| Index: third_party/libwebp/enc/analysis.c
|
| diff --git a/third_party/libwebp/enc/analysis.c b/third_party/libwebp/enc/analysis.c
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..e019465bbabdec0c88190e0a16f3add270abde1f
|
| --- /dev/null
|
| +++ b/third_party/libwebp/enc/analysis.c
|
| @@ -0,0 +1,498 @@
|
| +// Copyright 2011 Google Inc. All Rights Reserved.
|
| +//
|
| +// Use of this source code is governed by a BSD-style license
|
| +// that can be found in the COPYING file in the root of the source
|
| +// tree. An additional intellectual property rights grant can be found
|
| +// in the file PATENTS. All contributing project authors may
|
| +// be found in the AUTHORS file in the root of the source tree.
|
| +// -----------------------------------------------------------------------------
|
| +//
|
| +// Macroblock analysis
|
| +//
|
| +// Author: Skal (pascal.massimino@gmail.com)
|
| +
|
| +#include <stdlib.h>
|
| +#include <string.h>
|
| +#include <assert.h>
|
| +
|
| +#include "./vp8enci.h"
|
| +#include "./cost.h"
|
| +#include "../utils/utils.h"
|
| +
|
| +#define MAX_ITERS_K_MEANS 6
|
| +
|
| +//------------------------------------------------------------------------------
|
| +// Smooth the segment map by replacing isolated block by the majority of its
|
| +// neighbours.
|
| +
|
| +static void SmoothSegmentMap(VP8Encoder* const enc) {
|
| + int n, x, y;
|
| + const int w = enc->mb_w_;
|
| + const int h = enc->mb_h_;
|
| + const int majority_cnt_3_x_3_grid = 5;
|
| + uint8_t* const tmp = (uint8_t*)WebPSafeMalloc(w * h, sizeof(*tmp));
|
| + assert((uint64_t)(w * h) == (uint64_t)w * h); // no overflow, as per spec
|
| +
|
| + if (tmp == NULL) return;
|
| + for (y = 1; y < h - 1; ++y) {
|
| + for (x = 1; x < w - 1; ++x) {
|
| + int cnt[NUM_MB_SEGMENTS] = { 0 };
|
| + const VP8MBInfo* const mb = &enc->mb_info_[x + w * y];
|
| + int majority_seg = mb->segment_;
|
| + // Check the 8 neighbouring segment values.
|
| + cnt[mb[-w - 1].segment_]++; // top-left
|
| + cnt[mb[-w + 0].segment_]++; // top
|
| + cnt[mb[-w + 1].segment_]++; // top-right
|
| + cnt[mb[ - 1].segment_]++; // left
|
| + cnt[mb[ + 1].segment_]++; // right
|
| + cnt[mb[ w - 1].segment_]++; // bottom-left
|
| + cnt[mb[ w + 0].segment_]++; // bottom
|
| + cnt[mb[ w + 1].segment_]++; // bottom-right
|
| + for (n = 0; n < NUM_MB_SEGMENTS; ++n) {
|
| + if (cnt[n] >= majority_cnt_3_x_3_grid) {
|
| + majority_seg = n;
|
| + break;
|
| + }
|
| + }
|
| + tmp[x + y * w] = majority_seg;
|
| + }
|
| + }
|
| + for (y = 1; y < h - 1; ++y) {
|
| + for (x = 1; x < w - 1; ++x) {
|
| + VP8MBInfo* const mb = &enc->mb_info_[x + w * y];
|
| + mb->segment_ = tmp[x + y * w];
|
| + }
|
| + }
|
| + WebPSafeFree(tmp);
|
| +}
|
| +
|
| +//------------------------------------------------------------------------------
|
| +// set segment susceptibility alpha_ / beta_
|
| +
|
| +static WEBP_INLINE int clip(int v, int m, int M) {
|
| + return (v < m) ? m : (v > M) ? M : v;
|
| +}
|
| +
|
| +static void SetSegmentAlphas(VP8Encoder* const enc,
|
| + const int centers[NUM_MB_SEGMENTS],
|
| + int mid) {
|
| + const int nb = enc->segment_hdr_.num_segments_;
|
| + int min = centers[0], max = centers[0];
|
| + int n;
|
| +
|
| + if (nb > 1) {
|
| + for (n = 0; n < nb; ++n) {
|
| + if (min > centers[n]) min = centers[n];
|
| + if (max < centers[n]) max = centers[n];
|
| + }
|
| + }
|
| + if (max == min) max = min + 1;
|
| + assert(mid <= max && mid >= min);
|
| + for (n = 0; n < nb; ++n) {
|
| + const int alpha = 255 * (centers[n] - mid) / (max - min);
|
| + const int beta = 255 * (centers[n] - min) / (max - min);
|
| + enc->dqm_[n].alpha_ = clip(alpha, -127, 127);
|
| + enc->dqm_[n].beta_ = clip(beta, 0, 255);
|
| + }
|
| +}
|
| +
|
| +//------------------------------------------------------------------------------
|
| +// Compute susceptibility based on DCT-coeff histograms:
|
| +// the higher, the "easier" the macroblock is to compress.
