Index: third_party/libwebp/dec/frame.c |
diff --git a/third_party/libwebp/dec/frame.c b/third_party/libwebp/dec/frame.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..2359acc5b0d4c297aa4c7abc7b5df6a3b798c6e5 |
--- /dev/null |
+++ b/third_party/libwebp/dec/frame.c |
@@ -0,0 +1,828 @@ |
+// Copyright 2010 Google Inc. All Rights Reserved. |
+// |
+// Use of this source code is governed by a BSD-style license |
+// that can be found in the COPYING file in the root of the source |
+// tree. An additional intellectual property rights grant can be found |
+// in the file PATENTS. All contributing project authors may |
+// be found in the AUTHORS file in the root of the source tree. |
+// ----------------------------------------------------------------------------- |
+// |
+// Frame-reconstruction function. Memory allocation. |
+// |
+// Author: Skal (pascal.massimino@gmail.com) |
+ |
+#include <stdlib.h> |
+#include "./vp8i.h" |
+#include "../utils/utils.h" |
+ |
+#define ALIGN_MASK (32 - 1) |
+ |
+static void ReconstructRow(const VP8Decoder* const dec, |
+ const VP8ThreadContext* ctx); // TODO(skal): remove |
+ |
+//------------------------------------------------------------------------------ |
+// Filtering |
+ |
+// kFilterExtraRows[] = How many extra lines are needed on the MB boundary |
+// for caching, given a filtering level. |
+// Simple filter: up to 2 luma samples are read and 1 is written. |
+// Complex filter: up to 4 luma samples are read and 3 are written. Same for |
+// U/V, so it's 8 samples total (because of the 2x upsampling). |
+static const uint8_t kFilterExtraRows[3] = { 0, 2, 8 }; |
+ |
+static void DoFilter(const VP8Decoder* const dec, int mb_x, int mb_y) { |
+ const VP8ThreadContext* const ctx = &dec->thread_ctx_; |
+ const int cache_id = ctx->id_; |
+ const int y_bps = dec->cache_y_stride_; |
+ const VP8FInfo* const f_info = ctx->f_info_ + mb_x; |
+ uint8_t* const y_dst = dec->cache_y_ + cache_id * 16 * y_bps + mb_x * 16; |
+ const int ilevel = f_info->f_ilevel_; |
+ const int limit = f_info->f_limit_; |
+ if (limit == 0) { |
+ return; |
+ } |
+ assert(limit >= 3); |
+ if (dec->filter_type_ == 1) { // simple |
+ if (mb_x > 0) { |
+ VP8SimpleHFilter16(y_dst, y_bps, limit + 4); |
+ } |
+ if (f_info->f_inner_) { |
+ VP8SimpleHFilter16i(y_dst, y_bps, limit); |
+ } |
+ if (mb_y > 0) { |
+ VP8SimpleVFilter16(y_dst, y_bps, limit + 4); |
+ } |
+ if (f_info->f_inner_) { |
+ VP8SimpleVFilter16i(y_dst, y_bps, limit); |
+ } |
+ } else { // complex |
+ const int uv_bps = dec->cache_uv_stride_; |
+ uint8_t* const u_dst = dec->cache_u_ + cache_id * 8 * uv_bps + mb_x * 8; |
+ uint8_t* const v_dst = dec->cache_v_ + cache_id * 8 * uv_bps + mb_x * 8; |
+ const int hev_thresh = f_info->hev_thresh_; |
+ if (mb_x > 0) { |
+ VP8HFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh); |
+ VP8HFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh); |
+ } |
+ if (f_info->f_inner_) { |
+ VP8HFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh); |
+ VP8HFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh); |
+ } |
+ if (mb_y > 0) { |
+ VP8VFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh); |
+ VP8VFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh); |
+ } |
+ if (f_info->f_inner_) { |
+ VP8VFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh); |
+ VP8VFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh); |
+ } |
+ } |
+} |
+ |
+// Filter the decoded macroblock row (if needed) |
+static void FilterRow(const VP8Decoder* const dec) { |
+ int mb_x; |
+ const int mb_y = dec->thread_ctx_.mb_y_; |
+ assert(dec->thread_ctx_.filter_row_); |
+ for (mb_x = dec->tl_mb_x_; mb_x < dec->br_mb_x_; ++mb_x) { |
