |
- __ Branch(&miss_force_generic, eq, t0, Operand(t1)); |
- __ Ret(USE_DELAY_SLOT); |
- __ mov(v0, t0); |
- |
- __ bind(&miss_force_generic); |
- Handle<Code> stub = |
- masm->isolate()->builtins()->KeyedLoadIC_MissForceGeneric(); |
- __ Jump(stub, RelocInfo::CODE_TARGET); |
-} |
- |
- |
-void KeyedLoadStubCompiler::GenerateLoadFastDoubleElement( |
- MacroAssembler* masm) { |
- // ----------- S t a t e ------------- |
- // -- ra : return address |
- // -- a0 : key |
- // -- a1 : receiver |
- // ----------------------------------- |
- Label miss_force_generic, slow_allocate_heapnumber; |
- |
- Register key_reg = a0; |
- Register receiver_reg = a1; |
- Register elements_reg = a2; |
- Register heap_number_reg = a2; |
- Register indexed_double_offset = a3; |
- Register scratch = t0; |
- Register scratch2 = t1; |
- Register scratch3 = t2; |
- Register heap_number_map = t3; |
- |
- // This stub is meant to be tail-jumped to, the receiver must already |
- // have been verified by the caller to not be a smi. |
- |
- // Check that the key is a smi or a heap number convertible to a smi. |
- GenerateSmiKeyCheck(masm, key_reg, t0, t1, f2, f4, &miss_force_generic); |
- |
- // Get the elements array. |
- __ lw(elements_reg, |
- FieldMemOperand(receiver_reg, JSObject::kElementsOffset)); |
- |
- // Check that the key is within bounds. |
- __ lw(scratch, FieldMemOperand(elements_reg, FixedArray::kLengthOffset)); |
- __ Branch(&miss_force_generic, hs, key_reg, Operand(scratch)); |
- |
- // Load the upper word of the double in the fixed array and test for NaN. |
- __ sll(scratch2, key_reg, kDoubleSizeLog2 - kSmiTagSize); |
- __ Addu(indexed_double_offset, elements_reg, Operand(scratch2)); |
- uint32_t upper_32_offset = FixedArray::kHeaderSize + sizeof(kHoleNanLower32); |
- __ lw(scratch, FieldMemOperand(indexed_double_offset, upper_32_offset)); |
- __ Branch(&miss_force_generic, eq, scratch, Operand(kHoleNanUpper32)); |
- |
- // Non-NaN. Allocate a new heap number and copy the double value into it. |
- __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
- __ AllocateHeapNumber(heap_number_reg, scratch2, scratch3, |
- heap_number_map, &slow_allocate_heapnumber, TAG_RESULT); |
- |
- // Don't need to reload the upper 32 bits of the double, it's already in |
- // scratch. |
- __ sw(scratch, FieldMemOperand(heap_number_reg, |
- HeapNumber::kExponentOffset)); |
- __ lw(scratch, FieldMemOperand(indexed_double_offset, |
- FixedArray::kHeaderSize)); |
- __ sw(scratch, FieldMemOperand(heap_number_reg, |
- HeapNumber::kMantissaOffset)); |
- |
- __ mov(v0, heap_number_reg); |
- __ Ret(); |
- |
- __ bind(&slow_allocate_heapnumber); |
- Handle<Code> slow_ic = |
- masm->isolate()->builtins()->KeyedLoadIC_Slow(); |
- __ Jump(slow_ic, RelocInfo::CODE_TARGET); |
- |
- __ bind(&miss_force_generic); |
- Handle<Code> miss_ic = |
- masm->isolate()->builtins()->KeyedLoadIC_MissForceGeneric(); |
- __ Jump(miss_ic, RelocInfo::CODE_TARGET); |
-} |
- |
- |
void KeyedStoreStubCompiler::GenerateStoreFastElement( |
MacroAssembler* masm, |
bool is_js_array, |