Index: third_party/libwebp/enc/picture_csp.c |
diff --git a/third_party/libwebp/enc/picture_csp.c b/third_party/libwebp/enc/picture_csp.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..7875f625b7c36368bb2787d6f5e271a37764edc2 |
--- /dev/null |
+++ b/third_party/libwebp/enc/picture_csp.c |
@@ -0,0 +1,1114 @@ |
+// Copyright 2014 Google Inc. All Rights Reserved. |
+// |
+// Use of this source code is governed by a BSD-style license |
+// that can be found in the COPYING file in the root of the source |
+// tree. An additional intellectual property rights grant can be found |
+// in the file PATENTS. All contributing project authors may |
+// be found in the AUTHORS file in the root of the source tree. |
+// ----------------------------------------------------------------------------- |
+// |
+// WebPPicture utils for colorspace conversion |
+// |
+// Author: Skal (pascal.massimino@gmail.com) |
+ |
+#include <assert.h> |
+#include <stdlib.h> |
+#include <math.h> |
+ |
+#include "./vp8enci.h" |
+#include "../utils/random.h" |
+#include "../utils/utils.h" |
+#include "../dsp/yuv.h" |
+ |
+// Uncomment to disable gamma-compression during RGB->U/V averaging |
+#define USE_GAMMA_COMPRESSION |
+ |
+// If defined, use table to compute x / alpha. |
+#define USE_INVERSE_ALPHA_TABLE |
+ |
+static const union { |
+ uint32_t argb; |
+ uint8_t bytes[4]; |
+} test_endian = { 0xff000000u }; |
+#define ALPHA_IS_LAST (test_endian.bytes[3] == 0xff) |
+ |
+static WEBP_INLINE uint32_t MakeARGB32(int a, int r, int g, int b) { |
+ return (((uint32_t)a << 24) | (r << 16) | (g << 8) | b); |
+} |
+ |
+//------------------------------------------------------------------------------ |
+// Detection of non-trivial transparency |
+ |
+// Returns true if alpha[] has non-0xff values. |
+static int CheckNonOpaque(const uint8_t* alpha, int width, int height, |
+ int x_step, int y_step) { |
+ if (alpha == NULL) return 0; |
+ while (height-- > 0) { |
+ int x; |
+ for (x = 0; x < width * x_step; x += x_step) { |
+ if (alpha[x] != 0xff) return 1; // TODO(skal): check 4/8 bytes at a time. |
+ } |
+ alpha += y_step; |
+ } |
+ return 0; |
+} |
+ |
+// Checking for the presence of non-opaque alpha. |
+int WebPPictureHasTransparency(const WebPPicture* picture) { |
+ if (picture == NULL) return 0; |
+ if (!picture->use_argb) { |
+ return CheckNonOpaque(picture->a, picture->width, picture->height, |
+ 1, picture->a_stride); |
+ } else { |
+ int x, y; |
+ const uint32_t* argb = picture->argb; |
+ if (argb == NULL) return 0; |
+ for (y = 0; y < picture->height; ++y) { |
+ for (x = 0; x < picture->width; ++x) { |
+ if (argb[x] < 0xff000000u) return 1; // test any alpha values != 0xff |
+ } |
+ argb += picture->argb_stride; |
+ } |
+ } |
+ return 0; |
+} |
+ |
+//------------------------------------------------------------------------------ |
+// Code for gamma correction |
+ |
+#if defined(USE_GAMMA_COMPRESSION) |
+ |
+// gamma-compensates loss of resolution during chroma subsampling |
+#define kGamma 0.80 // for now we use a different gamma value than kGammaF |
+#define kGammaFix 12 // fixed-point precision for linear values |
+#define kGammaScale ((1 << kGammaFix) - 1) |
+#define kGammaTabFix 7 // fixed-point fractional bits precision |
+#define kGammaTabScale (1 << kGammaTabFix) |
+#define kGammaTabRounder (kGammaTabScale >> 1) |
+#define kGammaTabSize (1 << (kGammaFix - kGammaTabFix)) |
+ |
+static int kLinearToGammaTab[kGammaTabSize + 1]; |
+static uint16_t kGammaToLinearTab[256]; |
+static int kGammaTablesOk = 0; |
+ |
+static void InitGammaTables(void) { |
+ if (!kGammaTablesOk) { |
+ int v; |
+ const double scale = (double)(1 << kGammaTabFix) / kGammaScale; |
+ const double norm = 1. / 255.; |
+ for (v = 0; v <= 255; ++v) { |
+ kGammaToLinearTab[v] = |
+ (uint16_t)(pow(norm * v, kGamma) * kGammaScale + .5); |
+ } |
+ for (v = 0; v <= kGammaTabSize; ++v) { |
+ kLinearToGammaTab[v] = (int)(255. * pow(scale * v, 1. / kGamma) + .5); |
+ } |
+ kGammaTablesOk = 1; |
+ } |
+} |
+ |
+static WEBP_INLINE uint32_t GammaToLinear(uint8_t v) { |
+ return kGammaToLinearTab[v]; |
+} |
+ |
+static WEBP_INLINE int Interpolate(int v) { |
+ const int tab_pos = v >> (kGammaTabFix + 2); // integer part |
+ const int x = v & ((kGammaTabScale << 2) - 1); // fractional part |
+ const int v0 = kLinearToGammaTab[tab_pos]; |
+ const int v1 = kLinearToGammaTab[tab_pos + 1]; |
+ const int y = v1 * x + v0 * ((kGammaTabScale << 2) - x); // interpolate |
+ assert(tab_pos + 1 < kGammaTabSize + 1); |
+ return y; |
+} |
+ |
+// Convert a linear value 'v' to YUV_FIX+2 fixed-point precision |
+// U/V value, suitable for RGBToU/V calls. |
+static WEBP_INLINE int LinearToGamma(uint32_t base_value, int shift) { |
+ const int y = Interpolate(base_value << shift); // final uplifted value |
+ return (y + kGammaTabRounder) >> kGammaTabFix; // descale |
+} |
+ |
+#else |
+ |
+static void InitGammaTables(void) {} |
+static WEBP_INLINE uint32_t GammaToLinear(uint8_t v) { return v; } |
+static WEBP_INLINE int LinearToGamma(uint32_t base_value, int shift) { |