+ DoFilter(dec, mb_x, mb_y); |
+ } |
+} |
+ |
+//------------------------------------------------------------------------------ |
+// Precompute the filtering strength for each segment and each i4x4/i16x16 mode. |
+ |
+static void PrecomputeFilterStrengths(VP8Decoder* const dec) { |
+ if (dec->filter_type_ > 0) { |
+ int s; |
+ const VP8FilterHeader* const hdr = &dec->filter_hdr_; |
+ for (s = 0; s < NUM_MB_SEGMENTS; ++s) { |
+ int i4x4; |
+ // First, compute the initial level |
+ int base_level; |
+ if (dec->segment_hdr_.use_segment_) { |
+ base_level = dec->segment_hdr_.filter_strength_[s]; |
+ if (!dec->segment_hdr_.absolute_delta_) { |
+ base_level += hdr->level_; |
+ } |
+ } else { |
+ base_level = hdr->level_; |
+ } |
+ for (i4x4 = 0; i4x4 <= 1; ++i4x4) { |
+ VP8FInfo* const info = &dec->fstrengths_[s][i4x4]; |
+ int level = base_level; |
+ if (hdr->use_lf_delta_) { |
+ // TODO(skal): only CURRENT is handled for now. |
+ level += hdr->ref_lf_delta_[0]; |
+ if (i4x4) { |
+ level += hdr->mode_lf_delta_[0]; |
+ } |
+ } |
+ level = (level < 0) ? 0 : (level > 63) ? 63 : level; |
+ if (level > 0) { |
+ int ilevel = level; |
+ if (hdr->sharpness_ > 0) { |
+ if (hdr->sharpness_ > 4) { |
+ ilevel >>= 2; |
+ } else { |
+ ilevel >>= 1; |
+ } |
+ if (ilevel > 9 - hdr->sharpness_) { |
+ ilevel = 9 - hdr->sharpness_; |
+ } |
+ } |
+ if (ilevel < 1) ilevel = 1; |
+ info->f_ilevel_ = ilevel; |
+ info->f_limit_ = 2 * level + ilevel; |
+ info->hev_thresh_ = (level >= 40) ? 2 : (level >= 15) ? 1 : 0; |
+ } else { |
+ info->f_limit_ = 0; // no filtering |
+ } |
+ info->f_inner_ = i4x4; |
+ } |
+ } |
+ } |
+} |
+ |
+//------------------------------------------------------------------------------ |
+// Dithering |
+ |
+#define DITHER_AMP_TAB_SIZE 12 |
+static const int kQuantToDitherAmp[DITHER_AMP_TAB_SIZE] = { |
+ // roughly, it's dqm->uv_mat_[1] |
+ 8, 7, 6, 4, 4, 2, 2, 2, 1, 1, 1, 1 |
+}; |
+ |
+void VP8InitDithering(const WebPDecoderOptions* const options, |
+ VP8Decoder* const dec) { |
+ assert(dec != NULL); |
+ if (options != NULL) { |
+ const int d = options->dithering_strength; |
+ const int max_amp = (1 << VP8_RANDOM_DITHER_FIX) - 1; |
+ const int f = (d < 0) ? 0 : (d > 100) ? max_amp : (d * max_amp / 100); |
+ if (f > 0) { |
+ int s; |
+ int all_amp = 0; |
+ for (s = 0; s < NUM_MB_SEGMENTS; ++s) { |
+ VP8QuantMatrix* const dqm = &dec->dqm_[s]; |
+ if (dqm->uv_quant_ < DITHER_AMP_TAB_SIZE) { |
+ // TODO(skal): should we specially dither more for uv_quant_ < 0? |
+ const int idx = (dqm->uv_quant_ < 0) ? 0 : dqm->uv_quant_; |
+ dqm->dither_ = (f * kQuantToDitherAmp[idx]) >> 3; |
+ } |
+ all_amp |= dqm->dither_; |
+ } |
+ if (all_amp != 0) { |
+ VP8InitRandom(&dec->dithering_rg_, 1.0f); |
+ dec->dither_ = 1; |
+ } |
+ } |
+#if WEBP_DECODER_ABI_VERSION > 0x0204 |
+ // potentially allow alpha dithering |
+ dec->alpha_dithering_ = options->alpha_dithering_strength; |
+ if (dec->alpha_dithering_ > 100) { |
+ dec->alpha_dithering_ = 100; |
+ } else if (dec->alpha_dithering_ < 0) { |
+ dec->alpha_dithering_ = 0; |
+ } |
+#endif |
+ } |
+} |
+ |
+// minimal amp that will provide a non-zero dithering effect |
+#define MIN_DITHER_AMP 4 |
+#define DITHER_DESCALE 4 |
+#define DITHER_DESCALE_ROUNDER (1 << (DITHER_DESCALE - 1)) |
+#define DITHER_AMP_BITS 8 |
+#define DITHER_AMP_CENTER (1 << DITHER_AMP_BITS) |
+ |
+static void Dither8x8(VP8Random* const rg, uint8_t* dst, int bps, int amp) { |
+ int i, j; |
+ for (j = 0; j < 8; ++j) { |
+ for (i = 0; i < 8; ++i) { |
+ // TODO: could be made faster with SSE2 |
+ const int bits = |
+ VP8RandomBits2(rg, DITHER_AMP_BITS + 1, amp) - DITHER_AMP_CENTER; |
