Index: third_party/libwebp/dec/vp8l.c |
diff --git a/third_party/libwebp/dec/vp8l.c b/third_party/libwebp/dec/vp8l.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..e2780e5b2d62834245d869a3ffb3f10ec4f965c5 |
--- /dev/null |
+++ b/third_party/libwebp/dec/vp8l.c |
@@ -0,0 +1,1404 @@ |
+// Copyright 2012 Google Inc. All Rights Reserved. |
+// |
+// Use of this source code is governed by a BSD-style license |
+// that can be found in the COPYING file in the root of the source |
+// tree. An additional intellectual property rights grant can be found |
+// in the file PATENTS. All contributing project authors may |
+// be found in the AUTHORS file in the root of the source tree. |
+// ----------------------------------------------------------------------------- |
+// |
+// main entry for the decoder |
+// |
+// Authors: Vikas Arora (vikaas.arora@gmail.com) |
+// Jyrki Alakuijala (jyrki@google.com) |
+ |
+#include <stdlib.h> |
+ |
+#include "./alphai.h" |
+#include "./vp8li.h" |
+#include "../dsp/dsp.h" |
+#include "../dsp/lossless.h" |
+#include "../dsp/yuv.h" |
+#include "../utils/huffman.h" |
+#include "../utils/utils.h" |
+ |
+#define NUM_ARGB_CACHE_ROWS 16 |
+ |
+static const int kCodeLengthLiterals = 16; |
+static const int kCodeLengthRepeatCode = 16; |
+static const int kCodeLengthExtraBits[3] = { 2, 3, 7 }; |
+static const int kCodeLengthRepeatOffsets[3] = { 3, 3, 11 }; |
+ |
+// ----------------------------------------------------------------------------- |
+// Five Huffman codes are used at each meta code: |
+// 1. green + length prefix codes + color cache codes, |
+// 2. alpha, |
+// 3. red, |
+// 4. blue, and, |
+// 5. distance prefix codes. |
+typedef enum { |
+ GREEN = 0, |
+ RED = 1, |
+ BLUE = 2, |
+ ALPHA = 3, |
+ DIST = 4 |
+} HuffIndex; |
+ |
+static const uint16_t kAlphabetSize[HUFFMAN_CODES_PER_META_CODE] = { |
+ NUM_LITERAL_CODES + NUM_LENGTH_CODES, |
+ NUM_LITERAL_CODES, NUM_LITERAL_CODES, NUM_LITERAL_CODES, |
+ NUM_DISTANCE_CODES |
+}; |
+ |
+ |
+#define NUM_CODE_LENGTH_CODES 19 |
+static const uint8_t kCodeLengthCodeOrder[NUM_CODE_LENGTH_CODES] = { |
+ 17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 |
+}; |
+ |
+#define CODE_TO_PLANE_CODES 120 |
+static const uint8_t kCodeToPlane[CODE_TO_PLANE_CODES] = { |
+ 0x18, 0x07, 0x17, 0x19, 0x28, 0x06, 0x27, 0x29, 0x16, 0x1a, |
+ 0x26, 0x2a, 0x38, 0x05, 0x37, 0x39, 0x15, 0x1b, 0x36, 0x3a, |
+ 0x25, 0x2b, 0x48, 0x04, 0x47, 0x49, 0x14, 0x1c, 0x35, 0x3b, |
+ 0x46, 0x4a, 0x24, 0x2c, 0x58, 0x45, 0x4b, 0x34, 0x3c, 0x03, |
+ 0x57, 0x59, 0x13, 0x1d, 0x56, 0x5a, 0x23, 0x2d, 0x44, 0x4c, |
+ 0x55, 0x5b, 0x33, 0x3d, 0x68, 0x02, 0x67, 0x69, 0x12, 0x1e, |
+ 0x66, 0x6a, 0x22, 0x2e, 0x54, 0x5c, 0x43, 0x4d, 0x65, 0x6b, |
+ 0x32, 0x3e, 0x78, 0x01, 0x77, 0x79, 0x53, 0x5d, 0x11, 0x1f, |
+ 0x64, 0x6c, 0x42, 0x4e, 0x76, 0x7a, 0x21, 0x2f, 0x75, 0x7b, |
+ 0x31, 0x3f, 0x63, 0x6d, 0x52, 0x5e, 0x00, 0x74, 0x7c, 0x41, |
+ 0x4f, 0x10, 0x20, 0x62, 0x6e, 0x30, 0x73, 0x7d, 0x51, 0x5f, |
+ 0x40, 0x72, 0x7e, 0x61, 0x6f, 0x50, 0x71, 0x7f, 0x60, 0x70 |
+}; |
+ |
+static int DecodeImageStream(int xsize, int ysize, |
+ int is_level0, |
+ VP8LDecoder* const dec, |
+ uint32_t** const decoded_data); |
+ |
+//------------------------------------------------------------------------------ |
+ |
+int VP8LCheckSignature(const uint8_t* const data, size_t size) { |
+ return (size >= VP8L_FRAME_HEADER_SIZE && |
+ data[0] == VP8L_MAGIC_BYTE && |
+ (data[4] >> 5) == 0); // version |
+} |
+ |
+static int ReadImageInfo(VP8LBitReader* const br, |
+ int* const width, int* const height, |
+ int* const has_alpha) { |
+ if (VP8LReadBits(br, 8) != VP8L_MAGIC_BYTE) return 0; |
+ *width = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1; |
+ *height = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1; |
+ *has_alpha = VP8LReadBits(br, 1); |
+ if (VP8LReadBits(br, VP8L_VERSION_BITS) != 0) return 0; |
+ return 1; |
+} |
+ |
+int VP8LGetInfo(const uint8_t* data, size_t data_size, |
+ int* const width, int* const height, int* const has_alpha) { |
+ if (data == NULL || data_size < VP8L_FRAME_HEADER_SIZE) { |
+ return 0; // not enough data |
+ } else if (!VP8LCheckSignature(data, data_size)) { |
+ return 0; // bad signature |
+ } else { |
+ int w, h, a; |
+ VP8LBitReader br; |
+ VP8LInitBitReader(&br, data, data_size); |
+ if (!ReadImageInfo(&br, &w, &h, &a)) { |
+ return 0; |
+ } |
+ if (width != NULL) *width = w; |
+ if (height != NULL) *height = h; |
+ if (has_alpha != NULL) *has_alpha = a; |
+ return 1; |
+ } |
+} |
+ |
+//------------------------------------------------------------------------------ |
+ |
+static WEBP_INLINE int GetCopyDistance(int distance_symbol, |
+ VP8LBitReader* const br) { |
+ int extra_bits, offset; |
+ if (distance_symbol < 4) { |
+ return distance_symbol + 1; |
+ } |
+ extra_bits = (distance_symbol - 2) >> 1; |
+ offset = (2 + (distance_symbol & 1)) << extra_bits; |
+ return offset + VP8LReadBits(br, extra_bits) + 1; |
+} |
+ |
+static WEBP_INLINE int GetCopyLength(int length_symbol, |
+ VP8LBitReader* const br) { |
+ // Length and distance prefixes are encoded the same way. |
+ return GetCopyDistance(length_symbol, br); |
+} |
+ |
+static WEBP_INLINE int PlaneCodeToDistance(int xsize, int plane_code) { |
+ if (plane_code > CODE_TO_PLANE_CODES) { |
+ return plane_code - CODE_TO_PLANE_CODES; |
+ } else { |
+ const int dist_code = kCodeToPlane[plane_code - 1]; |
+ const int yoffset = dist_code >> 4; |
+ const int xoffset = 8 - (dist_code & 0xf); |
+ const int dist = yoffset * xsize + xoffset; |
+ return (dist >= 1) ? dist : 1; // dist<1 can happen if xsize is very small |
+ } |
+} |
+ |
+//------------------------------------------------------------------------------ |
+// Decodes the next Huffman code from bit-stream. |
+// FillBitWindow(br) needs to be called at minimum every second call |
+// to ReadSymbol, in order to pre-fetch enough bits. |
+static WEBP_INLINE int ReadSymbol(const HuffmanTree* tree, |
+ VP8LBitReader* const br) { |
+ const HuffmanTreeNode* node = tree->root_; |