+ return (int)(base_value << shift); |
+} |
+ |
+#endif // USE_GAMMA_COMPRESSION |
+ |
+//------------------------------------------------------------------------------ |
+// RGB -> YUV conversion |
+ |
+static int RGBToY(int r, int g, int b, VP8Random* const rg) { |
+ return (rg == NULL) ? VP8RGBToY(r, g, b, YUV_HALF) |
+ : VP8RGBToY(r, g, b, VP8RandomBits(rg, YUV_FIX)); |
+} |
+ |
+static int RGBToU(int r, int g, int b, VP8Random* const rg) { |
+ return (rg == NULL) ? VP8RGBToU(r, g, b, YUV_HALF << 2) |
+ : VP8RGBToU(r, g, b, VP8RandomBits(rg, YUV_FIX + 2)); |
+} |
+ |
+static int RGBToV(int r, int g, int b, VP8Random* const rg) { |
+ return (rg == NULL) ? VP8RGBToV(r, g, b, YUV_HALF << 2) |
+ : VP8RGBToV(r, g, b, VP8RandomBits(rg, YUV_FIX + 2)); |
+} |
+ |
+//------------------------------------------------------------------------------ |
+// Smart RGB->YUV conversion |
+ |
+static const int kNumIterations = 6; |
+static const int kMinDimensionIterativeConversion = 4; |
+ |
+// We use a-priori a different precision for storing RGB and Y/W components |
+// We could use YFIX=0 and only uint8_t for fixed_y_t, but it produces some |
+// banding sometimes. Better use extra precision. |
+// TODO(skal): cleanup once TFIX/YFIX values are fixed. |
+ |
+typedef int16_t fixed_t; // signed type with extra TFIX precision for UV |
+typedef uint16_t fixed_y_t; // unsigned type with extra YFIX precision for W |
+#define TFIX 6 // fixed-point precision of RGB |
+#define YFIX 2 // fixed point precision for Y/W |
+ |
+#define THALF ((1 << TFIX) >> 1) |
+#define MAX_Y_T ((256 << YFIX) - 1) |
+#define TROUNDER (1 << (YUV_FIX + TFIX - 1)) |
+ |
+#if defined(USE_GAMMA_COMPRESSION) |
+ |
+// float variant of gamma-correction |
+// We use tables of different size and precision, along with a 'real-world' |
+// Gamma value close to ~2. |
+#define kGammaF 2.2 |
+static float kGammaToLinearTabF[MAX_Y_T + 1]; // size scales with Y_FIX |
+static float kLinearToGammaTabF[kGammaTabSize + 2]; |
+static int kGammaTablesFOk = 0; |
+ |
+static void InitGammaTablesF(void) { |
+ if (!kGammaTablesFOk) { |
+ int v; |
+ const double norm = 1. / MAX_Y_T; |
+ const double scale = 1. / kGammaTabSize; |
+ for (v = 0; v <= MAX_Y_T; ++v) { |
+ kGammaToLinearTabF[v] = (float)pow(norm * v, kGammaF); |
+ } |
+ for (v = 0; v <= kGammaTabSize; ++v) { |
+ kLinearToGammaTabF[v] = (float)(MAX_Y_T * pow(scale * v, 1. / kGammaF)); |
+ } |
+ // to prevent small rounding errors to cause read-overflow: |
+ kLinearToGammaTabF[kGammaTabSize + 1] = kLinearToGammaTabF[kGammaTabSize]; |
+ kGammaTablesFOk = 1; |
+ } |
+} |
+ |
+static WEBP_INLINE float GammaToLinearF(int v) { |
+ return kGammaToLinearTabF[v]; |
+} |
+ |
+static WEBP_INLINE float LinearToGammaF(float value) { |
+ const float v = value * kGammaTabSize; |
+ const int tab_pos = (int)v; |
+ const float x = v - (float)tab_pos; // fractional part |
+ const float v0 = kLinearToGammaTabF[tab_pos + 0]; |
+ const float v1 = kLinearToGammaTabF[tab_pos + 1]; |
+ const float y = v1 * x + v0 * (1.f - x); // interpolate |
+ return y; |
+} |
+ |
+#else |
+ |
+static void InitGammaTablesF(void) {} |
+static WEBP_INLINE float GammaToLinearF(int v) { |
+ const float norm = 1.f / MAX_Y_T; |
+ return norm * v; |
+} |
+static WEBP_INLINE float LinearToGammaF(float value) { |
+ return MAX_Y_T * value; |
+} |
+ |
+#endif // USE_GAMMA_COMPRESSION |
+ |
+//------------------------------------------------------------------------------ |
+ |
+// precision: YFIX -> TFIX |
+static WEBP_INLINE int FixedYToW(int v) { |
+#if TFIX == YFIX |
+ return v; |
+#elif TFIX >= YFIX |
+ return v << (TFIX - YFIX); |
+#else |
+ return v >> (YFIX - TFIX); |
+#endif |
+} |
+ |
+static WEBP_INLINE int FixedWToY(int v) { |
+#if TFIX == YFIX |
+ return v; |
+#elif YFIX >= TFIX |
+ return v << (YFIX - TFIX); |
+#else |
+ return v >> (TFIX - YFIX); |
+#endif |
+} |
+ |
+static uint8_t clip_8b(fixed_t v) { |
+ return (!(v & ~0xff)) ? (uint8_t)v : (v < 0) ? 0u : 255u; |
+} |
+ |
+static fixed_y_t clip_y(int y) { |
+ return (!(y & ~MAX_Y_T)) ? (fixed_y_t)y : (y < 0) ? 0 : MAX_Y_T; |
+} |
+ |
+// precision: TFIX -> YFIX |
+static fixed_y_t clip_fixed_t(fixed_t v) { |
+ const int y = FixedWToY(v); |
+ const fixed_y_t w = clip_y(y); |
+ return w; |
+} |
+ |
+//------------------------------------------------------------------------------ |
+ |
+static int RGBToGray(int r, int g, int b) { |
+ const int luma = 19595 * r + 38470 * g + 7471 * b + YUV_HALF; |
+ return (luma >> YUV_FIX); |
+} |
+ |
+static float RGBToGrayF(float r, float g, float b) { |
+ return 0.299f * r + 0.587f * g + 0.114f * b; |
+} |
+ |
+static float ScaleDown(int a, int b, int c, int d) { |
+ const float A = GammaToLinearF(a); |
+ const float B = GammaToLinearF(b); |
+ const float C = GammaToLinearF(c); |
+ const float D = GammaToLinearF(d); |
+ return LinearToGammaF(0.25f * (A + B + C + D)); |
+} |
+ |
+static WEBP_INLINE void UpdateW(const fixed_y_t* src, fixed_y_t* dst, int len) { |
+ while (len-- > 0) { |