+ // Convert to range: [-2,2] for dither=50, [-4,4] for dither=100 |
+ const int delta = (bits + DITHER_DESCALE_ROUNDER) >> DITHER_DESCALE; |
+ const int v = (int)dst[i] + delta; |
+ dst[i] = (v < 0) ? 0 : (v > 255) ? 255u : (uint8_t)v; |
+ } |
+ dst += bps; |
+ } |
+} |
+ |
+static void DitherRow(VP8Decoder* const dec) { |
+ int mb_x; |
+ assert(dec->dither_); |
+ for (mb_x = dec->tl_mb_x_; mb_x < dec->br_mb_x_; ++mb_x) { |
+ const VP8ThreadContext* const ctx = &dec->thread_ctx_; |
+ const VP8MBData* const data = ctx->mb_data_ + mb_x; |
+ const int cache_id = ctx->id_; |
+ const int uv_bps = dec->cache_uv_stride_; |
+ if (data->dither_ >= MIN_DITHER_AMP) { |
+ uint8_t* const u_dst = dec->cache_u_ + cache_id * 8 * uv_bps + mb_x * 8; |
+ uint8_t* const v_dst = dec->cache_v_ + cache_id * 8 * uv_bps + mb_x * 8; |
+ Dither8x8(&dec->dithering_rg_, u_dst, uv_bps, data->dither_); |
+ Dither8x8(&dec->dithering_rg_, v_dst, uv_bps, data->dither_); |
+ } |
+ } |
+} |
+ |
+//------------------------------------------------------------------------------ |
+// This function is called after a row of macroblocks is finished decoding. |
+// It also takes into account the following restrictions: |
+// * In case of in-loop filtering, we must hold off sending some of the bottom |
+// pixels as they are yet unfiltered. They will be when the next macroblock |
+// row is decoded. Meanwhile, we must preserve them by rotating them in the |
+// cache area. This doesn't hold for the very bottom row of the uncropped |
+// picture of course. |
+// * we must clip the remaining pixels against the cropping area. The VP8Io |
+// struct must have the following fields set correctly before calling put(): |
+ |
+#define MACROBLOCK_VPOS(mb_y) ((mb_y) * 16) // vertical position of a MB |
+ |
+// Finalize and transmit a complete row. Return false in case of user-abort. |
+static int FinishRow(VP8Decoder* const dec, VP8Io* const io) { |
+ int ok = 1; |
+ const VP8ThreadContext* const ctx = &dec->thread_ctx_; |
+ const int cache_id = ctx->id_; |
+ const int extra_y_rows = kFilterExtraRows[dec->filter_type_]; |
+ const int ysize = extra_y_rows * dec->cache_y_stride_; |
+ const int uvsize = (extra_y_rows / 2) * dec->cache_uv_stride_; |
+ const int y_offset = cache_id * 16 * dec->cache_y_stride_; |
+ const int uv_offset = cache_id * 8 * dec->cache_uv_stride_; |
+ uint8_t* const ydst = dec->cache_y_ - ysize + y_offset; |
+ uint8_t* const udst = dec->cache_u_ - uvsize + uv_offset; |
+ uint8_t* const vdst = dec->cache_v_ - uvsize + uv_offset; |
+ const int mb_y = ctx->mb_y_; |
+ const int is_first_row = (mb_y == 0); |
+ const int is_last_row = (mb_y >= dec->br_mb_y_ - 1); |
+ |
+ if (dec->mt_method_ == 2) { |
+ ReconstructRow(dec, ctx); |
+ } |
+ |
+ if (ctx->filter_row_) { |
+ FilterRow(dec); |
+ } |
+ |
+ if (dec->dither_) { |
+ DitherRow(dec); |
+ } |
+ |
+ if (io->put != NULL) { |
+ int y_start = MACROBLOCK_VPOS(mb_y); |
+ int y_end = MACROBLOCK_VPOS(mb_y + 1); |
+ if (!is_first_row) { |
+ y_start -= extra_y_rows; |
+ io->y = ydst; |
+ io->u = udst; |
+ io->v = vdst; |
+ } else { |
+ io->y = dec->cache_y_ + y_offset; |
+ io->u = dec->cache_u_ + uv_offset; |
+ io->v = dec->cache_v_ + uv_offset; |
+ } |
+ |
+ if (!is_last_row) { |
+ y_end -= extra_y_rows; |
+ } |
+ if (y_end > io->crop_bottom) { |
+ y_end = io->crop_bottom; // make sure we don't overflow on last row. |
+ } |
+ io->a = NULL; |
+ if (dec->alpha_data_ != NULL && y_start < y_end) { |
+ // TODO(skal): testing presence of alpha with dec->alpha_data_ is not a |
+ // good idea. |
+ io->a = VP8DecompressAlphaRows(dec, y_start, y_end - y_start); |
+ if (io->a == NULL) { |