+ uint32_t bits = VP8LPrefetchBits(br); |
+ int bitpos = br->bit_pos_; |
+ // Check if we find the bit combination from the Huffman lookup table. |
+ const int lut_ix = bits & (HUFF_LUT - 1); |
+ const int lut_bits = tree->lut_bits_[lut_ix]; |
+ if (lut_bits <= HUFF_LUT_BITS) { |
+ VP8LSetBitPos(br, bitpos + lut_bits); |
+ return tree->lut_symbol_[lut_ix]; |
+ } |
+ node += tree->lut_jump_[lut_ix]; |
+ bitpos += HUFF_LUT_BITS; |
+ bits >>= HUFF_LUT_BITS; |
+ |
+ // Decode the value from a binary tree. |
+ assert(node != NULL); |
+ do { |
+ node = HuffmanTreeNextNode(node, bits & 1); |
+ bits >>= 1; |
+ ++bitpos; |
+ } while (HuffmanTreeNodeIsNotLeaf(node)); |
+ VP8LSetBitPos(br, bitpos); |
+ return node->symbol_; |
+} |
+ |
+static int ReadHuffmanCodeLengths( |
+ VP8LDecoder* const dec, const int* const code_length_code_lengths, |
+ int num_symbols, int* const code_lengths) { |
+ int ok = 0; |
+ VP8LBitReader* const br = &dec->br_; |
+ int symbol; |
+ int max_symbol; |
+ int prev_code_len = DEFAULT_CODE_LENGTH; |
+ HuffmanTree tree; |
+ int huff_codes[NUM_CODE_LENGTH_CODES] = { 0 }; |
+ |
+ if (!VP8LHuffmanTreeBuildImplicit(&tree, code_length_code_lengths, |
+ huff_codes, NUM_CODE_LENGTH_CODES)) { |
+ dec->status_ = VP8_STATUS_BITSTREAM_ERROR; |
+ return 0; |
+ } |
+ |
+ if (VP8LReadBits(br, 1)) { // use length |
+ const int length_nbits = 2 + 2 * VP8LReadBits(br, 3); |
+ max_symbol = 2 + VP8LReadBits(br, length_nbits); |
+ if (max_symbol > num_symbols) { |
+ dec->status_ = VP8_STATUS_BITSTREAM_ERROR; |
+ goto End; |
+ } |
+ } else { |
+ max_symbol = num_symbols; |
+ } |
+ |
+ symbol = 0; |
+ while (symbol < num_symbols) { |
+ int code_len; |
+ if (max_symbol-- == 0) break; |
+ VP8LFillBitWindow(br); |
+ code_len = ReadSymbol(&tree, br); |
+ if (code_len < kCodeLengthLiterals) { |
+ code_lengths[symbol++] = code_len; |
+ if (code_len != 0) prev_code_len = code_len; |
+ } else { |
+ const int use_prev = (code_len == kCodeLengthRepeatCode); |
+ const int slot = code_len - kCodeLengthLiterals; |
+ const int extra_bits = kCodeLengthExtraBits[slot]; |
+ const int repeat_offset = kCodeLengthRepeatOffsets[slot]; |
+ int repeat = VP8LReadBits(br, extra_bits) + repeat_offset; |
+ if (symbol + repeat > num_symbols) { |
+ dec->status_ = VP8_STATUS_BITSTREAM_ERROR; |
+ goto End; |
+ } else { |
+ const int length = use_prev ? prev_code_len : 0; |
+ while (repeat-- > 0) code_lengths[symbol++] = length; |
+ } |
+ } |
+ } |
+ ok = 1; |
+ |
+ End: |
+ VP8LHuffmanTreeFree(&tree); |
+ if (!ok) dec->status_ = VP8_STATUS_BITSTREAM_ERROR; |
+ return ok; |
+} |
+ |
+// 'code_lengths' is pre-allocated temporary buffer, used for creating Huffman |
+// tree. |
+static int ReadHuffmanCode(int alphabet_size, VP8LDecoder* const dec, |
+ int* const code_lengths, int* const huff_codes, |
+ HuffmanTree* const tree) { |
+ int ok = 0; |
+ VP8LBitReader* const br = &dec->br_; |
+ const int simple_code = VP8LReadBits(br, 1); |
+ |
+ if (simple_code) { // Read symbols, codes & code lengths directly. |
+ int symbols[2]; |
+ int codes[2]; |
+ const int num_symbols = VP8LReadBits(br, 1) + 1; |
+ const int first_symbol_len_code = VP8LReadBits(br, 1); |
+ // The first code is either 1 bit or 8 bit code. |
+ symbols[0] = VP8LReadBits(br, (first_symbol_len_code == 0) ? 1 : 8); |
+ codes[0] = 0; |
+ code_lengths[0] = num_symbols - 1; |
+ // The second code (if present), is always 8 bit long. |
+ if (num_symbols == 2) { |
+ symbols[1] = VP8LReadBits(br, 8); |
+ codes[1] = 1; |
+ code_lengths[1] = num_symbols - 1; |
+ } |
+ ok = VP8LHuffmanTreeBuildExplicit(tree, code_lengths, codes, symbols, |
+ alphabet_size, num_symbols); |
+ } else { // Decode Huffman-coded code lengths. |
+ int i; |
+ int code_length_code_lengths[NUM_CODE_LENGTH_CODES] = { 0 }; |
+ const int num_codes = VP8LReadBits(br, 4) + 4; |
+ if (num_codes > NUM_CODE_LENGTH_CODES) { |
+ dec->status_ = VP8_STATUS_BITSTREAM_ERROR; |
+ return 0; |
+ } |
+ |
+ memset(code_lengths, 0, alphabet_size * sizeof(*code_lengths)); |
+ |
+ for (i = 0; i < num_codes; ++i) { |
+ code_length_code_lengths[kCodeLengthCodeOrder[i]] = VP8LReadBits(br, 3); |
+ } |
+ ok = ReadHuffmanCodeLengths(dec, code_length_code_lengths, alphabet_size, |
+ code_lengths); |
+ ok = ok && VP8LHuffmanTreeBuildImplicit(tree, code_lengths, huff_codes, |
+ alphabet_size); |
+ } |
+ ok = ok && !br->error_; |
+ if (!ok) { |
+ dec->status_ = VP8_STATUS_BITSTREAM_ERROR; |
+ return 0; |
+ } |
+ return 1; |
+} |
+ |
+static int ReadHuffmanCodes(VP8LDecoder* const dec, int xsize, int ysize, |
+ int color_cache_bits, int allow_recursion) { |
+ int i, j; |
+ VP8LBitReader* const br = &dec->br_; |
+ VP8LMetadata* const hdr = &dec->hdr_; |
+ uint32_t* huffman_image = NULL; |
+ HTreeGroup* htree_groups = NULL; |
+ int num_htree_groups = 1; |
+ int max_alphabet_size = 0; |
+ int* code_lengths = NULL; |
+ int* huff_codes = NULL; |
+ |
+ if (allow_recursion && VP8LReadBits(br, 1)) { |
+ // use meta Huffman codes. |
+ const int huffman_precision = VP8LReadBits(br, 3) + 2; |
+ const int huffman_xsize = VP8LSubSampleSize(xsize, huffman_precision); |
+ const int huffman_ysize = VP8LSubSampleSize(ysize, huffman_precision); |
+ const int huffman_pixs = huffman_xsize * huffman_ysize; |
+ if (!DecodeImageStream(huffman_xsize, huffman_ysize, 0, dec, |
+ &huffman_image)) { |
+ dec->status_ = VP8_STATUS_BITSTREAM_ERROR; |
+ goto Error; |
+ } |
+ hdr->huffman_subsample_bits_ = huffman_precision; |
+ for (i = 0; i < huffman_pixs; ++i) { |
+ // The huffman data is stored in red and green bytes. |
+ const int group = (huffman_image[i] >> 8) & 0xffff; |
+ huffman_image[i] = group; |
+ if (group >= num_htree_groups) { |
+ num_htree_groups = group + 1; |
+ } |
+ } |
+ } |
+ |
+ if (br->error_) goto Error; |
+ |
+ // Find maximum alphabet size for the htree group. |
+ for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) { |
+ int alphabet_size = kAlphabetSize[j]; |
+ if (j == 0 && color_cache_bits > 0) { |
+ alphabet_size += 1 << color_cache_bits; |