|
| +
|
| +#define MAX_ALPHA 255 // 8b of precision for susceptibilities.
|
| +#define ALPHA_SCALE (2 * MAX_ALPHA) // scaling factor for alpha.
|
| +#define DEFAULT_ALPHA (-1)
|
| +#define IS_BETTER_ALPHA(alpha, best_alpha) ((alpha) > (best_alpha))
|
| +
|
| +static int FinalAlphaValue(int alpha) {
|
| + alpha = MAX_ALPHA - alpha;
|
| + return clip(alpha, 0, MAX_ALPHA);
|
| +}
|
| +
|
| +static int GetAlpha(const VP8Histogram* const histo) {
|
| + int max_value = 0, last_non_zero = 1;
|
| + int k;
|
| + int alpha;
|
| + for (k = 0; k <= MAX_COEFF_THRESH; ++k) {
|
| + const int value = histo->distribution[k];
|
| + if (value > 0) {
|
| + if (value > max_value) max_value = value;
|
| + last_non_zero = k;
|
| + }
|
| + }
|
| + // 'alpha' will later be clipped to [0..MAX_ALPHA] range, clamping outer
|
| + // values which happen to be mostly noise. This leaves the maximum precision
|
| + // for handling the useful small values which contribute most.
|
| + alpha = (max_value > 1) ? ALPHA_SCALE * last_non_zero / max_value : 0;
|
| + return alpha;
|
| +}
|
| +
|
| +static void MergeHistograms(const VP8Histogram* const in,
|
| + VP8Histogram* const out) {
|
| + int i;
|
| + for (i = 0; i <= MAX_COEFF_THRESH; ++i) {
|
| + out->distribution[i] += in->distribution[i];
|
| + }
|
| +}
|
| +
|
| +//------------------------------------------------------------------------------
|
| +// Simplified k-Means, to assign Nb segments based on alpha-histogram
|
| +
|
| +static void AssignSegments(VP8Encoder* const enc,
|
| + const int alphas[MAX_ALPHA + 1]) {
|
| + // 'num_segments_' is previously validated and <= NUM_MB_SEGMENTS, but an
|
| + // explicit check is needed to avoid spurious warning about 'n + 1' exceeding
|
| + // array bounds of 'centers' with some compilers (noticed with gcc-4.9).
|
| + const int nb = (enc->segment_hdr_.num_segments_ < NUM_MB_SEGMENTS) ?
|
| + enc->segment_hdr_.num_segments_ : NUM_MB_SEGMENTS;
|
| + int centers[NUM_MB_SEGMENTS];
|
| + int weighted_average = 0;
|
| + int map[MAX_ALPHA + 1];
|
| + int a, n, k;
|
| + int min_a = 0, max_a = MAX_ALPHA, range_a;
|
| + // 'int' type is ok for histo, and won't overflow
|
| + int accum[NUM_MB_SEGMENTS], dist_accum[NUM_MB_SEGMENTS];
|
| +
|
| + assert(nb >= 1);
|
| + assert(nb <= NUM_MB_SEGMENTS);
|
| +
|
| + // bracket the input
|
| + for (n = 0; n <= MAX_ALPHA && alphas[n] == 0; ++n) {}
|
| + min_a = n;
|
| + for (n = MAX_ALPHA; n > min_a && alphas[n] == 0; --n) {}
|
| + max_a = n;
|
| + range_a = max_a - min_a;
|
| +
|
| + // Spread initial centers evenly
|
| + for (k = 0, n = 1; k < nb; ++k, n += 2) {
|
| + assert(n < 2 * nb);
|
| + centers[k] = min_a + (n * range_a) / (2 * nb);
|
| + }
|
| +
|
| + for (k = 0; k < MAX_ITERS_K_MEANS; ++k) { // few iters are enough
|
| + int total_weight;
|
| + int displaced;
|
| + // Reset stats
|
| + for (n = 0; n < nb; ++n) {
|
| + accum[n] = 0;
|
| + dist_accum[n] = 0;
|
| + }
|
| + // Assign nearest center for each 'a'
|
| + n = 0; // track the nearest center for current 'a'
|
| + for (a = min_a; a <= max_a; ++a) {
|
| + if (alphas[a]) {
|
| + while (n + 1 < nb && abs(a - centers[n + 1]) < abs(a - centers[n])) {
|
| + n++;
|
| + }
|
| + map[a] = n;
|
| + // accumulate contribution into best centroid
|
| + dist_accum[n] += a * alphas[a];
|
| + accum[n] += alphas[a];
|
| + }
|
| + }
|
| + // All point are classified. Move the centroids to the
|
| + // center of their respective cloud.