+ return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR, |
+ "Could not decode alpha data."); |
+ } |
+ } |
+ if (y_start < io->crop_top) { |
+ const int delta_y = io->crop_top - y_start; |
+ y_start = io->crop_top; |
+ assert(!(delta_y & 1)); |
+ io->y += dec->cache_y_stride_ * delta_y; |
+ io->u += dec->cache_uv_stride_ * (delta_y >> 1); |
+ io->v += dec->cache_uv_stride_ * (delta_y >> 1); |
+ if (io->a != NULL) { |
+ io->a += io->width * delta_y; |
+ } |
+ } |
+ if (y_start < y_end) { |
+ io->y += io->crop_left; |
+ io->u += io->crop_left >> 1; |
+ io->v += io->crop_left >> 1; |
+ if (io->a != NULL) { |
+ io->a += io->crop_left; |
+ } |
+ io->mb_y = y_start - io->crop_top; |
+ io->mb_w = io->crop_right - io->crop_left; |
+ io->mb_h = y_end - y_start; |
+ ok = io->put(io); |
+ } |
+ } |
+ // rotate top samples if needed |
+ if (cache_id + 1 == dec->num_caches_) { |
+ if (!is_last_row) { |
+ memcpy(dec->cache_y_ - ysize, ydst + 16 * dec->cache_y_stride_, ysize); |
+ memcpy(dec->cache_u_ - uvsize, udst + 8 * dec->cache_uv_stride_, uvsize); |
+ memcpy(dec->cache_v_ - uvsize, vdst + 8 * dec->cache_uv_stride_, uvsize); |
+ } |
+ } |
+ |
+ return ok; |
+} |
+ |
+#undef MACROBLOCK_VPOS |
+ |
+//------------------------------------------------------------------------------ |
+ |
+int VP8ProcessRow(VP8Decoder* const dec, VP8Io* const io) { |
+ int ok = 1; |
+ VP8ThreadContext* const ctx = &dec->thread_ctx_; |
+ const int filter_row = |
+ (dec->filter_type_ > 0) && |
+ (dec->mb_y_ >= dec->tl_mb_y_) && (dec->mb_y_ <= dec->br_mb_y_); |
+ if (dec->mt_method_ == 0) { |
+ // ctx->id_ and ctx->f_info_ are already set |
+ ctx->mb_y_ = dec->mb_y_; |
+ ctx->filter_row_ = filter_row; |
+ ReconstructRow(dec, ctx); |
+ ok = FinishRow(dec, io); |
+ } else { |
+ WebPWorker* const worker = &dec->worker_; |
+ // Finish previous job *before* updating context |
+ ok &= WebPGetWorkerInterface()->Sync(worker); |
+ assert(worker->status_ == OK); |
+ if (ok) { // spawn a new deblocking/output job |
+ ctx->io_ = *io; |
+ ctx->id_ = dec->cache_id_; |
+ ctx->mb_y_ = dec->mb_y_; |
+ ctx->filter_row_ = filter_row; |
+ if (dec->mt_method_ == 2) { // swap macroblock data |
+ VP8MBData* const tmp = ctx->mb_data_; |
+ ctx->mb_data_ = dec->mb_data_; |
+ dec->mb_data_ = tmp; |
+ } else { |
+ // perform reconstruction directly in main thread |
+ ReconstructRow(dec, ctx); |
+ } |
+ if (filter_row) { // swap filter info |
+ VP8FInfo* const tmp = ctx->f_info_; |
+ ctx->f_info_ = dec->f_info_; |
+ dec->f_info_ = tmp; |
+ } |
+ // (reconstruct)+filter in parallel |
+ WebPGetWorkerInterface()->Launch(worker); |
+ if (++dec->cache_id_ == dec->num_caches_) { |
+ dec->cache_id_ = 0; |
+ } |
+ } |
+ } |
+ return ok; |
+} |
+ |
+//------------------------------------------------------------------------------ |
+// Finish setting up the decoding parameter once user's setup() is called. |
+ |
+VP8StatusCode VP8EnterCritical(VP8Decoder* const dec, VP8Io* const io) { |
+ // Call setup() first. This may trigger additional decoding features on 'io'. |
+ // Note: Afterward, we must call teardown() no matter what. |
+ if (io->setup != NULL && !io->setup(io)) { |
+ VP8SetError(dec, VP8_STATUS_USER_ABORT, "Frame setup failed"); |
+ return dec->status_; |
+ } |
+ |
+ // Disable filtering per user request |
+ if (io->bypass_filtering) { |
+ dec->filter_type_ = 0; |
+ } |
+ // TODO(skal): filter type / strength / sharpness forcing |
+ |
+ // Define the area where we can skip in-loop filtering, in case of cropping. |
+ // |
+ // 'Simple' filter reads two luma samples outside of the macroblock |
+ // and filters one. It doesn't filter the chroma samples. Hence, we can |