+ } |
+ if (max_alphabet_size < alphabet_size) { |
+ max_alphabet_size = alphabet_size; |
+ } |
+ } |
+ |
+ htree_groups = VP8LHtreeGroupsNew(num_htree_groups); |
+ code_lengths = |
+ (int*)WebPSafeCalloc((uint64_t)max_alphabet_size, sizeof(*code_lengths)); |
+ huff_codes = |
+ (int*)WebPSafeMalloc((uint64_t)max_alphabet_size, sizeof(*huff_codes)); |
+ |
+ if (htree_groups == NULL || code_lengths == NULL || huff_codes == NULL) { |
+ dec->status_ = VP8_STATUS_OUT_OF_MEMORY; |
+ goto Error; |
+ } |
+ |
+ for (i = 0; i < num_htree_groups; ++i) { |
+ HuffmanTree* const htrees = htree_groups[i].htrees_; |
+ for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) { |
+ int alphabet_size = kAlphabetSize[j]; |
+ HuffmanTree* const htree = htrees + j; |
+ if (j == 0 && color_cache_bits > 0) { |
+ alphabet_size += 1 << color_cache_bits; |
+ } |
+ if (!ReadHuffmanCode(alphabet_size, dec, code_lengths, huff_codes, |
+ htree)) { |
+ goto Error; |
+ } |
+ } |
+ } |
+ WebPSafeFree(huff_codes); |
+ WebPSafeFree(code_lengths); |
+ |
+ // All OK. Finalize pointers and return. |
+ hdr->huffman_image_ = huffman_image; |
+ hdr->num_htree_groups_ = num_htree_groups; |
+ hdr->htree_groups_ = htree_groups; |
+ return 1; |
+ |
+ Error: |
+ WebPSafeFree(huff_codes); |
+ WebPSafeFree(code_lengths); |
+ WebPSafeFree(huffman_image); |
+ VP8LHtreeGroupsFree(htree_groups, num_htree_groups); |
+ return 0; |
+} |
+ |
+//------------------------------------------------------------------------------ |
+// Scaling. |
+ |
+static int AllocateAndInitRescaler(VP8LDecoder* const dec, VP8Io* const io) { |
+ const int num_channels = 4; |
+ const int in_width = io->mb_w; |
+ const int out_width = io->scaled_width; |
+ const int in_height = io->mb_h; |
+ const int out_height = io->scaled_height; |
+ const uint64_t work_size = 2 * num_channels * (uint64_t)out_width; |
+ int32_t* work; // Rescaler work area. |
+ const uint64_t scaled_data_size = num_channels * (uint64_t)out_width; |
+ uint32_t* scaled_data; // Temporary storage for scaled BGRA data. |
+ const uint64_t memory_size = sizeof(*dec->rescaler) + |
+ work_size * sizeof(*work) + |
+ scaled_data_size * sizeof(*scaled_data); |
+ uint8_t* memory = (uint8_t*)WebPSafeCalloc(memory_size, sizeof(*memory)); |
+ if (memory == NULL) { |
+ dec->status_ = VP8_STATUS_OUT_OF_MEMORY; |
+ return 0; |
+ } |
+ assert(dec->rescaler_memory == NULL); |
+ dec->rescaler_memory = memory; |
+ |
+ dec->rescaler = (WebPRescaler*)memory; |
+ memory += sizeof(*dec->rescaler); |
+ work = (int32_t*)memory; |
+ memory += work_size * sizeof(*work); |
+ scaled_data = (uint32_t*)memory; |
+ |
+ WebPRescalerInit(dec->rescaler, in_width, in_height, (uint8_t*)scaled_data, |
+ out_width, out_height, 0, num_channels, |
+ in_width, out_width, in_height, out_height, work); |
+ return 1; |
+} |
+ |
+//------------------------------------------------------------------------------ |
+// Export to ARGB |
+ |
+// We have special "export" function since we need to convert from BGRA |
+static int Export(WebPRescaler* const rescaler, WEBP_CSP_MODE colorspace, |
+ int rgba_stride, uint8_t* const rgba) { |
+ uint32_t* const src = (uint32_t*)rescaler->dst; |
+ const int dst_width = rescaler->dst_width; |
+ int num_lines_out = 0; |
+ while (WebPRescalerHasPendingOutput(rescaler)) { |
+ uint8_t* const dst = rgba + num_lines_out * rgba_stride; |
+ WebPRescalerExportRow(rescaler, 0); |
+ WebPMultARGBRow(src, dst_width, 1); |
+ VP8LConvertFromBGRA(src, dst_width, colorspace, dst); |
+ ++num_lines_out; |
+ } |
+ return num_lines_out; |
+} |
+ |
+// Emit scaled rows. |
+static int EmitRescaledRowsRGBA(const VP8LDecoder* const dec, |
+ uint8_t* in, int in_stride, int mb_h, |
+ uint8_t* const out, int out_stride) { |
+ const WEBP_CSP_MODE colorspace = dec->output_->colorspace; |
+ int num_lines_in = 0; |
+ int num_lines_out = 0; |
+ while (num_lines_in < mb_h) { |
+ uint8_t* const row_in = in + num_lines_in * in_stride; |
+ uint8_t* const row_out = out + num_lines_out * out_stride; |
+ const int lines_left = mb_h - num_lines_in; |
+ const int needed_lines = WebPRescaleNeededLines(dec->rescaler, lines_left); |
+ assert(needed_lines > 0 && needed_lines <= lines_left); |
+ WebPMultARGBRows(row_in, in_stride, |
+ dec->rescaler->src_width, needed_lines, 0); |
+ WebPRescalerImport(dec->rescaler, lines_left, row_in, in_stride); |
+ num_lines_in += needed_lines; |
+ num_lines_out += Export(dec->rescaler, colorspace, out_stride, row_out); |
+ } |
+ return num_lines_out; |
+} |
+ |
+// Emit rows without any scaling. |
+static int EmitRows(WEBP_CSP_MODE colorspace, |
+ const uint8_t* row_in, int in_stride, |
+ int mb_w, int mb_h, |
+ uint8_t* const out, int out_stride) { |
+ int lines = mb_h; |
+ uint8_t* row_out = out; |
+ while (lines-- > 0) { |
+ VP8LConvertFromBGRA((const uint32_t*)row_in, mb_w, colorspace, row_out); |
+ row_in += in_stride; |
+ row_out += out_stride; |
+ } |
+ return mb_h; // Num rows out == num rows in. |
+} |
+ |
+//------------------------------------------------------------------------------ |
+// Export to YUVA |
+ |
+// TODO(skal): should be in yuv.c |
+static void ConvertToYUVA(const uint32_t* const src, int width, int y_pos, |
+ const WebPDecBuffer* const output) { |
+ const WebPYUVABuffer* const buf = &output->u.YUVA; |
+ // first, the luma plane |
+ { |
+ int i; |
+ uint8_t* const y = buf->y + y_pos * buf->y_stride; |
+ for (i = 0; i < width; ++i) { |
+ const uint32_t p = src[i]; |
+ y[i] = VP8RGBToY((p >> 16) & 0xff, (p >> 8) & 0xff, (p >> 0) & 0xff, |
+ YUV_HALF); |
+ } |
+ } |
+ |
+ // then U/V planes |
+ { |
+ uint8_t* const u = buf->u + (y_pos >> 1) * buf->u_stride; |
+ uint8_t* const v = buf->v + (y_pos >> 1) * buf->v_stride; |
+ const int uv_width = width >> 1; |
+ int i; |
+ for (i = 0; i < uv_width; ++i) { |
+ const uint32_t v0 = src[2 * i + 0]; |
+ const uint32_t v1 = src[2 * i + 1]; |
+ // VP8RGBToU/V expects four accumulated pixels. Hence we need to |
+ // scale r/g/b value by a factor 2. We just shift v0/v1 one bit less. |
