OLD | NEW |
1 // Copyright 2014 the V8 project authors. All rights reserved. | 1 // Copyright 2014 the V8 project authors. All rights reserved. |
2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
4 | 4 |
5 #include "test/unittests/compiler/instruction-selector-unittest.h" | 5 #include "test/unittests/compiler/instruction-selector-unittest.h" |
6 | 6 |
7 namespace v8 { | 7 namespace v8 { |
8 namespace internal { | 8 namespace internal { |
9 namespace compiler { | 9 namespace compiler { |
10 | 10 |
(...skipping 624 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
635 } | 635 } |
636 | 636 |
637 | 637 |
638 TEST_F(InstructionSelectorTest, AddShiftByImmediateOnLeft) { | 638 TEST_F(InstructionSelectorTest, AddShiftByImmediateOnLeft) { |
639 // 32-bit add. | 639 // 32-bit add. |
640 TRACED_FOREACH(Shift, shift, kShiftInstructions) { | 640 TRACED_FOREACH(Shift, shift, kShiftInstructions) { |
641 // Only test relevant shifted operands. | 641 // Only test relevant shifted operands. |
642 if (shift.mi.machine_type != kMachInt32) continue; | 642 if (shift.mi.machine_type != kMachInt32) continue; |
643 if (shift.mi.arch_opcode == kArm64Ror32) continue; | 643 if (shift.mi.arch_opcode == kArm64Ror32) continue; |
644 | 644 |
645 TRACED_FORRANGE(int, imm, 0, 31) { | 645 // The available shift operand range is `0 <= imm < 32`, but we also test |
| 646 // that immediates outside this range are handled properly (modulo-32). |
| 647 TRACED_FORRANGE(int, imm, -32, 63) { |
646 StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32); | 648 StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32); |
647 m.Return((m.Int32Add)( | 649 m.Return((m.Int32Add)( |
648 (m.*shift.mi.constructor)(m.Parameter(1), m.Int32Constant(imm)), | 650 (m.*shift.mi.constructor)(m.Parameter(1), m.Int32Constant(imm)), |
649 m.Parameter(0))); | 651 m.Parameter(0))); |
650 Stream s = m.Build(); | 652 Stream s = m.Build(); |
651 ASSERT_EQ(1U, s.size()); | 653 ASSERT_EQ(1U, s.size()); |
652 EXPECT_EQ(kArm64Add32, s[0]->arch_opcode()); | 654 EXPECT_EQ(kArm64Add32, s[0]->arch_opcode()); |
653 EXPECT_EQ(shift.mode, s[0]->addressing_mode()); | 655 EXPECT_EQ(shift.mode, s[0]->addressing_mode()); |
654 EXPECT_EQ(3U, s[0]->InputCount()); | 656 EXPECT_EQ(3U, s[0]->InputCount()); |
655 EXPECT_EQ(imm, s.ToInt64(s[0]->InputAt(2))); | 657 EXPECT_EQ(imm, s.ToInt64(s[0]->InputAt(2))); |
656 EXPECT_EQ(1U, s[0]->OutputCount()); | 658 EXPECT_EQ(1U, s[0]->OutputCount()); |
657 } | 659 } |
658 } | 660 } |
659 | 661 |
660 // 64-bit add. | 662 // 64-bit add. |