+ const float R = GammaToLinearF(src[0]); |
+ const float G = GammaToLinearF(src[1]); |
+ const float B = GammaToLinearF(src[2]); |
+ const float Y = RGBToGrayF(R, G, B); |
+ *dst++ = (fixed_y_t)(LinearToGammaF(Y) + .5); |
+ src += 3; |
+ } |
+} |
+ |
+static WEBP_INLINE void UpdateChroma(const fixed_y_t* src1, |
+ const fixed_y_t* src2, |
+ fixed_t* dst, fixed_y_t* tmp, int len) { |
+ while (len--> 0) { |
+ const float r = ScaleDown(src1[0], src1[3], src2[0], src2[3]); |
+ const float g = ScaleDown(src1[1], src1[4], src2[1], src2[4]); |
+ const float b = ScaleDown(src1[2], src1[5], src2[2], src2[5]); |
+ const float W = RGBToGrayF(r, g, b); |
+ dst[0] = (fixed_t)FixedYToW((int)(r - W)); |
+ dst[1] = (fixed_t)FixedYToW((int)(g - W)); |
+ dst[2] = (fixed_t)FixedYToW((int)(b - W)); |
+ dst += 3; |
+ src1 += 6; |
+ src2 += 6; |
+ if (tmp != NULL) { |
+ tmp[0] = tmp[1] = clip_y((int)(W + .5)); |
+ tmp += 2; |
+ } |
+ } |
+} |
+ |
+//------------------------------------------------------------------------------ |
+ |
+static WEBP_INLINE int Filter(const fixed_t* const A, const fixed_t* const B, |
+ int rightwise) { |
+ int v; |
+ if (!rightwise) { |
+ v = (A[0] * 9 + A[-3] * 3 + B[0] * 3 + B[-3]); |
+ } else { |
+ v = (A[0] * 9 + A[+3] * 3 + B[0] * 3 + B[+3]); |
+ } |
+ return (v + 8) >> 4; |
+} |
+ |
+static WEBP_INLINE int Filter2(int A, int B) { return (A * 3 + B + 2) >> 2; } |
+ |
+//------------------------------------------------------------------------------ |
+ |
+// 8bit -> YFIX |
+static WEBP_INLINE fixed_y_t UpLift(uint8_t a) { |
+ return ((fixed_y_t)a << YFIX) | (1 << (YFIX - 1)); |
+} |
+ |
+static void ImportOneRow(const uint8_t* const r_ptr, |
+ const uint8_t* const g_ptr, |
+ const uint8_t* const b_ptr, |
+ int step, |
+ int pic_width, |
+ fixed_y_t* const dst) { |
+ int i; |
+ for (i = 0; i < pic_width; ++i) { |
+ const int off = i * step; |
+ dst[3 * i + 0] = UpLift(r_ptr[off]); |
+ dst[3 * i + 1] = UpLift(g_ptr[off]); |
+ dst[3 * i + 2] = UpLift(b_ptr[off]); |
+ } |
+ if (pic_width & 1) { // replicate rightmost pixel |
+ memcpy(dst + 3 * pic_width, dst + 3 * (pic_width - 1), 3 * sizeof(*dst)); |
+ } |
+} |
+ |
+static void InterpolateTwoRows(const fixed_y_t* const best_y, |
+ const fixed_t* const prev_uv, |
+ const fixed_t* const cur_uv, |
+ const fixed_t* const next_uv, |
+ int w, |
+ fixed_y_t* const out1, |
+ fixed_y_t* const out2) { |
+ int i, k; |
+ { // special boundary case for i==0 |
+ const int W0 = FixedYToW(best_y[0]); |
+ const int W1 = FixedYToW(best_y[w]); |
+ for (k = 0; k <= 2; ++k) { |
+ out1[k] = clip_fixed_t(Filter2(cur_uv[k], prev_uv[k]) + W0); |
+ out2[k] = clip_fixed_t(Filter2(cur_uv[k], next_uv[k]) + W1); |
+ } |
+ } |
+ for (i = 1; i < w - 1; ++i) { |
+ const int W0 = FixedYToW(best_y[i + 0]); |
+ const int W1 = FixedYToW(best_y[i + w]); |
+ const int off = 3 * (i >> 1); |
+ for (k = 0; k <= 2; ++k) { |
+ const int tmp0 = Filter(cur_uv + off + k, prev_uv + off + k, i & 1); |
+ const int tmp1 = Filter(cur_uv + off + k, next_uv + off + k, i & 1); |
+ out1[3 * i + k] = clip_fixed_t(tmp0 + W0); |
+ out2[3 * i + k] = clip_fixed_t(tmp1 + W1); |
+ } |
+ } |
+ { // special boundary case for i == w - 1 |
+ const int W0 = FixedYToW(best_y[i + 0]); |
+ const int W1 = FixedYToW(best_y[i + w]); |
+ const int off = 3 * (i >> 1); |
+ for (k = 0; k <= 2; ++k) { |
+ out1[3 * i + k] = |
+ clip_fixed_t(Filter2(cur_uv[off + k], prev_uv[off + k]) + W0); |
+ out2[3 * i + k] = |
+ clip_fixed_t(Filter2(cur_uv[off + k], next_uv[off + k]) + W1); |
+ } |
+ } |
+} |
+ |
+static WEBP_INLINE uint8_t ConvertRGBToY(int r, int g, int b) { |
+ const int luma = 16839 * r + 33059 * g + 6420 * b + TROUNDER; |
+ return clip_8b(16 + (luma >> (YUV_FIX + TFIX))); |
+} |
+ |
+static WEBP_INLINE uint8_t ConvertRGBToU(int r, int g, int b) { |
+ const int u = -9719 * r - 19081 * g + 28800 * b + TROUNDER; |
+ return clip_8b(128 + (u >> (YUV_FIX + TFIX))); |
+} |
+ |
+static WEBP_INLINE uint8_t ConvertRGBToV(int r, int g, int b) { |
+ const int v = +28800 * r - 24116 * g - 4684 * b + TROUNDER; |
+ return clip_8b(128 + (v >> (YUV_FIX + TFIX))); |
+} |
+ |
+static int ConvertWRGBToYUV(const fixed_y_t* const best_y, |
+ const fixed_t* const best_uv, |
+ WebPPicture* const picture) { |
+ int i, j; |
+ const int w = (picture->width + 1) & ~1; |
+ const int h = (picture->height + 1) & ~1; |
+ const int uv_w = w >> 1; |
+ const int uv_h = h >> 1; |
+ for (j = 0; j < picture->height; ++j) { |
+ for (i = 0; i < picture->width; ++i) { |
+ const int off = 3 * ((i >> 1) + (j >> 1) * uv_w); |
+ const int off2 = i + j * picture->y_stride; |
+ const int W = FixedYToW(best_y[i + j * w]); |
+ const int r = best_uv[off + 0] + W; |
+ const int g = best_uv[off + 1] + W; |
+ const int b = best_uv[off + 2] + W; |
+ picture->y[off2] = ConvertRGBToY(r, g, b); |
+ } |
+ } |
+ for (j = 0; j < uv_h; ++j) { |
+ uint8_t* const dst_u = picture->u + j * picture->uv_stride; |
+ uint8_t* const dst_v = picture->v + j * picture->uv_stride; |
+ for (i = 0; i < uv_w; ++i) { |