+ const int r = ((v0 >> 15) & 0x1fe) + ((v1 >> 15) & 0x1fe); |
+ const int g = ((v0 >> 7) & 0x1fe) + ((v1 >> 7) & 0x1fe); |
+ const int b = ((v0 << 1) & 0x1fe) + ((v1 << 1) & 0x1fe); |
+ if (!(y_pos & 1)) { // even lines: store values |
+ u[i] = VP8RGBToU(r, g, b, YUV_HALF << 2); |
+ v[i] = VP8RGBToV(r, g, b, YUV_HALF << 2); |
+ } else { // odd lines: average with previous values |
+ const int tmp_u = VP8RGBToU(r, g, b, YUV_HALF << 2); |
+ const int tmp_v = VP8RGBToV(r, g, b, YUV_HALF << 2); |
+ // Approximated average-of-four. But it's an acceptable diff. |
+ u[i] = (u[i] + tmp_u + 1) >> 1; |
+ v[i] = (v[i] + tmp_v + 1) >> 1; |
+ } |
+ } |
+ if (width & 1) { // last pixel |
+ const uint32_t v0 = src[2 * i + 0]; |
+ const int r = (v0 >> 14) & 0x3fc; |
+ const int g = (v0 >> 6) & 0x3fc; |
+ const int b = (v0 << 2) & 0x3fc; |
+ if (!(y_pos & 1)) { // even lines |
+ u[i] = VP8RGBToU(r, g, b, YUV_HALF << 2); |
+ v[i] = VP8RGBToV(r, g, b, YUV_HALF << 2); |
+ } else { // odd lines (note: we could just skip this) |
+ const int tmp_u = VP8RGBToU(r, g, b, YUV_HALF << 2); |
+ const int tmp_v = VP8RGBToV(r, g, b, YUV_HALF << 2); |
+ u[i] = (u[i] + tmp_u + 1) >> 1; |
+ v[i] = (v[i] + tmp_v + 1) >> 1; |
+ } |
+ } |
+ } |
+ // Lastly, store alpha if needed. |
+ if (buf->a != NULL) { |
+ int i; |
+ uint8_t* const a = buf->a + y_pos * buf->a_stride; |
+ for (i = 0; i < width; ++i) a[i] = (src[i] >> 24); |
+ } |
+} |
+ |
+static int ExportYUVA(const VP8LDecoder* const dec, int y_pos) { |
+ WebPRescaler* const rescaler = dec->rescaler; |
+ uint32_t* const src = (uint32_t*)rescaler->dst; |
+ const int dst_width = rescaler->dst_width; |
+ int num_lines_out = 0; |
+ while (WebPRescalerHasPendingOutput(rescaler)) { |
+ WebPRescalerExportRow(rescaler, 0); |
+ WebPMultARGBRow(src, dst_width, 1); |
+ ConvertToYUVA(src, dst_width, y_pos, dec->output_); |
+ ++y_pos; |
+ ++num_lines_out; |
+ } |
+ return num_lines_out; |
+} |
+ |
+static int EmitRescaledRowsYUVA(const VP8LDecoder* const dec, |
+ uint8_t* in, int in_stride, int mb_h) { |
+ int num_lines_in = 0; |
+ int y_pos = dec->last_out_row_; |
+ while (num_lines_in < mb_h) { |
+ const int lines_left = mb_h - num_lines_in; |
+ const int needed_lines = WebPRescaleNeededLines(dec->rescaler, lines_left); |
+ WebPMultARGBRows(in, in_stride, dec->rescaler->src_width, needed_lines, 0); |
+ WebPRescalerImport(dec->rescaler, lines_left, in, in_stride); |
+ num_lines_in += needed_lines; |
+ in += needed_lines * in_stride; |
+ y_pos += ExportYUVA(dec, y_pos); |
+ } |
+ return y_pos; |
+} |
+ |
+static int EmitRowsYUVA(const VP8LDecoder* const dec, |
+ const uint8_t* in, int in_stride, |
+ int mb_w, int num_rows) { |
+ int y_pos = dec->last_out_row_; |
+ while (num_rows-- > 0) { |
+ ConvertToYUVA((const uint32_t*)in, mb_w, y_pos, dec->output_); |
+ in += in_stride; |
+ ++y_pos; |
+ } |
+ return y_pos; |
+} |
+ |
+//------------------------------------------------------------------------------ |
+// Cropping. |
+ |
+// Sets io->mb_y, io->mb_h & io->mb_w according to start row, end row and |
+// crop options. Also updates the input data pointer, so that it points to the |
+// start of the cropped window. Note that pixels are in ARGB format even if |
+// 'in_data' is uint8_t*. |
+// Returns true if the crop window is not empty. |
+static int SetCropWindow(VP8Io* const io, int y_start, int y_end, |
+ uint8_t** const in_data, int pixel_stride) { |
+ assert(y_start < y_end); |
+ assert(io->crop_left < io->crop_right); |
+ if (y_end > io->crop_bottom) { |
+ y_end = io->crop_bottom; // make sure we don't overflow on last row. |
+ } |
+ if (y_start < io->crop_top) { |
+ const int delta = io->crop_top - y_start; |
+ y_start = io->crop_top; |
+ *in_data += delta * pixel_stride; |
+ } |
+ if (y_start >= y_end) return 0; // Crop window is empty. |
+ |
+ *in_data += io->crop_left * sizeof(uint32_t); |
+ |
+ io->mb_y = y_start - io->crop_top; |
+ io->mb_w = io->crop_right - io->crop_left; |
+ io->mb_h = y_end - y_start; |
+ return 1; // Non-empty crop window. |
+} |
+ |
+//------------------------------------------------------------------------------ |
+ |
+static WEBP_INLINE int GetMetaIndex( |
+ const uint32_t* const image, int xsize, int bits, int x, int y) { |
+ if (bits == 0) return 0; |
+ return image[xsize * (y >> bits) + (x >> bits)]; |
+} |
+ |
+static WEBP_INLINE HTreeGroup* GetHtreeGroupForPos(VP8LMetadata* const hdr, |
+ int x, int y) { |
+ const int meta_index = GetMetaIndex(hdr->huffman_image_, hdr->huffman_xsize_, |
+ hdr->huffman_subsample_bits_, x, y); |
+ assert(meta_index < hdr->num_htree_groups_); |
+ return hdr->htree_groups_ + meta_index; |
+} |
+ |
+//------------------------------------------------------------------------------ |
+// Main loop, with custom row-processing function |
+ |
+typedef void (*ProcessRowsFunc)(VP8LDecoder* const dec, int row); |
+ |
+static void ApplyInverseTransforms(VP8LDecoder* const dec, int num_rows, |
+ const uint32_t* const rows) { |
+ int n = dec->next_transform_; |
+ const int cache_pixs = dec->width_ * num_rows; |
+ const int start_row = dec->last_row_; |
+ const int end_row = start_row + num_rows; |
+ const uint32_t* rows_in = rows; |
+ uint32_t* const rows_out = dec->argb_cache_; |
+ |
+ // Inverse transforms. |
+ // TODO: most transforms only need to operate on the cropped region only. |
+ memcpy(rows_out, rows_in, cache_pixs * sizeof(*rows_out)); |
+ while (n-- > 0) { |
+ VP8LTransform* const transform = &dec->transforms_[n]; |
+ VP8LInverseTransform(transform, start_row, end_row, rows_in, rows_out); |
+ rows_in = rows_out; |
+ } |
+} |
+ |
+// Special method for paletted alpha data. |
+static void ApplyInverseTransformsAlpha(VP8LDecoder* const dec, int num_rows, |
+ const uint8_t* const rows) { |
+ const int start_row = dec->last_row_; |
+ const int end_row = start_row + num_rows; |
+ const uint8_t* rows_in = rows; |
+ uint8_t* rows_out = (uint8_t*)dec->io_->opaque + dec->io_->width * start_row; |
+ VP8LTransform* const transform = &dec->transforms_[0]; |