661 TRACED_FOREACH(Shift, shift, kShiftInstructions) { | 663 TRACED_FOREACH(Shift, shift, kShiftInstructions) { |
662 // Only test relevant shifted operands. | 664 // Only test relevant shifted operands. |
663 if (shift.mi.machine_type != kMachInt64) continue; | 665 if (shift.mi.machine_type != kMachInt64) continue; |
664 if (shift.mi.arch_opcode == kArm64Ror) continue; | 666 if (shift.mi.arch_opcode == kArm64Ror) continue; |
665 | 667 |
666 TRACED_FORRANGE(int, imm, 0, 63) { | 668 // The available shift operand range is `0 <= imm < 64`, but we also test |
| 669 // that immediates outside this range are handled properly (modulo-64). |
| 670 TRACED_FORRANGE(int, imm, -64, 127) { |
667 StreamBuilder m(this, kMachInt64, kMachInt64, kMachInt64); | 671 StreamBuilder m(this, kMachInt64, kMachInt64, kMachInt64); |
668 m.Return((m.Int64Add)( | 672 m.Return((m.Int64Add)( |
669 (m.*shift.mi.constructor)(m.Parameter(1), m.Int64Constant(imm)), | 673 (m.*shift.mi.constructor)(m.Parameter(1), m.Int64Constant(imm)), |
670 m.Parameter(0))); | 674 m.Parameter(0))); |
671 Stream s = m.Build(); | 675 Stream s = m.Build(); |
672 ASSERT_EQ(1U, s.size()); | 676 ASSERT_EQ(1U, s.size()); |
673 EXPECT_EQ(kArm64Add, s[0]->arch_opcode()); | 677 EXPECT_EQ(kArm64Add, s[0]->arch_opcode()); |
674 EXPECT_EQ(shift.mode, s[0]->addressing_mode()); | 678 EXPECT_EQ(shift.mode, s[0]->addressing_mode()); |
675 EXPECT_EQ(3U, s[0]->InputCount()); | 679 EXPECT_EQ(3U, s[0]->InputCount()); |
676 EXPECT_EQ(imm, s.ToInt64(s[0]->InputAt(2))); | 680 EXPECT_EQ(imm, s.ToInt64(s[0]->InputAt(2))); |
(...skipping 1518 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
2195 Stream s = m.Build(); | 2199 Stream s = m.Build(); |
2196 ASSERT_EQ(1U, s.size()); | 2200 ASSERT_EQ(1U, s.size()); |
2197 EXPECT_EQ(kArm64Not, s[0]->arch_opcode()); | 2201 EXPECT_EQ(kArm64Not, s[0]->arch_opcode()); |
2198 EXPECT_EQ(1U, s[0]->InputCount()); | 2202 EXPECT_EQ(1U, s[0]->InputCount()); |
2199 EXPECT_EQ(1U, s[0]->OutputCount()); | 2203 EXPECT_EQ(1U, s[0]->OutputCount()); |
2200 } | 2204 } |
2201 } | 2205 } |
2202 | 2206 |
2203 | 2207 |
2204 TEST_F(InstructionSelectorTest, Word32ShrWithWord32AndWithImmediate) { | 2208 TEST_F(InstructionSelectorTest, Word32ShrWithWord32AndWithImmediate) { |
2205 TRACED_FORRANGE(int32_t, lsb, 1, 31) { | 2209 // The available shift operand range is `0 <= imm < 32`, but we also test |
| 2210 // that immediates outside this range are handled properly (modulo-32). |
| 2211 TRACED_FORRANGE(int32_t, shift, -32, 63) { |
| 2212 int32_t lsb = shift & 0x1f; |
2206 TRACED_FORRANGE(int32_t, width, 1, 32 - lsb) { | 2213 TRACED_FORRANGE(int32_t, width, 1, 32 - lsb) { |