+ const int off = 3 * (i + j * uv_w); |
+ const int r = best_uv[off + 0]; |
+ const int g = best_uv[off + 1]; |
+ const int b = best_uv[off + 2]; |
+ dst_u[i] = ConvertRGBToU(r, g, b); |
+ dst_v[i] = ConvertRGBToV(r, g, b); |
+ } |
+ } |
+ return 1; |
+} |
+ |
+//------------------------------------------------------------------------------ |
+// Main function |
+ |
+#define SAFE_ALLOC(W, H, T) ((T*)WebPSafeMalloc((W) * (H), sizeof(T))) |
+ |
+static int PreprocessARGB(const uint8_t* const r_ptr, |
+ const uint8_t* const g_ptr, |
+ const uint8_t* const b_ptr, |
+ int step, int rgb_stride, |
+ WebPPicture* const picture) { |
+ // we expand the right/bottom border if needed |
+ const int w = (picture->width + 1) & ~1; |
+ const int h = (picture->height + 1) & ~1; |
+ const int uv_w = w >> 1; |
+ const int uv_h = h >> 1; |
+ int i, j, iter; |
+ |
+ // TODO(skal): allocate one big memory chunk. But for now, it's easier |
+ // for valgrind debugging to have several chunks. |
+ fixed_y_t* const tmp_buffer = SAFE_ALLOC(w * 3, 2, fixed_y_t); // scratch |
+ fixed_y_t* const best_y = SAFE_ALLOC(w, h, fixed_y_t); |
+ fixed_y_t* const target_y = SAFE_ALLOC(w, h, fixed_y_t); |
+ fixed_y_t* const best_rgb_y = SAFE_ALLOC(w, 2, fixed_y_t); |
+ fixed_t* const best_uv = SAFE_ALLOC(uv_w * 3, uv_h, fixed_t); |
+ fixed_t* const target_uv = SAFE_ALLOC(uv_w * 3, uv_h, fixed_t); |
+ fixed_t* const best_rgb_uv = SAFE_ALLOC(uv_w * 3, 1, fixed_t); |
+ int ok; |
+ |
+ if (best_y == NULL || best_uv == NULL || |
+ target_y == NULL || target_uv == NULL || |
+ best_rgb_y == NULL || best_rgb_uv == NULL || |
+ tmp_buffer == NULL) { |
+ ok = WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY); |
+ goto End; |
+ } |
+ assert(picture->width >= kMinDimensionIterativeConversion); |
+ assert(picture->height >= kMinDimensionIterativeConversion); |
+ |
+ // Import RGB samples to W/RGB representation. |
+ for (j = 0; j < picture->height; j += 2) { |
+ const int is_last_row = (j == picture->height - 1); |
+ fixed_y_t* const src1 = tmp_buffer; |
+ fixed_y_t* const src2 = tmp_buffer + 3 * w; |
+ const int off1 = j * rgb_stride; |
+ const int off2 = off1 + rgb_stride; |
+ const int uv_off = (j >> 1) * 3 * uv_w; |
+ fixed_y_t* const dst_y = best_y + j * w; |
+ |
+ // prepare two rows of input |
+ ImportOneRow(r_ptr + off1, g_ptr + off1, b_ptr + off1, |
+ step, picture->width, src1); |
+ if (!is_last_row) { |
+ ImportOneRow(r_ptr + off2, g_ptr + off2, b_ptr + off2, |
+ step, picture->width, src2); |
+ } else { |
+ memcpy(src2, src1, 3 * w * sizeof(*src2)); |
+ } |
+ UpdateW(src1, target_y + (j + 0) * w, w); |
+ UpdateW(src2, target_y + (j + 1) * w, w); |
+ UpdateChroma(src1, src2, target_uv + uv_off, dst_y, uv_w); |
+ memcpy(best_uv + uv_off, target_uv + uv_off, 3 * uv_w * sizeof(*best_uv)); |
+ memcpy(dst_y + w, dst_y, w * sizeof(*dst_y)); |
+ } |
+ |
+ // Iterate and resolve clipping conflicts. |
+ for (iter = 0; iter < kNumIterations; ++iter) { |
+ int k; |
+ const fixed_t* cur_uv = best_uv; |
+ const fixed_t* prev_uv = best_uv; |
+ for (j = 0; j < h; j += 2) { |
+ fixed_y_t* const src1 = tmp_buffer; |
+ fixed_y_t* const src2 = tmp_buffer + 3 * w; |
+ |
+ { |
+ const fixed_t* const next_uv = cur_uv + ((j < h - 2) ? 3 * uv_w : 0); |
+ InterpolateTwoRows(best_y + j * w, prev_uv, cur_uv, next_uv, |
+ w, src1, src2); |
+ prev_uv = cur_uv; |
+ cur_uv = next_uv; |
+ } |
+ |
+ UpdateW(src1, best_rgb_y + 0 * w, w); |
+ UpdateW(src2, best_rgb_y + 1 * w, w); |
+ UpdateChroma(src1, src2, best_rgb_uv, NULL, uv_w); |
+ |
+ // update two rows of Y and one row of RGB |
+ for (i = 0; i < 2 * w; ++i) { |
+ const int off = i + j * w; |
+ const int diff_y = target_y[off] - best_rgb_y[i]; |
+ const int new_y = (int)best_y[off] + diff_y; |
+ best_y[off] = clip_y(new_y); |
+ } |
+ for (i = 0; i < uv_w; ++i) { |
+ const int off = 3 * (i + (j >> 1) * uv_w); |
+ int W; |
+ for (k = 0; k <= 2; ++k) { |
+ const int diff_uv = (int)target_uv[off + k] - best_rgb_uv[3 * i + k]; |
+ best_uv[off + k] += diff_uv; |
+ } |
+ W = RGBToGray(best_uv[off + 0], best_uv[off + 1], best_uv[off + 2]); |
+ for (k = 0; k <= 2; ++k) { |
+ best_uv[off + k] -= W; |
+ } |
+ } |
+ } |
+ // TODO(skal): add early-termination criterion |
+ } |
+ |
+ // final reconstruction |
+ ok = ConvertWRGBToYUV(best_y, best_uv, picture); |
+ |
+ End: |
+ WebPSafeFree(best_y); |
+ WebPSafeFree(best_uv); |
+ WebPSafeFree(target_y); |
+ WebPSafeFree(target_uv); |
+ WebPSafeFree(best_rgb_y); |
+ WebPSafeFree(best_rgb_uv); |
+ WebPSafeFree(tmp_buffer); |
+ return ok; |
+} |
+#undef SAFE_ALLOC |
+ |
+//------------------------------------------------------------------------------ |
+// "Fast" regular RGB->YUV |
+ |
+#define SUM4(ptr, step) LinearToGamma( \ |
+ GammaToLinear((ptr)[0]) + \ |
+ GammaToLinear((ptr)[(step)]) + \ |
+ GammaToLinear((ptr)[rgb_stride]) + \ |
+ GammaToLinear((ptr)[rgb_stride + (step)]), 0) \ |
+ |
+#define SUM2(ptr) \ |
+ LinearToGamma(GammaToLinear((ptr)[0]) + GammaToLinear((ptr)[rgb_stride]), 1) |
+ |
+#define SUM2ALPHA(ptr) ((ptr)[0] + (ptr)[rgb_stride]) |