+ assert(dec->next_transform_ == 1); |
+ assert(transform->type_ == COLOR_INDEXING_TRANSFORM); |
+ VP8LColorIndexInverseTransformAlpha(transform, start_row, end_row, rows_in, |
+ rows_out); |
+} |
+ |
+// Processes (transforms, scales & color-converts) the rows decoded after the |
+// last call. |
+static void ProcessRows(VP8LDecoder* const dec, int row) { |
+ const uint32_t* const rows = dec->pixels_ + dec->width_ * dec->last_row_; |
+ const int num_rows = row - dec->last_row_; |
+ |
+ if (num_rows <= 0) return; // Nothing to be done. |
+ ApplyInverseTransforms(dec, num_rows, rows); |
+ |
+ // Emit output. |
+ { |
+ VP8Io* const io = dec->io_; |
+ uint8_t* rows_data = (uint8_t*)dec->argb_cache_; |
+ const int in_stride = io->width * sizeof(uint32_t); // in unit of RGBA |
+ if (!SetCropWindow(io, dec->last_row_, row, &rows_data, in_stride)) { |
+ // Nothing to output (this time). |
+ } else { |
+ const WebPDecBuffer* const output = dec->output_; |
+ if (output->colorspace < MODE_YUV) { // convert to RGBA |
+ const WebPRGBABuffer* const buf = &output->u.RGBA; |
+ uint8_t* const rgba = buf->rgba + dec->last_out_row_ * buf->stride; |
+ const int num_rows_out = io->use_scaling ? |
+ EmitRescaledRowsRGBA(dec, rows_data, in_stride, io->mb_h, |
+ rgba, buf->stride) : |
+ EmitRows(output->colorspace, rows_data, in_stride, |
+ io->mb_w, io->mb_h, rgba, buf->stride); |
+ // Update 'last_out_row_'. |
+ dec->last_out_row_ += num_rows_out; |
+ } else { // convert to YUVA |
+ dec->last_out_row_ = io->use_scaling ? |
+ EmitRescaledRowsYUVA(dec, rows_data, in_stride, io->mb_h) : |
+ EmitRowsYUVA(dec, rows_data, in_stride, io->mb_w, io->mb_h); |
+ } |
+ assert(dec->last_out_row_ <= output->height); |
+ } |
+ } |
+ |
+ // Update 'last_row_'. |
+ dec->last_row_ = row; |
+ assert(dec->last_row_ <= dec->height_); |
+} |
+ |
+// Row-processing for the special case when alpha data contains only one |
+// transform (color indexing), and trivial non-green literals. |
+static int Is8bOptimizable(const VP8LMetadata* const hdr) { |
+ int i; |
+ if (hdr->color_cache_size_ > 0) return 0; |
+ // When the Huffman tree contains only one symbol, we can skip the |
+ // call to ReadSymbol() for red/blue/alpha channels. |
+ for (i = 0; i < hdr->num_htree_groups_; ++i) { |
+ const HuffmanTree* const htrees = hdr->htree_groups_[i].htrees_; |
+ if (htrees[RED].num_nodes_ > 1) return 0; |
+ if (htrees[BLUE].num_nodes_ > 1) return 0; |
+ if (htrees[ALPHA].num_nodes_ > 1) return 0; |
+ } |
+ return 1; |
+} |
+ |
+static void ExtractPalettedAlphaRows(VP8LDecoder* const dec, int row) { |
+ const int num_rows = row - dec->last_row_; |
+ const uint8_t* const in = |
+ (uint8_t*)dec->pixels_ + dec->width_ * dec->last_row_; |
+ if (num_rows > 0) { |
+ ApplyInverseTransformsAlpha(dec, num_rows, in); |
+ } |
+ dec->last_row_ = dec->last_out_row_ = row; |
+} |
+ |
+static int DecodeAlphaData(VP8LDecoder* const dec, uint8_t* const data, |
+ int width, int height, int last_row) { |
+ int ok = 1; |
+ int row = dec->last_pixel_ / width; |
+ int col = dec->last_pixel_ % width; |
+ VP8LBitReader* const br = &dec->br_; |
+ VP8LMetadata* const hdr = &dec->hdr_; |
+ const HTreeGroup* htree_group = GetHtreeGroupForPos(hdr, col, row); |
+ int pos = dec->last_pixel_; // current position |
+ const int end = width * height; // End of data |
+ const int last = width * last_row; // Last pixel to decode |
+ const int len_code_limit = NUM_LITERAL_CODES + NUM_LENGTH_CODES; |
+ const int mask = hdr->huffman_mask_; |
+ assert(htree_group != NULL); |
+ assert(pos < end); |
+ assert(last_row <= height); |
+ assert(Is8bOptimizable(hdr)); |
+ |
+ while (!br->eos_ && pos < last) { |
+ int code; |
+ // Only update when changing tile. |
+ if ((col & mask) == 0) { |
+ htree_group = GetHtreeGroupForPos(hdr, col, row); |
+ } |
+ VP8LFillBitWindow(br); |
+ code = ReadSymbol(&htree_group->htrees_[GREEN], br); |
+ if (code < NUM_LITERAL_CODES) { // Literal |
+ data[pos] = code; |
+ ++pos; |
+ ++col; |
+ if (col >= width) { |
+ col = 0; |
+ ++row; |
+ if (row % NUM_ARGB_CACHE_ROWS == 0) { |
+ ExtractPalettedAlphaRows(dec, row); |
+ } |
+ } |
+ } else if (code < len_code_limit) { // Backward reference |
+ int dist_code, dist; |
+ const int length_sym = code - NUM_LITERAL_CODES; |
+ const int length = GetCopyLength(length_sym, br); |
+ const int dist_symbol = ReadSymbol(&htree_group->htrees_[DIST], br); |
+ VP8LFillBitWindow(br); |
+ dist_code = GetCopyDistance(dist_symbol, br); |
+ dist = PlaneCodeToDistance(width, dist_code); |
+ if (pos >= dist && end - pos >= length) { |
+ int i; |
+ for (i = 0; i < length; ++i) data[pos + i] = data[pos + i - dist]; |
+ } else { |
+ ok = 0; |
+ goto End; |
+ } |
+ pos += length; |
+ col += length; |
+ while (col >= width) { |
+ col -= width; |
+ ++row; |
+ if (row % NUM_ARGB_CACHE_ROWS == 0) { |
+ ExtractPalettedAlphaRows(dec, row); |
+ } |
+ } |
+ if (pos < last && (col & mask)) { |
+ htree_group = GetHtreeGroupForPos(hdr, col, row); |
+ } |
+ } else { // Not reached |
+ ok = 0; |
+ goto End; |
+ } |
+ assert(br->eos_ == VP8LIsEndOfStream(br)); |
+ ok = !br->error_; |
+ if (!ok) goto End; |
+ } |
+ // Process the remaining rows corresponding to last row-block. |
+ ExtractPalettedAlphaRows(dec, row); |
+ |
+ End: |
+ if (br->error_ || !ok || (br->eos_ && pos < end)) { |
+ ok = 0; |
+ dec->status_ = br->eos_ ? VP8_STATUS_SUSPENDED |
+ : VP8_STATUS_BITSTREAM_ERROR; |
+ } else { |
+ dec->last_pixel_ = (int)pos; |
+ if (pos == end) dec->state_ = READ_DATA; |
+ } |
+ return ok; |
+} |
+ |
+static int DecodeImageData(VP8LDecoder* const dec, uint32_t* const data, |
+ int width, int height, int last_row, |
+ ProcessRowsFunc process_func) { |
+ int ok = 1; |
+ int row = dec->last_pixel_ / width; |
+ int col = dec->last_pixel_ % width; |
+ VP8LBitReader* const br = &dec->br_; |
+ VP8LMetadata* const hdr = &dec->hdr_; |
+ HTreeGroup* htree_group = GetHtreeGroupForPos(hdr, col, row); |
+ uint32_t* src = data + dec->last_pixel_; |
+ uint32_t* last_cached = src; |