2207 uint32_t jnk = rng()->NextInt(); | 2214 uint32_t jnk = rng()->NextInt(); |
2208 jnk >>= 32 - lsb; | 2215 jnk = (lsb > 0) ? (jnk >> (32 - lsb)) : 0; |
2209 uint32_t msk = ((0xffffffffu >> (32 - width)) << lsb) | jnk; | 2216 uint32_t msk = ((0xffffffffu >> (32 - width)) << lsb) | jnk; |
2210 StreamBuilder m(this, kMachInt32, kMachInt32); | 2217 StreamBuilder m(this, kMachInt32, kMachInt32); |
2211 m.Return(m.Word32Shr(m.Word32And(m.Parameter(0), m.Int32Constant(msk)), | 2218 m.Return(m.Word32Shr(m.Word32And(m.Parameter(0), m.Int32Constant(msk)), |
2212 m.Int32Constant(lsb))); | 2219 m.Int32Constant(shift))); |
2213 Stream s = m.Build(); | 2220 Stream s = m.Build(); |
2214 ASSERT_EQ(1U, s.size()); | 2221 ASSERT_EQ(1U, s.size()); |
2215 EXPECT_EQ(kArm64Ubfx32, s[0]->arch_opcode()); | 2222 EXPECT_EQ(kArm64Ubfx32, s[0]->arch_opcode()); |
2216 ASSERT_EQ(3U, s[0]->InputCount()); | 2223 ASSERT_EQ(3U, s[0]->InputCount()); |
2217 EXPECT_EQ(lsb, s.ToInt32(s[0]->InputAt(1))); | 2224 EXPECT_EQ(lsb, s.ToInt32(s[0]->InputAt(1))); |
2218 EXPECT_EQ(width, s.ToInt32(s[0]->InputAt(2))); | 2225 EXPECT_EQ(width, s.ToInt32(s[0]->InputAt(2))); |
2219 } | 2226 } |
2220 } | 2227 } |
2221 TRACED_FORRANGE(int32_t, lsb, 1, 31) { | 2228 TRACED_FORRANGE(int32_t, shift, -32, 63) { |
| 2229 int32_t lsb = shift & 0x1f; |
2222 TRACED_FORRANGE(int32_t, width, 1, 32 - lsb) { | 2230 TRACED_FORRANGE(int32_t, width, 1, 32 - lsb) { |
2223 uint32_t jnk = rng()->NextInt(); | 2231 uint32_t jnk = rng()->NextInt(); |
2224 jnk >>= 32 - lsb; | 2232 jnk = (lsb > 0) ? (jnk >> (32 - lsb)) : 0; |
2225 uint32_t msk = ((0xffffffffu >> (32 - width)) << lsb) | jnk; | 2233 uint32_t msk = ((0xffffffffu >> (32 - width)) << lsb) | jnk; |
2226 StreamBuilder m(this, kMachInt32, kMachInt32); | 2234 StreamBuilder m(this, kMachInt32, kMachInt32); |
2227 m.Return(m.Word32Shr(m.Word32And(m.Int32Constant(msk), m.Parameter(0)), | 2235 m.Return(m.Word32Shr(m.Word32And(m.Int32Constant(msk), m.Parameter(0)), |
2228 m.Int32Constant(lsb))); | 2236 m.Int32Constant(shift))); |
2229 Stream s = m.Build(); | 2237 Stream s = m.Build(); |
2230 ASSERT_EQ(1U, s.size()); | 2238 ASSERT_EQ(1U, s.size()); |
2231 EXPECT_EQ(kArm64Ubfx32, s[0]->arch_opcode()); | 2239 EXPECT_EQ(kArm64Ubfx32, s[0]->arch_opcode()); |
2232 ASSERT_EQ(3U, s[0]->InputCount()); | 2240 ASSERT_EQ(3U, s[0]->InputCount()); |
2233 EXPECT_EQ(lsb, s.ToInt32(s[0]->InputAt(1))); | 2241 EXPECT_EQ(lsb, s.ToInt32(s[0]->InputAt(1))); |
2234 EXPECT_EQ(width, s.ToInt32(s[0]->InputAt(2))); | 2242 EXPECT_EQ(width, s.ToInt32(s[0]->InputAt(2))); |
2235 } | 2243 } |
2236 } | 2244 } |