+#define SUM4ALPHA(ptr) (SUM2ALPHA(ptr) + SUM2ALPHA((ptr) + 4)) |
+ |
+#if defined(USE_INVERSE_ALPHA_TABLE) |
+ |
+static const int kAlphaFix = 19; |
+// Following table is (1 << kAlphaFix) / a. The (v * kInvAlpha[a]) >> kAlphaFix |
+// formula is then equal to v / a in most (99.6%) cases. Note that this table |
+// and constant are adjusted very tightly to fit 32b arithmetic. |
+// In particular, they use the fact that the operands for 'v / a' are actually |
+// derived as v = (a0.p0 + a1.p1 + a2.p2 + a3.p3) and a = a0 + a1 + a2 + a3 |
+// with ai in [0..255] and pi in [0..1<<kGammaFix). The constraint to avoid |
+// overflow is: kGammaFix + kAlphaFix <= 31. |
+static const uint32_t kInvAlpha[4 * 0xff + 1] = { |
+ 0, /* alpha = 0 */ |
+ 524288, 262144, 174762, 131072, 104857, 87381, 74898, 65536, |
+ 58254, 52428, 47662, 43690, 40329, 37449, 34952, 32768, |
+ 30840, 29127, 27594, 26214, 24966, 23831, 22795, 21845, |
+ 20971, 20164, 19418, 18724, 18078, 17476, 16912, 16384, |
+ 15887, 15420, 14979, 14563, 14169, 13797, 13443, 13107, |
+ 12787, 12483, 12192, 11915, 11650, 11397, 11155, 10922, |
+ 10699, 10485, 10280, 10082, 9892, 9709, 9532, 9362, |
+ 9198, 9039, 8886, 8738, 8594, 8456, 8322, 8192, |
+ 8065, 7943, 7825, 7710, 7598, 7489, 7384, 7281, |
+ 7182, 7084, 6990, 6898, 6808, 6721, 6636, 6553, |
+ 6472, 6393, 6316, 6241, 6168, 6096, 6026, 5957, |
+ 5890, 5825, 5761, 5698, 5637, 5577, 5518, 5461, |
+ 5405, 5349, 5295, 5242, 5190, 5140, 5090, 5041, |
+ 4993, 4946, 4899, 4854, 4809, 4766, 4723, 4681, |
+ 4639, 4599, 4559, 4519, 4481, 4443, 4405, 4369, |
+ 4332, 4297, 4262, 4228, 4194, 4161, 4128, 4096, |
+ 4064, 4032, 4002, 3971, 3942, 3912, 3883, 3855, |
+ 3826, 3799, 3771, 3744, 3718, 3692, 3666, 3640, |
+ 3615, 3591, 3566, 3542, 3518, 3495, 3472, 3449, |
+ 3426, 3404, 3382, 3360, 3339, 3318, 3297, 3276, |
+ 3256, 3236, 3216, 3196, 3177, 3158, 3139, 3120, |
+ 3102, 3084, 3066, 3048, 3030, 3013, 2995, 2978, |
+ 2962, 2945, 2928, 2912, 2896, 2880, 2864, 2849, |
+ 2833, 2818, 2803, 2788, 2774, 2759, 2744, 2730, |
+ 2716, 2702, 2688, 2674, 2661, 2647, 2634, 2621, |
+ 2608, 2595, 2582, 2570, 2557, 2545, 2532, 2520, |
+ 2508, 2496, 2484, 2473, 2461, 2449, 2438, 2427, |
+ 2416, 2404, 2394, 2383, 2372, 2361, 2351, 2340, |
+ 2330, 2319, 2309, 2299, 2289, 2279, 2269, 2259, |
+ 2250, 2240, 2231, 2221, 2212, 2202, 2193, 2184, |
+ 2175, 2166, 2157, 2148, 2139, 2131, 2122, 2114, |
+ 2105, 2097, 2088, 2080, 2072, 2064, 2056, 2048, |
+ 2040, 2032, 2024, 2016, 2008, 2001, 1993, 1985, |
+ 1978, 1971, 1963, 1956, 1949, 1941, 1934, 1927, |
+ 1920, 1913, 1906, 1899, 1892, 1885, 1879, 1872, |
+ 1865, 1859, 1852, 1846, 1839, 1833, 1826, 1820, |
+ 1814, 1807, 1801, 1795, 1789, 1783, 1777, 1771, |
+ 1765, 1759, 1753, 1747, 1741, 1736, 1730, 1724, |
+ 1718, 1713, 1707, 1702, 1696, 1691, 1685, 1680, |
+ 1675, 1669, 1664, 1659, 1653, 1648, 1643, 1638, |
+ 1633, 1628, 1623, 1618, 1613, 1608, 1603, 1598, |
+ 1593, 1588, 1583, 1579, 1574, 1569, 1565, 1560, |
+ 1555, 1551, 1546, 1542, 1537, 1533, 1528, 1524, |
+ 1519, 1515, 1510, 1506, 1502, 1497, 1493, 1489, |
+ 1485, 1481, 1476, 1472, 1468, 1464, 1460, 1456, |
+ 1452, 1448, 1444, 1440, 1436, 1432, 1428, 1424, |
+ 1420, 1416, 1413, 1409, 1405, 1401, 1398, 1394, |
+ 1390, 1387, 1383, 1379, 1376, 1372, 1368, 1365, |
+ 1361, 1358, 1354, 1351, 1347, 1344, 1340, 1337, |
+ 1334, 1330, 1327, 1323, 1320, 1317, 1314, 1310, |
+ 1307, 1304, 1300, 1297, 1294, 1291, 1288, 1285, |
+ 1281, 1278, 1275, 1272, 1269, 1266, 1263, 1260, |
+ 1257, 1254, 1251, 1248, 1245, 1242, 1239, 1236, |
+ 1233, 1230, 1227, 1224, 1222, 1219, 1216, 1213, |
+ 1210, 1208, 1205, 1202, 1199, 1197, 1194, 1191, |
+ 1188, 1186, 1183, 1180, 1178, 1175, 1172, 1170, |
+ 1167, 1165, 1162, 1159, 1157, 1154, 1152, 1149, |
+ 1147, 1144, 1142, 1139, 1137, 1134, 1132, 1129, |
+ 1127, 1125, 1122, 1120, 1117, 1115, 1113, 1110, |
+ 1108, 1106, 1103, 1101, 1099, 1096, 1094, 1092, |
+ 1089, 1087, 1085, 1083, 1081, 1078, 1076, 1074, |
+ 1072, 1069, 1067, 1065, 1063, 1061, 1059, 1057, |
+ 1054, 1052, 1050, 1048, 1046, 1044, 1042, 1040, |
+ 1038, 1036, 1034, 1032, 1030, 1028, 1026, 1024, |
+ 1022, 1020, 1018, 1016, 1014, 1012, 1010, 1008, |
+ 1006, 1004, 1002, 1000, 998, 996, 994, 992, |
+ 991, 989, 987, 985, 983, 981, 979, 978, |
+ 976, 974, 972, 970, 969, 967, 965, 963, |
+ 961, 960, 958, 956, 954, 953, 951, 949, |
+ 948, 946, 944, 942, 941, 939, 937, 936, |
+ 934, 932, 931, 929, 927, 926, 924, 923, |
+ 921, 919, 918, 916, 914, 913, 911, 910, |
+ 908, 907, 905, 903, 902, 900, 899, 897, |
+ 896, 894, 893, 891, 890, 888, 887, 885, |
+ 884, 882, 881, 879, 878, 876, 875, 873, |
+ 872, 870, 869, 868, 866, 865, 863, 862, |
+ 860, 859, 858, 856, 855, 853, 852, 851, |
+ 849, 848, 846, 845, 844, 842, 841, 840, |
+ 838, 837, 836, 834, 833, 832, 830, 829, |
+ 828, 826, 825, 824, 823, 821, 820, 819, |
+ 817, 816, 815, 814, 812, 811, 810, 809, |
+ 807, 806, 805, 804, 802, 801, 800, 799, |
+ 798, 796, 795, 794, 793, 791, 790, 789, |
+ 788, 787, 786, 784, 783, 782, 781, 780, |