+ uint32_t* const src_end = data + width * height; // End of data |
+ uint32_t* const src_last = data + width * last_row; // Last pixel to decode |
+ const int len_code_limit = NUM_LITERAL_CODES + NUM_LENGTH_CODES; |
+ const int color_cache_limit = len_code_limit + hdr->color_cache_size_; |
+ VP8LColorCache* const color_cache = |
+ (hdr->color_cache_size_ > 0) ? &hdr->color_cache_ : NULL; |
+ const int mask = hdr->huffman_mask_; |
+ assert(htree_group != NULL); |
+ assert(src < src_end); |
+ assert(src_last <= src_end); |
+ |
+ while (!br->eos_ && src < src_last) { |
+ int code; |
+ // Only update when changing tile. Note we could use this test: |
+ // if "((((prev_col ^ col) | prev_row ^ row)) > mask)" -> tile changed |
+ // but that's actually slower and needs storing the previous col/row. |
+ if ((col & mask) == 0) { |
+ htree_group = GetHtreeGroupForPos(hdr, col, row); |
+ } |
+ VP8LFillBitWindow(br); |
+ code = ReadSymbol(&htree_group->htrees_[GREEN], br); |
+ if (code < NUM_LITERAL_CODES) { // Literal |
+ int red, green, blue, alpha; |
+ red = ReadSymbol(&htree_group->htrees_[RED], br); |
+ green = code; |
+ VP8LFillBitWindow(br); |
+ blue = ReadSymbol(&htree_group->htrees_[BLUE], br); |
+ alpha = ReadSymbol(&htree_group->htrees_[ALPHA], br); |
+ *src = ((uint32_t)alpha << 24) | (red << 16) | (green << 8) | blue; |
+ AdvanceByOne: |
+ ++src; |
+ ++col; |
+ if (col >= width) { |
+ col = 0; |
+ ++row; |
+ if ((row % NUM_ARGB_CACHE_ROWS == 0) && (process_func != NULL)) { |
+ process_func(dec, row); |
+ } |
+ if (color_cache != NULL) { |
+ while (last_cached < src) { |
+ VP8LColorCacheInsert(color_cache, *last_cached++); |
+ } |
+ } |
+ } |
+ } else if (code < len_code_limit) { // Backward reference |
+ int dist_code, dist; |
+ const int length_sym = code - NUM_LITERAL_CODES; |
+ const int length = GetCopyLength(length_sym, br); |
+ const int dist_symbol = ReadSymbol(&htree_group->htrees_[DIST], br); |
+ VP8LFillBitWindow(br); |
+ dist_code = GetCopyDistance(dist_symbol, br); |
+ dist = PlaneCodeToDistance(width, dist_code); |
+ if (src - data < (ptrdiff_t)dist || src_end - src < (ptrdiff_t)length) { |
+ ok = 0; |
+ goto End; |
+ } else { |
+ int i; |
+ for (i = 0; i < length; ++i) src[i] = src[i - dist]; |
+ src += length; |
+ } |
+ col += length; |
+ while (col >= width) { |
+ col -= width; |
+ ++row; |
+ if ((row % NUM_ARGB_CACHE_ROWS == 0) && (process_func != NULL)) { |
+ process_func(dec, row); |
+ } |
+ } |
+ if (src < src_end) { |
+ if (col & mask) htree_group = GetHtreeGroupForPos(hdr, col, row); |
+ if (color_cache != NULL) { |
+ while (last_cached < src) { |
+ VP8LColorCacheInsert(color_cache, *last_cached++); |
+ } |
+ } |
+ } |
+ } else if (code < color_cache_limit) { // Color cache |
+ const int key = code - len_code_limit; |
+ assert(color_cache != NULL); |
+ while (last_cached < src) { |
+ VP8LColorCacheInsert(color_cache, *last_cached++); |
+ } |
+ *src = VP8LColorCacheLookup(color_cache, key); |
+ goto AdvanceByOne; |
+ } else { // Not reached |
+ ok = 0; |
+ goto End; |
+ } |
+ assert(br->eos_ == VP8LIsEndOfStream(br)); |
+ ok = !br->error_; |
+ if (!ok) goto End; |
+ } |
+ // Process the remaining rows corresponding to last row-block. |
+ if (process_func != NULL) process_func(dec, row); |
+ |
+ End: |
+ if (br->error_ || !ok || (br->eos_ && src < src_end)) { |
+ ok = 0; |
+ dec->status_ = br->eos_ ? VP8_STATUS_SUSPENDED |
+ : VP8_STATUS_BITSTREAM_ERROR; |
+ } else { |
+ dec->last_pixel_ = (int)(src - data); |
+ if (src == src_end) dec->state_ = READ_DATA; |
+ } |
+ return ok; |
+} |
+ |
+// ----------------------------------------------------------------------------- |
+// VP8LTransform |
+ |
+static void ClearTransform(VP8LTransform* const transform) { |
+ WebPSafeFree(transform->data_); |
+ transform->data_ = NULL; |
+} |
+ |
+// For security reason, we need to remap the color map to span |
+// the total possible bundled values, and not just the num_colors. |
+static int ExpandColorMap(int num_colors, VP8LTransform* const transform) { |
+ int i; |
+ const int final_num_colors = 1 << (8 >> transform->bits_); |
+ uint32_t* const new_color_map = |
+ (uint32_t*)WebPSafeMalloc((uint64_t)final_num_colors, |
+ sizeof(*new_color_map)); |
+ if (new_color_map == NULL) { |
+ return 0; |
+ } else { |
+ uint8_t* const data = (uint8_t*)transform->data_; |
+ uint8_t* const new_data = (uint8_t*)new_color_map; |
+ new_color_map[0] = transform->data_[0]; |
+ for (i = 4; i < 4 * num_colors; ++i) { |
+ // Equivalent to AddPixelEq(), on a byte-basis. |
+ new_data[i] = (data[i] + new_data[i - 4]) & 0xff; |
+ } |
+ for (; i < 4 * final_num_colors; ++i) |
+ new_data[i] = 0; // black tail. |
+ WebPSafeFree(transform->data_); |
+ transform->data_ = new_color_map; |
+ } |
+ return 1; |
+} |
+ |
+static int ReadTransform(int* const xsize, int const* ysize, |
+ VP8LDecoder* const dec) { |
+ int ok = 1; |
+ VP8LBitReader* const br = &dec->br_; |
+ VP8LTransform* transform = &dec->transforms_[dec->next_transform_]; |
+ const VP8LImageTransformType type = |
+ (VP8LImageTransformType)VP8LReadBits(br, 2); |
+ |
+ // Each transform type can only be present once in the stream. |
+ if (dec->transforms_seen_ & (1U << type)) { |
+ return 0; // Already there, let's not accept the second same transform. |
+ } |
+ dec->transforms_seen_ |= (1U << type); |
+ |
+ transform->type_ = type; |
+ transform->xsize_ = *xsize; |
+ transform->ysize_ = *ysize; |
+ transform->data_ = NULL; |
+ ++dec->next_transform_; |
+ assert(dec->next_transform_ <= NUM_TRANSFORMS); |
+ |
+ switch (type) { |
+ case PREDICTOR_TRANSFORM: |
+ case CROSS_COLOR_TRANSFORM: |
+ transform->bits_ = VP8LReadBits(br, 3) + 2; |
+ ok = DecodeImageStream(VP8LSubSampleSize(transform->xsize_, |
+ transform->bits_), |
+ VP8LSubSampleSize(transform->ysize_, |
+ transform->bits_), |
+ 0, dec, &transform->data_); |
+ break; |
+ case COLOR_INDEXING_TRANSFORM: { |
+ const int num_colors = VP8LReadBits(br, 8) + 1; |
+ const int bits = (num_colors > 16) ? 0 |
+ : (num_colors > 4) ? 1 |