2237 } | 2245 } |
2238 | 2246 |
2239 | 2247 |
2240 TEST_F(InstructionSelectorTest, Word64ShrWithWord64AndWithImmediate) { | 2248 TEST_F(InstructionSelectorTest, Word64ShrWithWord64AndWithImmediate) { |
2241 TRACED_FORRANGE(int32_t, lsb, 1, 63) { | 2249 // The available shift operand range is `0 <= imm < 64`, but we also test |
| 2250 // that immediates outside this range are handled properly (modulo-64). |
| 2251 TRACED_FORRANGE(int32_t, shift, -64, 127) { |
| 2252 int32_t lsb = shift & 0x3f; |
2242 TRACED_FORRANGE(int32_t, width, 1, 64 - lsb) { | 2253 TRACED_FORRANGE(int32_t, width, 1, 64 - lsb) { |
2243 uint64_t jnk = rng()->NextInt64(); | 2254 uint64_t jnk = rng()->NextInt64(); |
2244 jnk >>= 64 - lsb; | 2255 jnk = (lsb > 0) ? (jnk >> (64 - lsb)) : 0; |
2245 uint64_t msk = | 2256 uint64_t msk = |
2246 ((V8_UINT64_C(0xffffffffffffffff) >> (64 - width)) << lsb) | jnk; | 2257 ((V8_UINT64_C(0xffffffffffffffff) >> (64 - width)) << lsb) | jnk; |
2247 StreamBuilder m(this, kMachInt64, kMachInt64); | 2258 StreamBuilder m(this, kMachInt64, kMachInt64); |
2248 m.Return(m.Word64Shr(m.Word64And(m.Parameter(0), m.Int64Constant(msk)), | 2259 m.Return(m.Word64Shr(m.Word64And(m.Parameter(0), m.Int64Constant(msk)), |
2249 m.Int64Constant(lsb))); | 2260 m.Int64Constant(shift))); |
2250 Stream s = m.Build(); | 2261 Stream s = m.Build(); |
2251 ASSERT_EQ(1U, s.size()); | 2262 ASSERT_EQ(1U, s.size()); |
2252 EXPECT_EQ(kArm64Ubfx, s[0]->arch_opcode()); | 2263 EXPECT_EQ(kArm64Ubfx, s[0]->arch_opcode()); |
2253 ASSERT_EQ(3U, s[0]->InputCount()); | 2264 ASSERT_EQ(3U, s[0]->InputCount()); |
2254 EXPECT_EQ(lsb, s.ToInt64(s[0]->InputAt(1))); | 2265 EXPECT_EQ(lsb, s.ToInt64(s[0]->InputAt(1))); |
2255 EXPECT_EQ(width, s.ToInt64(s[0]->InputAt(2))); | 2266 EXPECT_EQ(width, s.ToInt64(s[0]->InputAt(2))); |
2256 } | 2267 } |
2257 } | 2268 } |
2258 TRACED_FORRANGE(int32_t, lsb, 1, 63) { | 2269 TRACED_FORRANGE(int32_t, shift, -64, 127) { |
| 2270 int32_t lsb = shift & 0x3f; |
2259 TRACED_FORRANGE(int32_t, width, 1, 64 - lsb) { | 2271 TRACED_FORRANGE(int32_t, width, 1, 64 - lsb) { |
2260 uint64_t jnk = rng()->NextInt64(); | 2272 uint64_t jnk = rng()->NextInt64(); |
2261 jnk >>= 64 - lsb; | 2273 jnk = (lsb > 0) ? (jnk >> (64 - lsb)) : 0; |
2262 uint64_t msk = | 2274 uint64_t msk = |
2263 ((V8_UINT64_C(0xffffffffffffffff) >> (64 - width)) << lsb) | jnk; | 2275 ((V8_UINT64_C(0xffffffffffffffff) >> (64 - width)) << lsb) | jnk; |
2264 StreamBuilder m(this, kMachInt64, kMachInt64); | 2276 StreamBuilder m(this, kMachInt64, kMachInt64); |