+ // avoid doing the in-loop filtering before crop_top/crop_left position. |
+ // For the 'Complex' filter, 3 samples are read and up to 3 are filtered. |
+ // Means: there's a dependency chain that goes all the way up to the |
+ // top-left corner of the picture (MB #0). We must filter all the previous |
+ // macroblocks. |
+ // TODO(skal): add an 'approximate_decoding' option, that won't produce |
+ // a 1:1 bit-exactness for complex filtering? |
+ { |
+ const int extra_pixels = kFilterExtraRows[dec->filter_type_]; |
+ if (dec->filter_type_ == 2) { |
+ // For complex filter, we need to preserve the dependency chain. |
+ dec->tl_mb_x_ = 0; |
+ dec->tl_mb_y_ = 0; |
+ } else { |
+ // For simple filter, we can filter only the cropped region. |
+ // We include 'extra_pixels' on the other side of the boundary, since |
+ // vertical or horizontal filtering of the previous macroblock can |
+ // modify some abutting pixels. |
+ dec->tl_mb_x_ = (io->crop_left - extra_pixels) >> 4; |
+ dec->tl_mb_y_ = (io->crop_top - extra_pixels) >> 4; |
+ if (dec->tl_mb_x_ < 0) dec->tl_mb_x_ = 0; |
+ if (dec->tl_mb_y_ < 0) dec->tl_mb_y_ = 0; |
+ } |
+ // We need some 'extra' pixels on the right/bottom. |
+ dec->br_mb_y_ = (io->crop_bottom + 15 + extra_pixels) >> 4; |
+ dec->br_mb_x_ = (io->crop_right + 15 + extra_pixels) >> 4; |
+ if (dec->br_mb_x_ > dec->mb_w_) { |
+ dec->br_mb_x_ = dec->mb_w_; |
+ } |
+ if (dec->br_mb_y_ > dec->mb_h_) { |
+ dec->br_mb_y_ = dec->mb_h_; |
+ } |
+ } |
+ PrecomputeFilterStrengths(dec); |
+ return VP8_STATUS_OK; |
+} |
+ |
+int VP8ExitCritical(VP8Decoder* const dec, VP8Io* const io) { |
+ int ok = 1; |
+ if (dec->mt_method_ > 0) { |
+ ok = WebPGetWorkerInterface()->Sync(&dec->worker_); |
+ } |
+ |
+ if (io->teardown != NULL) { |
+ io->teardown(io); |
+ } |
+ return ok; |
+} |
+ |
+//------------------------------------------------------------------------------ |
+// For multi-threaded decoding we need to use 3 rows of 16 pixels as delay line. |
+// |
+// Reason is: the deblocking filter cannot deblock the bottom horizontal edges |
+// immediately, and needs to wait for first few rows of the next macroblock to |
+// be decoded. Hence, deblocking is lagging behind by 4 or 8 pixels (depending |
+// on strength). |
+// With two threads, the vertical positions of the rows being decoded are: |
+// Decode: [ 0..15][16..31][32..47][48..63][64..79][... |
+// Deblock: [ 0..11][12..27][28..43][44..59][... |
+// If we use two threads and two caches of 16 pixels, the sequence would be: |
+// Decode: [ 0..15][16..31][ 0..15!!][16..31][ 0..15][... |
+// Deblock: [ 0..11][12..27!!][-4..11][12..27][... |
+// The problem occurs during row [12..15!!] that both the decoding and |
+// deblocking threads are writing simultaneously. |
+// With 3 cache lines, one get a safe write pattern: |
+// Decode: [ 0..15][16..31][32..47][ 0..15][16..31][32..47][0.. |
+// Deblock: [ 0..11][12..27][28..43][-4..11][12..27][28... |
+// Note that multi-threaded output _without_ deblocking can make use of two |
+// cache lines of 16 pixels only, since there's no lagging behind. The decoding |
+// and output process have non-concurrent writing: |
+// Decode: [ 0..15][16..31][ 0..15][16..31][... |
+// io->put: [ 0..15][16..31][ 0..15][... |
+ |
+#define MT_CACHE_LINES 3 |
+#define ST_CACHE_LINES 1 // 1 cache row only for single-threaded case |
+ |
+// Initialize multi/single-thread worker |
+static int InitThreadContext(VP8Decoder* const dec) { |
+ dec->cache_id_ = 0; |
+ if (dec->mt_method_ > 0) { |
+ WebPWorker* const worker = &dec->worker_; |
+ if (!WebPGetWorkerInterface()->Reset(worker)) { |
+ return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY, |