+ 779, 777, 776, 775, 774, 773, 772, 771, |
+ 769, 768, 767, 766, 765, 764, 763, 762, |
+ 760, 759, 758, 757, 756, 755, 754, 753, |
+ 752, 751, 750, 748, 747, 746, 745, 744, |
+ 743, 742, 741, 740, 739, 738, 737, 736, |
+ 735, 734, 733, 732, 731, 730, 729, 728, |
+ 727, 726, 725, 724, 723, 722, 721, 720, |
+ 719, 718, 717, 716, 715, 714, 713, 712, |
+ 711, 710, 709, 708, 707, 706, 705, 704, |
+ 703, 702, 701, 700, 699, 699, 698, 697, |
+ 696, 695, 694, 693, 692, 691, 690, 689, |
+ 688, 688, 687, 686, 685, 684, 683, 682, |
+ 681, 680, 680, 679, 678, 677, 676, 675, |
+ 674, 673, 673, 672, 671, 670, 669, 668, |
+ 667, 667, 666, 665, 664, 663, 662, 661, |
+ 661, 660, 659, 658, 657, 657, 656, 655, |
+ 654, 653, 652, 652, 651, 650, 649, 648, |
+ 648, 647, 646, 645, 644, 644, 643, 642, |
+ 641, 640, 640, 639, 638, 637, 637, 636, |
+ 635, 634, 633, 633, 632, 631, 630, 630, |
+ 629, 628, 627, 627, 626, 625, 624, 624, |
+ 623, 622, 621, 621, 620, 619, 618, 618, |
+ 617, 616, 616, 615, 614, 613, 613, 612, |
+ 611, 611, 610, 609, 608, 608, 607, 606, |
+ 606, 605, 604, 604, 603, 602, 601, 601, |
+ 600, 599, 599, 598, 597, 597, 596, 595, |
+ 595, 594, 593, 593, 592, 591, 591, 590, |
+ 589, 589, 588, 587, 587, 586, 585, 585, |
+ 584, 583, 583, 582, 581, 581, 580, 579, |
+ 579, 578, 578, 577, 576, 576, 575, 574, |
+ 574, 573, 572, 572, 571, 571, 570, 569, |
+ 569, 568, 568, 567, 566, 566, 565, 564, |
+ 564, 563, 563, 562, 561, 561, 560, 560, |
+ 559, 558, 558, 557, 557, 556, 555, 555, |
+ 554, 554, 553, 553, 552, 551, 551, 550, |
+ 550, 549, 548, 548, 547, 547, 546, 546, |
+ 545, 544, 544, 543, 543, 542, 542, 541, |
+ 541, 540, 539, 539, 538, 538, 537, 537, |
+ 536, 536, 535, 534, 534, 533, 533, 532, |
+ 532, 531, 531, 530, 530, 529, 529, 528, |
+ 527, 527, 526, 526, 525, 525, 524, 524, |
+ 523, 523, 522, 522, 521, 521, 520, 520, |
+ 519, 519, 518, 518, 517, 517, 516, 516, |
+ 515, 515, 514, 514 |
+}; |
+ |
+// Note that LinearToGamma() expects the values to be premultiplied by 4, |
+// so we incorporate this factor 4 inside the DIVIDE_BY_ALPHA macro directly. |
+#define DIVIDE_BY_ALPHA(sum, a) (((sum) * kInvAlpha[(a)]) >> (kAlphaFix - 2)) |
+ |
+#else |
+ |
+#define DIVIDE_BY_ALPHA(sum, a) (4 * (sum) / (a)) |
+ |
+#endif // USE_INVERSE_ALPHA_TABLE |
+ |
+static WEBP_INLINE int LinearToGammaWeighted(const uint8_t* src, |
+ const uint8_t* a_ptr, |
+ uint32_t total_a, int step, |
+ int rgb_stride) { |
+ const uint32_t sum = |
+ a_ptr[0] * GammaToLinear(src[0]) + |
+ a_ptr[step] * GammaToLinear(src[step]) + |
+ a_ptr[rgb_stride] * GammaToLinear(src[rgb_stride]) + |
+ a_ptr[rgb_stride + step] * GammaToLinear(src[rgb_stride + step]); |
+ assert(total_a > 0 && total_a <= 4 * 0xff); |
+#if defined(USE_INVERSE_ALPHA_TABLE) |
+ assert((uint64_t)sum * kInvAlpha[total_a] < ((uint64_t)1 << 32)); |
+#endif |
+ return LinearToGamma(DIVIDE_BY_ALPHA(sum, total_a), 0); |
+} |
+ |
+static WEBP_INLINE void ConvertRowToY(const uint8_t* const r_ptr, |
+ const uint8_t* const g_ptr, |
+ const uint8_t* const b_ptr, |
+ int step, |
+ uint8_t* const dst_y, |
+ int width, |
+ VP8Random* const rg) { |
+ int i, j; |
+ for (i = 0, j = 0; i < width; ++i, j += step) { |
+ dst_y[i] = RGBToY(r_ptr[j], g_ptr[j], b_ptr[j], rg); |
+ } |
+} |
+ |
+static WEBP_INLINE void ConvertRowsToUVWithAlpha(const uint8_t* const r_ptr, |
+ const uint8_t* const g_ptr, |
+ const uint8_t* const b_ptr, |
+ const uint8_t* const a_ptr, |
+ int rgb_stride, |
+ uint8_t* const dst_u, |
+ uint8_t* const dst_v, |
+ int width, |
+ VP8Random* const rg) { |
+ int i, j; |
+ // we loop over 2x2 blocks and produce one U/V value for each. |
+ for (i = 0, j = 0; i < (width >> 1); ++i, j += 2 * sizeof(uint32_t)) { |
+ const uint32_t a = SUM4ALPHA(a_ptr + j); |
+ int r, g, b; |
+ if (a == 4 * 0xff || a == 0) { |
+ r = SUM4(r_ptr + j, 4); |
+ g = SUM4(g_ptr + j, 4); |
+ b = SUM4(b_ptr + j, 4); |
+ } else { |
+ r = LinearToGammaWeighted(r_ptr + j, a_ptr + j, a, 4, rgb_stride); |
+ g = LinearToGammaWeighted(g_ptr + j, a_ptr + j, a, 4, rgb_stride); |
+ b = LinearToGammaWeighted(b_ptr + j, a_ptr + j, a, 4, rgb_stride); |
+ } |
+ dst_u[i] = RGBToU(r, g, b, rg); |
+ dst_v[i] = RGBToV(r, g, b, rg); |
+ } |
+ if (width & 1) { |
+ const uint32_t a = 2u * SUM2ALPHA(a_ptr + j); |
+ int r, g, b; |
+ if (a == 4 * 0xff || a == 0) { |
+ r = SUM2(r_ptr + j); |
+ g = SUM2(g_ptr + j); |
+ b = SUM2(b_ptr + j); |
+ } else { |
+ r = LinearToGammaWeighted(r_ptr + j, a_ptr + j, a, 0, rgb_stride); |
+ g = LinearToGammaWeighted(g_ptr + j, a_ptr + j, a, 0, rgb_stride); |
+ b = LinearToGammaWeighted(b_ptr + j, a_ptr + j, a, 0, rgb_stride); |
+ } |
+ dst_u[i] = RGBToU(r, g, b, rg); |
+ dst_v[i] = RGBToV(r, g, b, rg); |
+ } |
+} |
+ |
+static WEBP_INLINE void ConvertRowsToUV(const uint8_t* const r_ptr, |
+ const uint8_t* const g_ptr, |
+ const uint8_t* const b_ptr, |
+ int step, int rgb_stride, |
+ uint8_t* const dst_u, |
+ uint8_t* const dst_v, |
+ int width, |
+ VP8Random* const rg) { |
+ int i, j; |
+ for (i = 0, j = 0; i < (width >> 1); ++i, j += 2 * step) { |
+ const int r = SUM4(r_ptr + j, step); |