2265 m.Return(m.Word64Shr(m.Word64And(m.Int64Constant(msk), m.Parameter(0)), | 2277 m.Return(m.Word64Shr(m.Word64And(m.Int64Constant(msk), m.Parameter(0)), |
2266 m.Int64Constant(lsb))); | 2278 m.Int64Constant(shift))); |
2267 Stream s = m.Build(); | 2279 Stream s = m.Build(); |
2268 ASSERT_EQ(1U, s.size()); | 2280 ASSERT_EQ(1U, s.size()); |
2269 EXPECT_EQ(kArm64Ubfx, s[0]->arch_opcode()); | 2281 EXPECT_EQ(kArm64Ubfx, s[0]->arch_opcode()); |
2270 ASSERT_EQ(3U, s[0]->InputCount()); | 2282 ASSERT_EQ(3U, s[0]->InputCount()); |
2271 EXPECT_EQ(lsb, s.ToInt64(s[0]->InputAt(1))); | 2283 EXPECT_EQ(lsb, s.ToInt64(s[0]->InputAt(1))); |
2272 EXPECT_EQ(width, s.ToInt64(s[0]->InputAt(2))); | 2284 EXPECT_EQ(width, s.ToInt64(s[0]->InputAt(2))); |
2273 } | 2285 } |
2274 } | 2286 } |
2275 } | 2287 } |
2276 | 2288 |
2277 | 2289 |
2278 TEST_F(InstructionSelectorTest, Word32AndWithImmediateWithWord32Shr) { | 2290 TEST_F(InstructionSelectorTest, Word32AndWithImmediateWithWord32Shr) { |
2279 TRACED_FORRANGE(int32_t, lsb, 1, 31) { | 2291 // The available shift operand range is `0 <= imm < 32`, but we also test |
| 2292 // that immediates outside this range are handled properly (modulo-32). |
| 2293 TRACED_FORRANGE(int32_t, shift, -32, 63) { |
| 2294 int32_t lsb = shift & 0x1f; |
2280 TRACED_FORRANGE(int32_t, width, 1, 31) { | 2295 TRACED_FORRANGE(int32_t, width, 1, 31) { |
2281 uint32_t msk = (1 << width) - 1; | 2296 uint32_t msk = (1 << width) - 1; |
2282 StreamBuilder m(this, kMachInt32, kMachInt32); | 2297 StreamBuilder m(this, kMachInt32, kMachInt32); |
2283 m.Return(m.Word32And(m.Word32Shr(m.Parameter(0), m.Int32Constant(lsb)), | 2298 m.Return(m.Word32And(m.Word32Shr(m.Parameter(0), m.Int32Constant(shift)), |
2284 m.Int32Constant(msk))); | 2299 m.Int32Constant(msk))); |
2285 Stream s = m.Build(); | 2300 Stream s = m.Build(); |
2286 ASSERT_EQ(1U, s.size()); | 2301 ASSERT_EQ(1U, s.size()); |
2287 EXPECT_EQ(kArm64Ubfx32, s[0]->arch_opcode()); | 2302 EXPECT_EQ(kArm64Ubfx32, s[0]->arch_opcode()); |
2288 ASSERT_EQ(3U, s[0]->InputCount()); | 2303 ASSERT_EQ(3U, s[0]->InputCount()); |
2289 EXPECT_EQ(lsb, s.ToInt32(s[0]->InputAt(1))); | 2304 EXPECT_EQ(lsb, s.ToInt32(s[0]->InputAt(1))); |
2290 int32_t actual_width = (lsb + width > 32) ? (32 - lsb) : width; | 2305 int32_t actual_width = (lsb + width > 32) ? (32 - lsb) : width; |
2291 EXPECT_EQ(actual_width, s.ToInt32(s[0]->InputAt(2))); | 2306 EXPECT_EQ(actual_width, s.ToInt32(s[0]->InputAt(2))); |
2292 } | 2307 } |
2293 } | 2308 } |
2294 TRACED_FORRANGE(int32_t, lsb, 1, 31) { | 2309 TRACED_FORRANGE(int32_t, shift, -32, 63) { |
| 2310 int32_t lsb = shift & 0x1f; |