+ : (num_colors > 2) ? 2 |
+ : 3; |
+ *xsize = VP8LSubSampleSize(transform->xsize_, bits); |
+ transform->bits_ = bits; |
+ ok = DecodeImageStream(num_colors, 1, 0, dec, &transform->data_); |
+ ok = ok && ExpandColorMap(num_colors, transform); |
+ break; |
+ } |
+ case SUBTRACT_GREEN: |
+ break; |
+ default: |
+ assert(0); // can't happen |
+ break; |
+ } |
+ |
+ return ok; |
+} |
+ |
+// ----------------------------------------------------------------------------- |
+// VP8LMetadata |
+ |
+static void InitMetadata(VP8LMetadata* const hdr) { |
+ assert(hdr); |
+ memset(hdr, 0, sizeof(*hdr)); |
+} |
+ |
+static void ClearMetadata(VP8LMetadata* const hdr) { |
+ assert(hdr); |
+ |
+ WebPSafeFree(hdr->huffman_image_); |
+ VP8LHtreeGroupsFree(hdr->htree_groups_, hdr->num_htree_groups_); |
+ VP8LColorCacheClear(&hdr->color_cache_); |
+ InitMetadata(hdr); |
+} |
+ |
+// ----------------------------------------------------------------------------- |
+// VP8LDecoder |
+ |
+VP8LDecoder* VP8LNew(void) { |
+ VP8LDecoder* const dec = (VP8LDecoder*)WebPSafeCalloc(1ULL, sizeof(*dec)); |
+ if (dec == NULL) return NULL; |
+ dec->status_ = VP8_STATUS_OK; |
+ dec->action_ = READ_DIM; |
+ dec->state_ = READ_DIM; |
+ |
+ VP8LDspInit(); // Init critical function pointers. |
+ |
+ return dec; |
+} |
+ |
+void VP8LClear(VP8LDecoder* const dec) { |
+ int i; |
+ if (dec == NULL) return; |
+ ClearMetadata(&dec->hdr_); |
+ |
+ WebPSafeFree(dec->pixels_); |
+ dec->pixels_ = NULL; |
+ for (i = 0; i < dec->next_transform_; ++i) { |
+ ClearTransform(&dec->transforms_[i]); |
+ } |
+ dec->next_transform_ = 0; |
+ dec->transforms_seen_ = 0; |
+ |
+ WebPSafeFree(dec->rescaler_memory); |
+ dec->rescaler_memory = NULL; |
+ |
+ dec->output_ = NULL; // leave no trace behind |
+} |
+ |
+void VP8LDelete(VP8LDecoder* const dec) { |
+ if (dec != NULL) { |
+ VP8LClear(dec); |
+ WebPSafeFree(dec); |
+ } |
+} |
+ |
+static void UpdateDecoder(VP8LDecoder* const dec, int width, int height) { |
+ VP8LMetadata* const hdr = &dec->hdr_; |
+ const int num_bits = hdr->huffman_subsample_bits_; |
+ dec->width_ = width; |
+ dec->height_ = height; |
+ |
+ hdr->huffman_xsize_ = VP8LSubSampleSize(width, num_bits); |
+ hdr->huffman_mask_ = (num_bits == 0) ? ~0 : (1 << num_bits) - 1; |
+} |
+ |
+static int DecodeImageStream(int xsize, int ysize, |
+ int is_level0, |
+ VP8LDecoder* const dec, |
+ uint32_t** const decoded_data) { |
+ int ok = 1; |
+ int transform_xsize = xsize; |
+ int transform_ysize = ysize; |
+ VP8LBitReader* const br = &dec->br_; |
+ VP8LMetadata* const hdr = &dec->hdr_; |
+ uint32_t* data = NULL; |
+ int color_cache_bits = 0; |
+ |
+ // Read the transforms (may recurse). |
+ if (is_level0) { |
+ while (ok && VP8LReadBits(br, 1)) { |
+ ok = ReadTransform(&transform_xsize, &transform_ysize, dec); |
+ } |
+ } |
+ |
+ // Color cache |
+ if (ok && VP8LReadBits(br, 1)) { |
+ color_cache_bits = VP8LReadBits(br, 4); |
+ ok = (color_cache_bits >= 1 && color_cache_bits <= MAX_CACHE_BITS); |
+ if (!ok) { |
+ dec->status_ = VP8_STATUS_BITSTREAM_ERROR; |
+ goto End; |
+ } |
+ } |
+ |
+ // Read the Huffman codes (may recurse). |
+ ok = ok && ReadHuffmanCodes(dec, transform_xsize, transform_ysize, |
+ color_cache_bits, is_level0); |
+ if (!ok) { |
+ dec->status_ = VP8_STATUS_BITSTREAM_ERROR; |
+ goto End; |
+ } |
+ |
+ // Finish setting up the color-cache |
+ if (color_cache_bits > 0) { |
+ hdr->color_cache_size_ = 1 << color_cache_bits; |
+ if (!VP8LColorCacheInit(&hdr->color_cache_, color_cache_bits)) { |
+ dec->status_ = VP8_STATUS_OUT_OF_MEMORY; |
+ ok = 0; |
+ goto End; |
+ } |
+ } else { |
+ hdr->color_cache_size_ = 0; |
+ } |
+ UpdateDecoder(dec, transform_xsize, transform_ysize); |
+ |
+ if (is_level0) { // level 0 complete |
+ dec->state_ = READ_HDR; |
+ goto End; |
+ } |
+ |
+ { |
+ const uint64_t total_size = (uint64_t)transform_xsize * transform_ysize; |
+ data = (uint32_t*)WebPSafeMalloc(total_size, sizeof(*data)); |
+ if (data == NULL) { |
+ dec->status_ = VP8_STATUS_OUT_OF_MEMORY; |
+ ok = 0; |
+ goto End; |
+ } |
+ } |
+ |
+ // Use the Huffman trees to decode the LZ77 encoded data. |
+ ok = DecodeImageData(dec, data, transform_xsize, transform_ysize, |
+ transform_ysize, NULL); |
+ ok = ok && !br->error_; |
+ |
+ End: |
+ |
+ if (!ok) { |
+ WebPSafeFree(data); |
+ ClearMetadata(hdr); |
+ // If not enough data (br.eos_) resulted in BIT_STREAM_ERROR, update the |
+ // status appropriately. |
+ if (dec->status_ == VP8_STATUS_BITSTREAM_ERROR && dec->br_.eos_) { |
+ dec->status_ = VP8_STATUS_SUSPENDED; |
+ } |
+ } else { |
+ if (decoded_data != NULL) { |
+ *decoded_data = data; |
+ } else { |
+ // We allocate image data in this function only for transforms. At level 0 |
+ // (that is: not the transforms), we shouldn't have allocated anything. |
+ assert(data == NULL); |
+ assert(is_level0); |
+ } |
+ dec->last_pixel_ = 0; // Reset for future DECODE_DATA_FUNC() calls. |
+ if (!is_level0) ClearMetadata(hdr); // Clean up temporary data behind. |
+ } |
+ return ok; |
+} |
+ |
+//------------------------------------------------------------------------------ |
+// Allocate internal buffers dec->pixels_ and dec->argb_cache_. |
+static int AllocateInternalBuffers32b(VP8LDecoder* const dec, int final_width) { |
+ const uint64_t num_pixels = (uint64_t)dec->width_ * dec->height_; |
+ // Scratch buffer corresponding to top-prediction row for transforming the |
+ // first row in the row-blocks. Not needed for paletted alpha. |
+ const uint64_t cache_top_pixels = (uint16_t)final_width; |
+ // Scratch buffer for temporary BGRA storage. Not needed for paletted alpha. |
+ const uint64_t cache_pixels = (uint64_t)final_width * NUM_ARGB_CACHE_ROWS; |
+ const uint64_t total_num_pixels = |
+ num_pixels + cache_top_pixels + cache_pixels; |
+ |
+ assert(dec->width_ <= final_width); |
+ dec->pixels_ = (uint32_t*)WebPSafeMalloc(total_num_pixels, sizeof(uint32_t)); |
+ if (dec->pixels_ == NULL) { |
+ dec->argb_cache_ = NULL; // for sanity check |
+ dec->status_ = VP8_STATUS_OUT_OF_MEMORY; |
