| Index: third_party/libwebp/utils/filters.c
|
| diff --git a/third_party/libwebp/utils/filters.c b/third_party/libwebp/utils/filters.c
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..2d15bd0e4a4f59d07fb847c3bfaa070fa1d672a4
|
| --- /dev/null
|
| +++ b/third_party/libwebp/utils/filters.c
|
| @@ -0,0 +1,266 @@
|
| +// Copyright 2011 Google Inc. All Rights Reserved.
|
| +//
|
| +// Use of this source code is governed by a BSD-style license
|
| +// that can be found in the COPYING file in the root of the source
|
| +// tree. An additional intellectual property rights grant can be found
|
| +// in the file PATENTS. All contributing project authors may
|
| +// be found in the AUTHORS file in the root of the source tree.
|
| +// -----------------------------------------------------------------------------
|
| +//
|
| +// Spatial prediction using various filters
|
| +//
|
| +// Author: Urvang (urvang@google.com)
|
| +
|
| +#include "./filters.h"
|
| +#include <assert.h>
|
| +#include <stdlib.h>
|
| +#include <string.h>
|
| +
|
| +//------------------------------------------------------------------------------
|
| +// Helpful macro.
|
| +
|
| +# define SANITY_CHECK(in, out) \
|
| + assert(in != NULL); \
|
| + assert(out != NULL); \
|
| + assert(width > 0); \
|
| + assert(height > 0); \
|
| + assert(stride >= width); \
|
| + assert(row >= 0 && num_rows > 0 && row + num_rows <= height); \
|
| + (void)height; // Silence unused warning.
|
| +
|
| +static WEBP_INLINE void PredictLine(const uint8_t* src, const uint8_t* pred,
|
| + uint8_t* dst, int length, int inverse) {
|
| + int i;
|
| + if (inverse) {
|
| + for (i = 0; i < length; ++i) dst[i] = src[i] + pred[i];
|
| + } else {
|
| + for (i = 0; i < length; ++i) dst[i] = src[i] - pred[i];
|
| + }
|
| +}
|
| +
|
| +//------------------------------------------------------------------------------
|
| +// Horizontal filter.
|
| +
|
| +static WEBP_INLINE void DoHorizontalFilter(const uint8_t* in,
|
| + int width, int height, int stride,
|
| + int row, int num_rows,
|
| + int inverse, uint8_t* out) {
|
| + const uint8_t* preds;
|
| + const size_t start_offset = row * stride;
|
| + const int last_row = row + num_rows;
|
| + SANITY_CHECK(in, out);
|
| + in += start_offset;
|
| + out += start_offset;
|
| + preds = inverse ? out : in;
|
| +
|
| + if (row == 0) {
|
| + // Leftmost pixel is the same as input for topmost scanline.
|
| + out[0] = in[0];
|
| + PredictLine(in + 1, preds, out + 1, width - 1, inverse);
|
| + row = 1;
|
| + preds += stride;
|
| + in += stride;
|
| + out += stride;
|
| + }
|
| +
|
| + // Filter line-by-line.
|
| + while (row < last_row) {
|
| + // Leftmost pixel is predicted from above.
|
| + PredictLine(in, preds - stride, out, 1, inverse);
|
| + PredictLine(in + 1, preds, out + 1, width - 1, inverse);
|
| + ++row;
|
| + preds += stride;
|
| + in += stride;
|
| + out += stride;
|
| + }
|
| +}
|
| +
|
| +static void HorizontalFilter(const uint8_t* data, int width, int height,
|
| + int stride, uint8_t* filtered_data) {
|
| + DoHorizontalFilter(data, width, height, stride, 0, height, 0, filtered_data);
|
| +}
|
| +
|
| +static void HorizontalUnfilter(int width, int height, int stride, int row,
|
| + int num_rows, uint8_t* data) {
|
| + DoHorizontalFilter(data, width, height, stride, row, num_rows, 1, data);
|
| +}
|
| +
|
| +//------------------------------------------------------------------------------
|
| +// Vertical filter.