+ const int g = SUM4(g_ptr + j, step); |
+ const int b = SUM4(b_ptr + j, step); |
+ dst_u[i] = RGBToU(r, g, b, rg); |
+ dst_v[i] = RGBToV(r, g, b, rg); |
+ } |
+ if (width & 1) { |
+ const int r = SUM2(r_ptr + j); |
+ const int g = SUM2(g_ptr + j); |
+ const int b = SUM2(b_ptr + j); |
+ dst_u[i] = RGBToU(r, g, b, rg); |
+ dst_v[i] = RGBToV(r, g, b, rg); |
+ } |
+} |
+ |
+static int ImportYUVAFromRGBA(const uint8_t* const r_ptr, |
+ const uint8_t* const g_ptr, |
+ const uint8_t* const b_ptr, |
+ const uint8_t* const a_ptr, |
+ int step, // bytes per pixel |
+ int rgb_stride, // bytes per scanline |
+ float dithering, |
+ int use_iterative_conversion, |
+ WebPPicture* const picture) { |
+ int y; |
+ const int width = picture->width; |
+ const int height = picture->height; |
+ const int has_alpha = CheckNonOpaque(a_ptr, width, height, step, rgb_stride); |
+ |
+ picture->colorspace = has_alpha ? WEBP_YUV420A : WEBP_YUV420; |
+ picture->use_argb = 0; |
+ |
+ // disable smart conversion if source is too small (overkill). |
+ if (width < kMinDimensionIterativeConversion || |
+ height < kMinDimensionIterativeConversion) { |
+ use_iterative_conversion = 0; |
+ } |
+ |
+ if (!WebPPictureAllocYUVA(picture, width, height)) { |
+ return 0; |
+ } |
+ if (has_alpha) { |
+ WebPInitAlphaProcessing(); |
+ assert(step == 4); |
+#if defined(USE_INVERSE_ALPHA_TABLE) |
+ assert(kAlphaFix + kGammaFix <= 31); |
+#endif |
+ } |
+ |
+ if (use_iterative_conversion) { |
+ InitGammaTablesF(); |
+ if (!PreprocessARGB(r_ptr, g_ptr, b_ptr, step, rgb_stride, picture)) { |
+ return 0; |
+ } |
+ if (has_alpha) { |
+ WebPExtractAlpha(a_ptr, rgb_stride, width, height, |
+ picture->a, picture->a_stride); |
+ } |
+ } else { |
+ uint8_t* dst_y = picture->y; |
+ uint8_t* dst_u = picture->u; |
+ uint8_t* dst_v = picture->v; |
+ uint8_t* dst_a = picture->a; |
+ |
+ VP8Random base_rg; |
+ VP8Random* rg = NULL; |
+ if (dithering > 0.) { |
+ VP8InitRandom(&base_rg, dithering); |
+ rg = &base_rg; |
+ } |
+ |
+ InitGammaTables(); |
+ |
+ // Downsample Y/U/V planes, two rows at a time |
+ for (y = 0; y < (height >> 1); ++y) { |
+ int rows_have_alpha = has_alpha; |
+ const int off1 = (2 * y + 0) * rgb_stride; |
+ const int off2 = (2 * y + 1) * rgb_stride; |
+ ConvertRowToY(r_ptr + off1, g_ptr + off1, b_ptr + off1, step, |
+ dst_y, width, rg); |
+ ConvertRowToY(r_ptr + off2, g_ptr + off2, b_ptr + off2, step, |
+ dst_y + picture->y_stride, width, rg); |
+ dst_y += 2 * picture->y_stride; |
+ if (has_alpha) { |
+ rows_have_alpha &= !WebPExtractAlpha(a_ptr + off1, rgb_stride, |
+ width, 2, |
+ dst_a, picture->a_stride); |
+ dst_a += 2 * picture->a_stride; |
+ } |
+ if (!rows_have_alpha) { |
+ ConvertRowsToUV(r_ptr + off1, g_ptr + off1, b_ptr + off1, |
+ step, rgb_stride, dst_u, dst_v, width, rg); |
+ } else { |
+ ConvertRowsToUVWithAlpha(r_ptr + off1, g_ptr + off1, b_ptr + off1, |
+ a_ptr + off1, rgb_stride, |
+ dst_u, dst_v, width, rg); |
+ } |
+ dst_u += picture->uv_stride; |
+ dst_v += picture->uv_stride; |
+ } |
+ if (height & 1) { // extra last row |
+ const int off = 2 * y * rgb_stride; |
+ int row_has_alpha = has_alpha; |
+ ConvertRowToY(r_ptr + off, g_ptr + off, b_ptr + off, step, |
+ dst_y, width, rg); |
+ if (row_has_alpha) { |
+ row_has_alpha &= !WebPExtractAlpha(a_ptr + off, 0, width, 1, dst_a, 0); |
+ } |
+ if (!row_has_alpha) { |
+ ConvertRowsToUV(r_ptr + off, g_ptr + off, b_ptr + off, |
+ step, 0, dst_u, dst_v, width, rg); |
+ } else { |
+ ConvertRowsToUVWithAlpha(r_ptr + off, g_ptr + off, b_ptr + off, |
+ a_ptr + off, 0, |
+ dst_u, dst_v, width, rg); |
+ } |
+ } |
+ } |
+ return 1; |
+} |
+ |
+#undef SUM4 |
+#undef SUM2 |
+#undef SUM4ALPHA |
+#undef SUM2ALPHA |
+ |
+//------------------------------------------------------------------------------ |
+// call for ARGB->YUVA conversion |
+ |
+static int PictureARGBToYUVA(WebPPicture* picture, WebPEncCSP colorspace, |
+ float dithering, int use_iterative_conversion) { |
+ if (picture == NULL) return 0; |
+ if (picture->argb == NULL) { |
+ return WebPEncodingSetError(picture, VP8_ENC_ERROR_NULL_PARAMETER); |
+ } else if ((colorspace & WEBP_CSP_UV_MASK) != WEBP_YUV420) { |
+ return WebPEncodingSetError(picture, VP8_ENC_ERROR_INVALID_CONFIGURATION); |
+ } else { |
+ const uint8_t* const argb = (const uint8_t*)picture->argb; |
+ const uint8_t* const r = ALPHA_IS_LAST ? argb + 2 : argb + 1; |
+ const uint8_t* const g = ALPHA_IS_LAST ? argb + 1 : argb + 2; |
+ const uint8_t* const b = ALPHA_IS_LAST ? argb + 0 : argb + 3; |
+ const uint8_t* const a = ALPHA_IS_LAST ? argb + 3 : argb + 0; |
+ |
+ picture->colorspace = WEBP_YUV420; |
+ return ImportYUVAFromRGBA(r, g, b, a, 4, 4 * picture->argb_stride, |
+ dithering, use_iterative_conversion, picture); |
+ } |
+} |
+ |
+int WebPPictureARGBToYUVADithered(WebPPicture* picture, WebPEncCSP colorspace, |
+ float dithering) { |
+ return PictureARGBToYUVA(picture, colorspace, dithering, 0); |
+} |
+ |
+int WebPPictureARGBToYUVA(WebPPicture* picture, WebPEncCSP colorspace) { |