2295 TRACED_FORRANGE(int32_t, width, 1, 31) { | 2311 TRACED_FORRANGE(int32_t, width, 1, 31) { |
2296 uint32_t msk = (1 << width) - 1; | 2312 uint32_t msk = (1 << width) - 1; |
2297 StreamBuilder m(this, kMachInt32, kMachInt32); | 2313 StreamBuilder m(this, kMachInt32, kMachInt32); |
2298 m.Return(m.Word32And(m.Int32Constant(msk), | 2314 m.Return( |
2299 m.Word32Shr(m.Parameter(0), m.Int32Constant(lsb)))); | 2315 m.Word32And(m.Int32Constant(msk), |
| 2316 m.Word32Shr(m.Parameter(0), m.Int32Constant(shift)))); |
2300 Stream s = m.Build(); | 2317 Stream s = m.Build(); |
2301 ASSERT_EQ(1U, s.size()); | 2318 ASSERT_EQ(1U, s.size()); |
2302 EXPECT_EQ(kArm64Ubfx32, s[0]->arch_opcode()); | 2319 EXPECT_EQ(kArm64Ubfx32, s[0]->arch_opcode()); |
2303 ASSERT_EQ(3U, s[0]->InputCount()); | 2320 ASSERT_EQ(3U, s[0]->InputCount()); |
2304 EXPECT_EQ(lsb, s.ToInt32(s[0]->InputAt(1))); | 2321 EXPECT_EQ(lsb, s.ToInt32(s[0]->InputAt(1))); |
2305 int32_t actual_width = (lsb + width > 32) ? (32 - lsb) : width; | 2322 int32_t actual_width = (lsb + width > 32) ? (32 - lsb) : width; |
2306 EXPECT_EQ(actual_width, s.ToInt32(s[0]->InputAt(2))); | 2323 EXPECT_EQ(actual_width, s.ToInt32(s[0]->InputAt(2))); |
2307 } | 2324 } |
2308 } | 2325 } |
2309 } | 2326 } |
2310 | 2327 |
2311 | 2328 |
2312 TEST_F(InstructionSelectorTest, Word64AndWithImmediateWithWord64Shr) { | 2329 TEST_F(InstructionSelectorTest, Word64AndWithImmediateWithWord64Shr) { |
2313 TRACED_FORRANGE(int64_t, lsb, 1, 63) { | 2330 // The available shift operand range is `0 <= imm < 64`, but we also test |
| 2331 // that immediates outside this range are handled properly (modulo-64). |
| 2332 TRACED_FORRANGE(int64_t, shift, -64, 127) { |
| 2333 int64_t lsb = shift & 0x3f; |
2314 TRACED_FORRANGE(int64_t, width, 1, 63) { | 2334 TRACED_FORRANGE(int64_t, width, 1, 63) { |
2315 uint64_t msk = (V8_UINT64_C(1) << width) - 1; | 2335 uint64_t msk = (V8_UINT64_C(1) << width) - 1; |
2316 StreamBuilder m(this, kMachInt64, kMachInt64); | 2336 StreamBuilder m(this, kMachInt64, kMachInt64); |
2317 m.Return(m.Word64And(m.Word64Shr(m.Parameter(0), m.Int64Constant(lsb)), | 2337 m.Return(m.Word64And(m.Word64Shr(m.Parameter(0), m.Int64Constant(shift)), |
2318 m.Int64Constant(msk))); | 2338 m.Int64Constant(msk))); |
2319 Stream s = m.Build(); | 2339 Stream s = m.Build(); |
2320 ASSERT_EQ(1U, s.size()); | 2340 ASSERT_EQ(1U, s.size()); |
2321 EXPECT_EQ(kArm64Ubfx, s[0]->arch_opcode()); | 2341 EXPECT_EQ(kArm64Ubfx, s[0]->arch_opcode()); |
2322 ASSERT_EQ(3U, s[0]->InputCount()); | 2342 ASSERT_EQ(3U, s[0]->InputCount()); |
2323 EXPECT_EQ(lsb, s.ToInt64(s[0]->InputAt(1))); | 2343 EXPECT_EQ(lsb, s.ToInt64(s[0]->InputAt(1))); |