+ "thread initialization failed."); |
+ } |
+ worker->data1 = dec; |
+ worker->data2 = (void*)&dec->thread_ctx_.io_; |
+ worker->hook = (WebPWorkerHook)FinishRow; |
+ dec->num_caches_ = |
+ (dec->filter_type_ > 0) ? MT_CACHE_LINES : MT_CACHE_LINES - 1; |
+ } else { |
+ dec->num_caches_ = ST_CACHE_LINES; |
+ } |
+ return 1; |
+} |
+ |
+int VP8GetThreadMethod(const WebPDecoderOptions* const options, |
+ const WebPHeaderStructure* const headers, |
+ int width, int height) { |
+ if (options == NULL || options->use_threads == 0) { |
+ return 0; |
+ } |
+ (void)headers; |
+ (void)width; |
+ (void)height; |
+ assert(headers == NULL || !headers->is_lossless); |
+#if defined(WEBP_USE_THREAD) |
+ if (width < MIN_WIDTH_FOR_THREADS) return 0; |
+ // TODO(skal): tune the heuristic further |
+#if 0 |
+ if (height < 2 * width) return 2; |
+#endif |
+ return 2; |
+#else // !WEBP_USE_THREAD |
+ return 0; |
+#endif |
+} |
+ |
+#undef MT_CACHE_LINES |
+#undef ST_CACHE_LINES |
+ |
+//------------------------------------------------------------------------------ |
+// Memory setup |
+ |
+static int AllocateMemory(VP8Decoder* const dec) { |
+ const int num_caches = dec->num_caches_; |
+ const int mb_w = dec->mb_w_; |
+ // Note: we use 'size_t' when there's no overflow risk, uint64_t otherwise. |
+ const size_t intra_pred_mode_size = 4 * mb_w * sizeof(uint8_t); |
+ const size_t top_size = sizeof(VP8TopSamples) * mb_w; |
+ const size_t mb_info_size = (mb_w + 1) * sizeof(VP8MB); |
+ const size_t f_info_size = |
+ (dec->filter_type_ > 0) ? |
+ mb_w * (dec->mt_method_ > 0 ? 2 : 1) * sizeof(VP8FInfo) |
+ : 0; |
+ const size_t yuv_size = YUV_SIZE * sizeof(*dec->yuv_b_); |
+ const size_t mb_data_size = |
+ (dec->mt_method_ == 2 ? 2 : 1) * mb_w * sizeof(*dec->mb_data_); |
+ const size_t cache_height = (16 * num_caches |
+ + kFilterExtraRows[dec->filter_type_]) * 3 / 2; |
+ const size_t cache_size = top_size * cache_height; |
+ // alpha_size is the only one that scales as width x height. |
+ const uint64_t alpha_size = (dec->alpha_data_ != NULL) ? |
+ (uint64_t)dec->pic_hdr_.width_ * dec->pic_hdr_.height_ : 0ULL; |
+ const uint64_t needed = (uint64_t)intra_pred_mode_size |
+ + top_size + mb_info_size + f_info_size |
+ + yuv_size + mb_data_size |
+ + cache_size + alpha_size + ALIGN_MASK; |
+ uint8_t* mem; |
+ |
+ if (needed != (size_t)needed) return 0; // check for overflow |
+ if (needed > dec->mem_size_) { |
+ WebPSafeFree(dec->mem_); |
+ dec->mem_size_ = 0; |
+ dec->mem_ = WebPSafeMalloc(needed, sizeof(uint8_t)); |
+ if (dec->mem_ == NULL) { |
+ return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY, |
+ "no memory during frame initialization."); |
+ } |
+ // down-cast is ok, thanks to WebPSafeAlloc() above. |
+ dec->mem_size_ = (size_t)needed; |
+ } |
+ |
+ mem = (uint8_t*)dec->mem_; |
+ dec->intra_t_ = (uint8_t*)mem; |
+ mem += intra_pred_mode_size; |
+ |
+ dec->yuv_t_ = (VP8TopSamples*)mem; |
+ mem += top_size; |
+ |
+ dec->mb_info_ = ((VP8MB*)mem) + 1; |
+ mem += mb_info_size; |
+ |
+ dec->f_info_ = f_info_size ? (VP8FInfo*)mem : NULL; |
+ mem += f_info_size; |
+ dec->thread_ctx_.id_ = 0; |
+ dec->thread_ctx_.f_info_ = dec->f_info_; |
+ if (dec->mt_method_ > 0) { |
+ // secondary cache line. The deblocking process need to make use of the |
+ // filtering strength from previous macroblock row, while the new ones |
+ // are being decoded in parallel. We'll just swap the pointers. |
+ dec->thread_ctx_.f_info_ += mb_w; |
+ } |
+ |
+ mem = (uint8_t*)((uintptr_t)(mem + ALIGN_MASK) & ~ALIGN_MASK); |
+ assert((yuv_size & ALIGN_MASK) == 0); |
+ dec->yuv_b_ = (uint8_t*)mem; |
+ mem += yuv_size; |
+ |
+ dec->mb_data_ = (VP8MBData*)mem; |