+ return PictureARGBToYUVA(picture, colorspace, 0.f, 0); |
+} |
+ |
+#if WEBP_ENCODER_ABI_VERSION > 0x0204 |
+int WebPPictureSmartARGBToYUVA(WebPPicture* picture) { |
+ return PictureARGBToYUVA(picture, WEBP_YUV420, 0.f, 1); |
+} |
+#endif |
+ |
+//------------------------------------------------------------------------------ |
+// call for YUVA -> ARGB conversion |
+ |
+int WebPPictureYUVAToARGB(WebPPicture* picture) { |
+ if (picture == NULL) return 0; |
+ if (picture->y == NULL || picture->u == NULL || picture->v == NULL) { |
+ return WebPEncodingSetError(picture, VP8_ENC_ERROR_NULL_PARAMETER); |
+ } |
+ if ((picture->colorspace & WEBP_CSP_ALPHA_BIT) && picture->a == NULL) { |
+ return WebPEncodingSetError(picture, VP8_ENC_ERROR_NULL_PARAMETER); |
+ } |
+ if ((picture->colorspace & WEBP_CSP_UV_MASK) != WEBP_YUV420) { |
+ return WebPEncodingSetError(picture, VP8_ENC_ERROR_INVALID_CONFIGURATION); |
+ } |
+ // Allocate a new argb buffer (discarding the previous one). |
+ if (!WebPPictureAllocARGB(picture, picture->width, picture->height)) return 0; |
+ picture->use_argb = 1; |
+ |
+ // Convert |
+ { |
+ int y; |
+ const int width = picture->width; |
+ const int height = picture->height; |
+ const int argb_stride = 4 * picture->argb_stride; |
+ uint8_t* dst = (uint8_t*)picture->argb; |
+ const uint8_t *cur_u = picture->u, *cur_v = picture->v, *cur_y = picture->y; |
+ WebPUpsampleLinePairFunc upsample = WebPGetLinePairConverter(ALPHA_IS_LAST); |
+ |
+ // First row, with replicated top samples. |
+ upsample(cur_y, NULL, cur_u, cur_v, cur_u, cur_v, dst, NULL, width); |
+ cur_y += picture->y_stride; |
+ dst += argb_stride; |
+ // Center rows. |
+ for (y = 1; y + 1 < height; y += 2) { |
+ const uint8_t* const top_u = cur_u; |
+ const uint8_t* const top_v = cur_v; |
+ cur_u += picture->uv_stride; |
+ cur_v += picture->uv_stride; |
+ upsample(cur_y, cur_y + picture->y_stride, top_u, top_v, cur_u, cur_v, |
+ dst, dst + argb_stride, width); |
+ cur_y += 2 * picture->y_stride; |
+ dst += 2 * argb_stride; |
+ } |
+ // Last row (if needed), with replicated bottom samples. |
+ if (height > 1 && !(height & 1)) { |
+ upsample(cur_y, NULL, cur_u, cur_v, cur_u, cur_v, dst, NULL, width); |
+ } |
+ // Insert alpha values if needed, in replacement for the default 0xff ones. |
+ if (picture->colorspace & WEBP_CSP_ALPHA_BIT) { |
+ for (y = 0; y < height; ++y) { |
+ uint32_t* const argb_dst = picture->argb + y * picture->argb_stride; |
+ const uint8_t* const src = picture->a + y * picture->a_stride; |
+ int x; |
+ for (x = 0; x < width; ++x) { |
+ argb_dst[x] = (argb_dst[x] & 0x00ffffffu) | ((uint32_t)src[x] << 24); |
+ } |
+ } |
+ } |
+ } |
+ return 1; |
+} |
+ |
+//------------------------------------------------------------------------------ |
+// automatic import / conversion |
+ |
+static int Import(WebPPicture* const picture, |
+ const uint8_t* const rgb, int rgb_stride, |
+ int step, int swap_rb, int import_alpha) { |
+ int y; |
+ const uint8_t* const r_ptr = rgb + (swap_rb ? 2 : 0); |
+ const uint8_t* const g_ptr = rgb + 1; |
+ const uint8_t* const b_ptr = rgb + (swap_rb ? 0 : 2); |
+ const uint8_t* const a_ptr = import_alpha ? rgb + 3 : NULL; |
+ const int width = picture->width; |
+ const int height = picture->height; |
+ |
+ if (!picture->use_argb) { |
+ return ImportYUVAFromRGBA(r_ptr, g_ptr, b_ptr, a_ptr, step, rgb_stride, |
+ 0.f /* no dithering */, 0, picture); |
+ } |
+ if (!WebPPictureAlloc(picture)) return 0; |
+ |
+ assert(step >= (import_alpha ? 4 : 3)); |
+ for (y = 0; y < height; ++y) { |
+ uint32_t* const dst = &picture->argb[y * picture->argb_stride]; |
+ int x; |
+ for (x = 0; x < width; ++x) { |
+ const int offset = step * x + y * rgb_stride; |
+ dst[x] = MakeARGB32(import_alpha ? a_ptr[offset] : 0xff, |
+ r_ptr[offset], g_ptr[offset], b_ptr[offset]); |
+ } |
+ } |
+ return 1; |
+} |
+ |
+// Public API |
+ |
+int WebPPictureImportRGB(WebPPicture* picture, |
+ const uint8_t* rgb, int rgb_stride) { |
+ return (picture != NULL) ? Import(picture, rgb, rgb_stride, 3, 0, 0) : 0; |
+} |
+ |
+int WebPPictureImportBGR(WebPPicture* picture, |
+ const uint8_t* rgb, int rgb_stride) { |
+ return (picture != NULL) ? Import(picture, rgb, rgb_stride, 3, 1, 0) : 0; |
+} |
+ |
+int WebPPictureImportRGBA(WebPPicture* picture, |
+ const uint8_t* rgba, int rgba_stride) { |
+ return (picture != NULL) ? Import(picture, rgba, rgba_stride, 4, 0, 1) : 0; |
+} |
+ |
+int WebPPictureImportBGRA(WebPPicture* picture, |
+ const uint8_t* rgba, int rgba_stride) { |
+ return (picture != NULL) ? Import(picture, rgba, rgba_stride, 4, 1, 1) : 0; |
+} |
+ |
+int WebPPictureImportRGBX(WebPPicture* picture, |
+ const uint8_t* rgba, int rgba_stride) { |
+ return (picture != NULL) ? Import(picture, rgba, rgba_stride, 4, 0, 0) : 0; |
+} |
+ |
+int WebPPictureImportBGRX(WebPPicture* picture, |
+ const uint8_t* rgba, int rgba_stride) { |
+ return (picture != NULL) ? Import(picture, rgba, rgba_stride, 4, 1, 0) : 0; |
+} |
+ |
+//------------------------------------------------------------------------------ |