|
| +
|
| +static WEBP_INLINE void DoVerticalFilter(const uint8_t* in,
|
| + int width, int height, int stride,
|
| + int row, int num_rows,
|
| + int inverse, uint8_t* out) {
|
| + const uint8_t* preds;
|
| + const size_t start_offset = row * stride;
|
| + const int last_row = row + num_rows;
|
| + SANITY_CHECK(in, out);
|
| + in += start_offset;
|
| + out += start_offset;
|
| + preds = inverse ? out : in;
|
| +
|
| + if (row == 0) {
|
| + // Very first top-left pixel is copied.
|
| + out[0] = in[0];
|
| + // Rest of top scan-line is left-predicted.
|
| + PredictLine(in + 1, preds, out + 1, width - 1, inverse);
|
| + row = 1;
|
| + in += stride;
|
| + out += stride;
|
| + } else {
|
| + // We are starting from in-between. Make sure 'preds' points to prev row.
|
| + preds -= stride;
|
| + }
|
| +
|
| + // Filter line-by-line.
|
| + while (row < last_row) {
|
| + PredictLine(in, preds, out, width, inverse);
|
| + ++row;
|
| + preds += stride;
|
| + in += stride;
|
| + out += stride;
|
| + }
|
| +}
|
| +
|
| +static void VerticalFilter(const uint8_t* data, int width, int height,
|
| + int stride, uint8_t* filtered_data) {
|
| + DoVerticalFilter(data, width, height, stride, 0, height, 0, filtered_data);
|
| +}
|
| +
|
| +static void VerticalUnfilter(int width, int height, int stride, int row,
|
| + int num_rows, uint8_t* data) {
|
| + DoVerticalFilter(data, width, height, stride, row, num_rows, 1, data);
|
| +}
|
| +
|
| +//------------------------------------------------------------------------------
|
| +// Gradient filter.
|
| +
|
| +static WEBP_INLINE int GradientPredictor(uint8_t a, uint8_t b, uint8_t c) {
|
| + const int g = a + b - c;
|
| + return ((g & ~0xff) == 0) ? g : (g < 0) ? 0 : 255; // clip to 8bit
|
| +}
|
| +
|
| +static WEBP_INLINE void DoGradientFilter(const uint8_t* in,
|
| + int width, int height, int stride,
|
| + int row, int num_rows,
|
| + int inverse, uint8_t* out) {
|
| + const uint8_t* preds;
|
| + const size_t start_offset = row * stride;
|
| + const int last_row = row + num_rows;
|
| + SANITY_CHECK(in, out);
|
| + in += start_offset;
|
| + out += start_offset;
|
| + preds = inverse ? out : in;
|
| +
|
| + // left prediction for top scan-line
|
| + if (row == 0) {
|
| + out[0] = in[0];
|
| + PredictLine(in + 1, preds, out + 1, width - 1, inverse);
|
| + row = 1;
|
| + preds += stride;
|
| + in += stride;
|
| + out += stride;
|
| + }
|
| +
|
| + // Filter line-by-line.
|
| + while (row < last_row) {
|
| + int w;
|
| + // leftmost pixel: predict from above.
|
| + PredictLine(in, preds - stride, out, 1, inverse);
|
| + for (w = 1; w < width; ++w) {
|
| + const int pred = GradientPredictor(preds[w - 1],
|
| + preds[w - stride],
|
| + preds[w - stride - 1]);
|
| + out[w] = in[w] + (inverse ? pred : -pred);
|
| + }
|
| + ++row;
|
| + preds += stride;
|
| + in += stride;
|
| + out += stride;
|
| + }
|
| +}
|
| +
|
| +static void GradientFilter(const uint8_t* data, int width, int height,
|
| + int stride, uint8_t* filtered_data) {
|
| + DoGradientFilter(data, width, height, stride, 0, height, 0, filtered_data);
|
| +}
|
| +
|
| +static void GradientUnfilter(int width, int height, int stride, int row,
|
| + int num_rows, uint8_t* data) {
|
| + DoGradientFilter(data, width, height, stride, row, num_rows, 1, data);
|
| +}
|
| +
|
| +#undef SANITY_CHECK
|
| +
|
| +// -----------------------------------------------------------------------------
|
| +// Quick estimate of a potentially interesting filter mode to try.