+ dec->thread_ctx_.mb_data_ = (VP8MBData*)mem; |
+ if (dec->mt_method_ == 2) { |
+ dec->thread_ctx_.mb_data_ += mb_w; |
+ } |
+ mem += mb_data_size; |
+ |
+ dec->cache_y_stride_ = 16 * mb_w; |
+ dec->cache_uv_stride_ = 8 * mb_w; |
+ { |
+ const int extra_rows = kFilterExtraRows[dec->filter_type_]; |
+ const int extra_y = extra_rows * dec->cache_y_stride_; |
+ const int extra_uv = (extra_rows / 2) * dec->cache_uv_stride_; |
+ dec->cache_y_ = ((uint8_t*)mem) + extra_y; |
+ dec->cache_u_ = dec->cache_y_ |
+ + 16 * num_caches * dec->cache_y_stride_ + extra_uv; |
+ dec->cache_v_ = dec->cache_u_ |
+ + 8 * num_caches * dec->cache_uv_stride_ + extra_uv; |
+ dec->cache_id_ = 0; |
+ } |
+ mem += cache_size; |
+ |
+ // alpha plane |
+ dec->alpha_plane_ = alpha_size ? (uint8_t*)mem : NULL; |
+ mem += alpha_size; |
+ assert(mem <= (uint8_t*)dec->mem_ + dec->mem_size_); |
+ |
+ // note: left/top-info is initialized once for all. |
+ memset(dec->mb_info_ - 1, 0, mb_info_size); |
+ VP8InitScanline(dec); // initialize left too. |
+ |
+ // initialize top |
+ memset(dec->intra_t_, B_DC_PRED, intra_pred_mode_size); |
+ |
+ return 1; |
+} |
+ |
+static void InitIo(VP8Decoder* const dec, VP8Io* io) { |
+ // prepare 'io' |
+ io->mb_y = 0; |
+ io->y = dec->cache_y_; |
+ io->u = dec->cache_u_; |
+ io->v = dec->cache_v_; |
+ io->y_stride = dec->cache_y_stride_; |
+ io->uv_stride = dec->cache_uv_stride_; |
+ io->a = NULL; |
+} |
+ |
+int VP8InitFrame(VP8Decoder* const dec, VP8Io* io) { |
+ if (!InitThreadContext(dec)) return 0; // call first. Sets dec->num_caches_. |
+ if (!AllocateMemory(dec)) return 0; |
+ InitIo(dec, io); |
+ VP8DspInit(); // Init critical function pointers and look-up tables. |
+ return 1; |
+} |
+ |
+//------------------------------------------------------------------------------ |
+// Main reconstruction function. |
+ |
+static const int kScan[16] = { |
+ 0 + 0 * BPS, 4 + 0 * BPS, 8 + 0 * BPS, 12 + 0 * BPS, |
+ 0 + 4 * BPS, 4 + 4 * BPS, 8 + 4 * BPS, 12 + 4 * BPS, |
+ 0 + 8 * BPS, 4 + 8 * BPS, 8 + 8 * BPS, 12 + 8 * BPS, |
+ 0 + 12 * BPS, 4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS |
+}; |
+ |
+static int CheckMode(int mb_x, int mb_y, int mode) { |
+ if (mode == B_DC_PRED) { |
+ if (mb_x == 0) { |
+ return (mb_y == 0) ? B_DC_PRED_NOTOPLEFT : B_DC_PRED_NOLEFT; |
+ } else { |
+ return (mb_y == 0) ? B_DC_PRED_NOTOP : B_DC_PRED; |
+ } |
+ } |
+ return mode; |
+} |
+ |
+static void Copy32b(uint8_t* dst, uint8_t* src) { |
+ memcpy(dst, src, 4); |
+} |
+ |
+static WEBP_INLINE void DoTransform(uint32_t bits, const int16_t* const src, |
+ uint8_t* const dst) { |
+ switch (bits >> 30) { |
+ case 3: |
+ VP8Transform(src, dst, 0); |
+ break; |
+ case 2: |
+ VP8TransformAC3(src, dst); |
+ break; |
+ case 1: |
+ VP8TransformDC(src, dst); |
+ break; |
+ default: |
+ break; |
+ } |
+} |
+ |
+static void DoUVTransform(uint32_t bits, const int16_t* const src, |
+ uint8_t* const dst) { |
+ if (bits & 0xff) { // any non-zero coeff at all? |
+ if (bits & 0xaa) { // any non-zero AC coefficient? |
+ VP8TransformUV(src, dst); // note we don't use the AC3 variant for U/V |
+ } else { |
+ VP8TransformDCUV(src, dst); |
+ } |
+ } |
+} |
+ |
+static void ReconstructRow(const VP8Decoder* const dec, |
+ const VP8ThreadContext* ctx) { |
+ int j; |
+ int mb_x; |
+ const int mb_y = ctx->mb_y_; |
+ const int cache_id = ctx->id_; |
+ uint8_t* const y_dst = dec->yuv_b_ + Y_OFF; |
+ uint8_t* const u_dst = dec->yuv_b_ + U_OFF; |
+ uint8_t* const v_dst = dec->yuv_b_ + V_OFF; |
+ for (mb_x = 0; mb_x < dec->mb_w_; ++mb_x) { |
+ const VP8MBData* const block = ctx->mb_data_ + mb_x; |
+ |
+ // Rotate in the left samples from previously decoded block. We move four |