2324 int64_t actual_width = (lsb + width > 64) ? (64 - lsb) : width; | 2344 int64_t actual_width = (lsb + width > 64) ? (64 - lsb) : width; |
2325 EXPECT_EQ(actual_width, s.ToInt64(s[0]->InputAt(2))); | 2345 EXPECT_EQ(actual_width, s.ToInt64(s[0]->InputAt(2))); |
2326 } | 2346 } |
2327 } | 2347 } |
2328 TRACED_FORRANGE(int64_t, lsb, 1, 63) { | 2348 TRACED_FORRANGE(int64_t, shift, -64, 127) { |
| 2349 int64_t lsb = shift & 0x3f; |
2329 TRACED_FORRANGE(int64_t, width, 1, 63) { | 2350 TRACED_FORRANGE(int64_t, width, 1, 63) { |
2330 uint64_t msk = (V8_UINT64_C(1) << width) - 1; | 2351 uint64_t msk = (V8_UINT64_C(1) << width) - 1; |
2331 StreamBuilder m(this, kMachInt64, kMachInt64); | 2352 StreamBuilder m(this, kMachInt64, kMachInt64); |
2332 m.Return(m.Word64And(m.Int64Constant(msk), | 2353 m.Return( |
2333 m.Word64Shr(m.Parameter(0), m.Int64Constant(lsb)))); | 2354 m.Word64And(m.Int64Constant(msk), |
| 2355 m.Word64Shr(m.Parameter(0), m.Int64Constant(shift)))); |
2334 Stream s = m.Build(); | 2356 Stream s = m.Build(); |
2335 ASSERT_EQ(1U, s.size()); | 2357 ASSERT_EQ(1U, s.size()); |
2336 EXPECT_EQ(kArm64Ubfx, s[0]->arch_opcode()); | 2358 EXPECT_EQ(kArm64Ubfx, s[0]->arch_opcode()); |
2337 ASSERT_EQ(3U, s[0]->InputCount()); | 2359 ASSERT_EQ(3U, s[0]->InputCount()); |
2338 EXPECT_EQ(lsb, s.ToInt64(s[0]->InputAt(1))); | 2360 EXPECT_EQ(lsb, s.ToInt64(s[0]->InputAt(1))); |
2339 int64_t actual_width = (lsb + width > 64) ? (64 - lsb) : width; | 2361 int64_t actual_width = (lsb + width > 64) ? (64 - lsb) : width; |
2340 EXPECT_EQ(actual_width, s.ToInt64(s[0]->InputAt(2))); | 2362 EXPECT_EQ(actual_width, s.ToInt64(s[0]->InputAt(2))); |
2341 } | 2363 } |
2342 } | 2364 } |
2343 } | 2365 } |
(...skipping 223 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
2567 EXPECT_EQ(kArm64Float64Neg, s[0]->arch_opcode()); | 2589 EXPECT_EQ(kArm64Float64Neg, s[0]->arch_opcode()); |
2568 ASSERT_EQ(1U, s[0]->InputCount()); | 2590 ASSERT_EQ(1U, s[0]->InputCount()); |
2569 EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0))); | 2591 EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0))); |
2570 ASSERT_EQ(1U, s[0]->OutputCount()); | 2592 ASSERT_EQ(1U, s[0]->OutputCount()); |
2571 EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output())); | 2593 EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output())); |
2572 } | 2594 } |
2573 | 2595 |
2574 } // namespace compiler | 2596 } // namespace compiler |
2575 } // namespace internal | 2597 } // namespace internal |
2576 } // namespace v8 | 2598 } // namespace v8 |
OLD | NEW |