|
| +
|
| +#define SMAX 16
|
| +#define SDIFF(a, b) (abs((a) - (b)) >> 4) // Scoring diff, in [0..SMAX)
|
| +
|
| +WEBP_FILTER_TYPE EstimateBestFilter(const uint8_t* data,
|
| + int width, int height, int stride) {
|
| + int i, j;
|
| + int bins[WEBP_FILTER_LAST][SMAX];
|
| + memset(bins, 0, sizeof(bins));
|
| +
|
| + // We only sample every other pixels. That's enough.
|
| + for (j = 2; j < height - 1; j += 2) {
|
| + const uint8_t* const p = data + j * stride;
|
| + int mean = p[0];
|
| + for (i = 2; i < width - 1; i += 2) {
|
| + const int diff0 = SDIFF(p[i], mean);
|
| + const int diff1 = SDIFF(p[i], p[i - 1]);
|
| + const int diff2 = SDIFF(p[i], p[i - width]);
|
| + const int grad_pred =
|
| + GradientPredictor(p[i - 1], p[i - width], p[i - width - 1]);
|
| + const int diff3 = SDIFF(p[i], grad_pred);
|
| + bins[WEBP_FILTER_NONE][diff0] = 1;
|
| + bins[WEBP_FILTER_HORIZONTAL][diff1] = 1;
|
| + bins[WEBP_FILTER_VERTICAL][diff2] = 1;
|
| + bins[WEBP_FILTER_GRADIENT][diff3] = 1;
|
| + mean = (3 * mean + p[i] + 2) >> 2;
|
| + }
|
| + }
|
| + {
|
| + int filter;
|
| + WEBP_FILTER_TYPE best_filter = WEBP_FILTER_NONE;
|
| + int best_score = 0x7fffffff;
|
| + for (filter = WEBP_FILTER_NONE; filter < WEBP_FILTER_LAST; ++filter) {
|
| + int score = 0;
|
| + for (i = 0; i < SMAX; ++i) {
|
| + if (bins[filter][i] > 0) {
|
| + score += i;
|
| + }
|
| + }
|
| + if (score < best_score) {
|
| + best_score = score;
|
| + best_filter = (WEBP_FILTER_TYPE)filter;
|
| + }
|
| + }
|
| + return best_filter;
|
| + }
|
| +}
|
| +
|
| +#undef SMAX
|
| +#undef SDIFF
|
| +
|
| +//------------------------------------------------------------------------------
|
| +
|
| +const WebPFilterFunc WebPFilters[WEBP_FILTER_LAST] = {
|
| + NULL, // WEBP_FILTER_NONE
|
| + HorizontalFilter, // WEBP_FILTER_HORIZONTAL
|
| + VerticalFilter, // WEBP_FILTER_VERTICAL
|
| + GradientFilter // WEBP_FILTER_GRADIENT
|
| +};
|
| +
|
| +const WebPUnfilterFunc WebPUnfilters[WEBP_FILTER_LAST] = {
|
| + NULL, // WEBP_FILTER_NONE
|
| + HorizontalUnfilter, // WEBP_FILTER_HORIZONTAL
|
| + VerticalUnfilter, // WEBP_FILTER_VERTICAL
|
| + GradientUnfilter // WEBP_FILTER_GRADIENT
|
| +};
|
| +
|
| +//------------------------------------------------------------------------------
|
| +
|
|
|