+ // pixels at a time for alignment reason, and because of in-loop filter. |
+ if (mb_x > 0) { |
+ for (j = -1; j < 16; ++j) { |
+ Copy32b(&y_dst[j * BPS - 4], &y_dst[j * BPS + 12]); |
+ } |
+ for (j = -1; j < 8; ++j) { |
+ Copy32b(&u_dst[j * BPS - 4], &u_dst[j * BPS + 4]); |
+ Copy32b(&v_dst[j * BPS - 4], &v_dst[j * BPS + 4]); |
+ } |
+ } else { |
+ for (j = 0; j < 16; ++j) { |
+ y_dst[j * BPS - 1] = 129; |
+ } |
+ for (j = 0; j < 8; ++j) { |
+ u_dst[j * BPS - 1] = 129; |
+ v_dst[j * BPS - 1] = 129; |
+ } |
+ // Init top-left sample on left column too |
+ if (mb_y > 0) { |
+ y_dst[-1 - BPS] = u_dst[-1 - BPS] = v_dst[-1 - BPS] = 129; |
+ } |
+ } |
+ { |
+ // bring top samples into the cache |
+ VP8TopSamples* const top_yuv = dec->yuv_t_ + mb_x; |
+ const int16_t* const coeffs = block->coeffs_; |
+ uint32_t bits = block->non_zero_y_; |
+ int n; |
+ |
+ if (mb_y > 0) { |
+ memcpy(y_dst - BPS, top_yuv[0].y, 16); |
+ memcpy(u_dst - BPS, top_yuv[0].u, 8); |
+ memcpy(v_dst - BPS, top_yuv[0].v, 8); |
+ } else if (mb_x == 0) { |
+ // we only need to do this init once at block (0,0). |
+ // Afterward, it remains valid for the whole topmost row. |
+ memset(y_dst - BPS - 1, 127, 16 + 4 + 1); |
+ memset(u_dst - BPS - 1, 127, 8 + 1); |
+ memset(v_dst - BPS - 1, 127, 8 + 1); |
+ } |
+ |
+ // predict and add residuals |
+ if (block->is_i4x4_) { // 4x4 |
+ uint32_t* const top_right = (uint32_t*)(y_dst - BPS + 16); |
+ |
+ if (mb_y > 0) { |
+ if (mb_x >= dec->mb_w_ - 1) { // on rightmost border |
+ memset(top_right, top_yuv[0].y[15], sizeof(*top_right)); |
+ } else { |
+ memcpy(top_right, top_yuv[1].y, sizeof(*top_right)); |
+ } |
+ } |
+ // replicate the top-right pixels below |
+ top_right[BPS] = top_right[2 * BPS] = top_right[3 * BPS] = top_right[0]; |
+ |
+ // predict and add residuals for all 4x4 blocks in turn. |
+ for (n = 0; n < 16; ++n, bits <<= 2) { |
+ uint8_t* const dst = y_dst + kScan[n]; |
+ VP8PredLuma4[block->imodes_[n]](dst); |
+ DoTransform(bits, coeffs + n * 16, dst); |
+ } |
+ } else { // 16x16 |
+ const int pred_func = CheckMode(mb_x, mb_y, |
+ block->imodes_[0]); |
+ VP8PredLuma16[pred_func](y_dst); |
+ if (bits != 0) { |
+ for (n = 0; n < 16; ++n, bits <<= 2) { |
+ DoTransform(bits, coeffs + n * 16, y_dst + kScan[n]); |
+ } |
+ } |
+ } |
+ { |
+ // Chroma |
+ const uint32_t bits_uv = block->non_zero_uv_; |
+ const int pred_func = CheckMode(mb_x, mb_y, block->uvmode_); |
+ VP8PredChroma8[pred_func](u_dst); |
+ VP8PredChroma8[pred_func](v_dst); |
+ DoUVTransform(bits_uv >> 0, coeffs + 16 * 16, u_dst); |
+ DoUVTransform(bits_uv >> 8, coeffs + 20 * 16, v_dst); |
+ } |
+ |
+ // stash away top samples for next block |
+ if (mb_y < dec->mb_h_ - 1) { |
+ memcpy(top_yuv[0].y, y_dst + 15 * BPS, 16); |
+ memcpy(top_yuv[0].u, u_dst + 7 * BPS, 8); |
+ memcpy(top_yuv[0].v, v_dst + 7 * BPS, 8); |
+ } |
+ } |
+ // Transfer reconstructed samples from yuv_b_ cache to final destination. |
+ { |
+ const int y_offset = cache_id * 16 * dec->cache_y_stride_; |
+ const int uv_offset = cache_id * 8 * dec->cache_uv_stride_; |
+ uint8_t* const y_out = dec->cache_y_ + mb_x * 16 + y_offset; |
+ uint8_t* const u_out = dec->cache_u_ + mb_x * 8 + uv_offset; |
+ uint8_t* const v_out = dec->cache_v_ + mb_x * 8 + uv_offset; |
+ for (j = 0; j < 16; ++j) { |
+ memcpy(y_out + j * dec->cache_y_stride_, y_dst + j * BPS, 16); |
+ } |
+ for (j = 0; j < 8; ++j) { |
+ memcpy(u_out + j * dec->cache_uv_stride_, u_dst + j * BPS, 8); |
+ memcpy(v_out + j * dec->cache_uv_stride_, v_dst + j * BPS, 8); |
+ } |
+ } |
+ } |
+} |
+ |
+//------------------------------------------------------------------------------ |
+ |