+ return 0; |
+ } |
+ dec->argb_cache_ = dec->pixels_ + num_pixels + cache_top_pixels; |
+ return 1; |
+} |
+ |
+static int AllocateInternalBuffers8b(VP8LDecoder* const dec) { |
+ const uint64_t total_num_pixels = (uint64_t)dec->width_ * dec->height_; |
+ dec->argb_cache_ = NULL; // for sanity check |
+ dec->pixels_ = (uint32_t*)WebPSafeMalloc(total_num_pixels, sizeof(uint8_t)); |
+ if (dec->pixels_ == NULL) { |
+ dec->status_ = VP8_STATUS_OUT_OF_MEMORY; |
+ return 0; |
+ } |
+ return 1; |
+} |
+ |
+//------------------------------------------------------------------------------ |
+ |
+// Special row-processing that only stores the alpha data. |
+static void ExtractAlphaRows(VP8LDecoder* const dec, int row) { |
+ const int num_rows = row - dec->last_row_; |
+ const uint32_t* const in = dec->pixels_ + dec->width_ * dec->last_row_; |
+ |
+ if (num_rows <= 0) return; // Nothing to be done. |
+ ApplyInverseTransforms(dec, num_rows, in); |
+ |
+ // Extract alpha (which is stored in the green plane). |
+ { |
+ const int width = dec->io_->width; // the final width (!= dec->width_) |
+ const int cache_pixs = width * num_rows; |
+ uint8_t* const dst = (uint8_t*)dec->io_->opaque + width * dec->last_row_; |
+ const uint32_t* const src = dec->argb_cache_; |
+ int i; |
+ for (i = 0; i < cache_pixs; ++i) dst[i] = (src[i] >> 8) & 0xff; |
+ } |
+ dec->last_row_ = dec->last_out_row_ = row; |
+} |
+ |
+int VP8LDecodeAlphaHeader(ALPHDecoder* const alph_dec, |
+ const uint8_t* const data, size_t data_size, |
+ uint8_t* const output) { |
+ int ok = 0; |
+ VP8LDecoder* dec; |
+ VP8Io* io; |
+ assert(alph_dec != NULL); |
+ alph_dec->vp8l_dec_ = VP8LNew(); |
+ if (alph_dec->vp8l_dec_ == NULL) return 0; |
+ dec = alph_dec->vp8l_dec_; |
+ |
+ dec->width_ = alph_dec->width_; |
+ dec->height_ = alph_dec->height_; |
+ dec->io_ = &alph_dec->io_; |
+ io = dec->io_; |
+ |
+ VP8InitIo(io); |
+ WebPInitCustomIo(NULL, io); // Just a sanity Init. io won't be used. |
+ io->opaque = output; |
+ io->width = alph_dec->width_; |
+ io->height = alph_dec->height_; |
+ |
+ dec->status_ = VP8_STATUS_OK; |
+ VP8LInitBitReader(&dec->br_, data, data_size); |
+ |
+ dec->action_ = READ_HDR; |
+ if (!DecodeImageStream(alph_dec->width_, alph_dec->height_, 1, dec, NULL)) { |
+ goto Err; |
+ } |
+ |
+ // Special case: if alpha data uses only the color indexing transform and |
+ // doesn't use color cache (a frequent case), we will use DecodeAlphaData() |
+ // method that only needs allocation of 1 byte per pixel (alpha channel). |
+ if (dec->next_transform_ == 1 && |
+ dec->transforms_[0].type_ == COLOR_INDEXING_TRANSFORM && |
+ Is8bOptimizable(&dec->hdr_)) { |
+ alph_dec->use_8b_decode = 1; |
+ ok = AllocateInternalBuffers8b(dec); |
+ } else { |
+ // Allocate internal buffers (note that dec->width_ may have changed here). |
+ alph_dec->use_8b_decode = 0; |
+ ok = AllocateInternalBuffers32b(dec, alph_dec->width_); |
+ } |
+ |
+ if (!ok) goto Err; |
+ |
+ dec->action_ = READ_DATA; |
+ return 1; |
+ |
+ Err: |
+ VP8LDelete(alph_dec->vp8l_dec_); |
+ alph_dec->vp8l_dec_ = NULL; |
+ return 0; |
+} |
+ |
+int VP8LDecodeAlphaImageStream(ALPHDecoder* const alph_dec, int last_row) { |
+ VP8LDecoder* const dec = alph_dec->vp8l_dec_; |
+ assert(dec != NULL); |
+ assert(dec->action_ == READ_DATA); |
+ assert(last_row <= dec->height_); |
+ |
+ if (dec->last_pixel_ == dec->width_ * dec->height_) { |
+ return 1; // done |
+ } |
+ |
+ // Decode (with special row processing). |
+ return alph_dec->use_8b_decode ? |
+ DecodeAlphaData(dec, (uint8_t*)dec->pixels_, dec->width_, dec->height_, |
+ last_row) : |
+ DecodeImageData(dec, dec->pixels_, dec->width_, dec->height_, |
+ last_row, ExtractAlphaRows); |
+} |
+ |
+//------------------------------------------------------------------------------ |
+ |
+int VP8LDecodeHeader(VP8LDecoder* const dec, VP8Io* const io) { |
+ int width, height, has_alpha; |
+ |
+ if (dec == NULL) return 0; |
+ if (io == NULL) { |
+ dec->status_ = VP8_STATUS_INVALID_PARAM; |
+ return 0; |
+ } |
+ |
+ dec->io_ = io; |
+ dec->status_ = VP8_STATUS_OK; |
+ VP8LInitBitReader(&dec->br_, io->data, io->data_size); |
+ if (!ReadImageInfo(&dec->br_, &width, &height, &has_alpha)) { |
+ dec->status_ = VP8_STATUS_BITSTREAM_ERROR; |
+ goto Error; |
+ } |
+ dec->state_ = READ_DIM; |
+ io->width = width; |
+ io->height = height; |
+ |
+ dec->action_ = READ_HDR; |
+ if (!DecodeImageStream(width, height, 1, dec, NULL)) goto Error; |
+ return 1; |
+ |
+ Error: |
+ VP8LClear(dec); |
+ assert(dec->status_ != VP8_STATUS_OK); |
+ return 0; |
+} |
+ |
+int VP8LDecodeImage(VP8LDecoder* const dec) { |
+ VP8Io* io = NULL; |
+ WebPDecParams* params = NULL; |
+ |
+ // Sanity checks. |
+ if (dec == NULL) return 0; |
+ |
+ dec->status_ = VP8_STATUS_BITSTREAM_ERROR; |
+ assert(dec->hdr_.htree_groups_ != NULL); |
+ assert(dec->hdr_.num_htree_groups_ > 0); |
+ |
+ io = dec->io_; |
+ assert(io != NULL); |
+ params = (WebPDecParams*)io->opaque; |
+ assert(params != NULL); |
+ dec->output_ = params->output; |
+ assert(dec->output_ != NULL); |
+ |
+ // Initialization. |
+ if (!WebPIoInitFromOptions(params->options, io, MODE_BGRA)) { |
+ dec->status_ = VP8_STATUS_INVALID_PARAM; |
+ goto Err; |
+ } |
+ |
+ if (!AllocateInternalBuffers32b(dec, io->width)) goto Err; |
+ |
+ if (io->use_scaling && !AllocateAndInitRescaler(dec, io)) goto Err; |
+ |
+ if (io->use_scaling || WebPIsPremultipliedMode(dec->output_->colorspace)) { |
+ // need the alpha-multiply functions for premultiplied output or rescaling |
+ WebPInitAlphaProcessing(); |
+ } |
+ |
+ // Decode. |
+ dec->action_ = READ_DATA; |
+ if (!DecodeImageData(dec, dec->pixels_, dec->width_, dec->height_, |
+ dec->height_, ProcessRows)) { |
+ goto Err; |
+ } |
+ |
+ // Cleanup. |
+ params->last_y = dec->last_out_row_; |
+ VP8LClear(dec); |
+ return 1; |
+ |
+ Err: |
+ VP8LClear(dec); |
+ assert(dec->status_ != VP8_STATUS_OK); |
+ return 0; |
+} |
+ |
+//------------------------------------------------------------------------------ |