|
| + displaced = 0;
|
| + weighted_average = 0;
|
| + total_weight = 0;
|
| + for (n = 0; n < nb; ++n) {
|
| + if (accum[n]) {
|
| + const int new_center = (dist_accum[n] + accum[n] / 2) / accum[n];
|
| + displaced += abs(centers[n] - new_center);
|
| + centers[n] = new_center;
|
| + weighted_average += new_center * accum[n];
|
| + total_weight += accum[n];
|
| + }
|
| + }
|
| + weighted_average = (weighted_average + total_weight / 2) / total_weight;
|
| + if (displaced < 5) break; // no need to keep on looping...
|
| + }
|
| +
|
| + // Map each original value to the closest centroid
|
| + for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) {
|
| + VP8MBInfo* const mb = &enc->mb_info_[n];
|
| + const int alpha = mb->alpha_;
|
| + mb->segment_ = map[alpha];
|
| + mb->alpha_ = centers[map[alpha]]; // for the record.
|
| + }
|
| +
|
| + if (nb > 1) {
|
| + const int smooth = (enc->config_->preprocessing & 1);
|
| + if (smooth) SmoothSegmentMap(enc);
|
| + }
|
| +
|
| + SetSegmentAlphas(enc, centers, weighted_average); // pick some alphas.
|
| +}
|
| +
|
| +//------------------------------------------------------------------------------
|
| +// Macroblock analysis: collect histogram for each mode, deduce the maximal
|
| +// susceptibility and set best modes for this macroblock.
|
| +// Segment assignment is done later.
|
| +
|
| +// Number of modes to inspect for alpha_ evaluation. We don't need to test all
|
| +// the possible modes during the analysis phase: we risk falling into a local
|
| +// optimum, or be subject to boundary effect
|
| +#define MAX_INTRA16_MODE 2
|
| +#define MAX_INTRA4_MODE 2
|
| +#define MAX_UV_MODE 2
|
| +
|
| +static int MBAnalyzeBestIntra16Mode(VP8EncIterator* const it) {
|
| + const int max_mode = MAX_INTRA16_MODE;
|
| + int mode;
|
| + int best_alpha = DEFAULT_ALPHA;
|
| + int best_mode = 0;
|
| +
|
| + VP8MakeLuma16Preds(it);
|
| + for (mode = 0; mode < max_mode; ++mode) {
|
| + VP8Histogram histo = { { 0 } };
|
| + int alpha;
|
| +
|
| + VP8CollectHistogram(it->yuv_in_ + Y_OFF,
|
| + it->yuv_p_ + VP8I16ModeOffsets[mode],
|
| + 0, 16, &histo);
|
| + alpha = GetAlpha(&histo);
|
| + if (IS_BETTER_ALPHA(alpha, best_alpha)) {
|
| + best_alpha = alpha;
|
| + best_mode = mode;
|
| + }
|
| + }
|
| + VP8SetIntra16Mode(it, best_mode);
|
| + return best_alpha;
|
| +}
|
| +
|
| +static int MBAnalyzeBestIntra4Mode(VP8EncIterator* const it,
|
| + int best_alpha) {
|
| + uint8_t modes[16];
|
| + const int max_mode = MAX_INTRA4_MODE;
|
| + int i4_alpha;
|
| + VP8Histogram total_histo = { { 0 } };
|
| + int cur_histo = 0;
|
| +
|
| + VP8IteratorStartI4(it);
|
| + do {
|
| + int mode;
|
| + int best_mode_alpha = DEFAULT_ALPHA;
|
| + VP8Histogram histos[2];
|
| + const uint8_t* const src = it->yuv_in_ + Y_OFF + VP8Scan[it->i4_];
|
| +
|
| + VP8MakeIntra4Preds(it);
|
| + for (mode = 0; mode < max_mode; ++mode) {
|
| + int alpha;
|
| +
|
| + memset(&histos[cur_histo], 0, sizeof(histos[cur_histo]));
|
| + VP8CollectHistogram(src, it->yuv_p_ + VP8I4ModeOffsets[mode],
|
| + 0, 1, &histos[cur_histo]);
|
| + alpha = GetAlpha(&histos[cur_histo]);
|
| + if (IS_BETTER_ALPHA(alpha, best_mode_alpha)) {
|
| + best_mode_alpha = alpha;
|
| + modes[it->i4_] = mode;
|
| + cur_histo ^= 1; // keep track of best histo so far.
|
| + }
|
| + }
|
| + // accumulate best histogram
|
| + MergeHistograms(&histos[cur_histo ^ 1], &total_histo);
|
| + // Note: we reuse the original samples for predictors
|
| + } while (VP8IteratorRotateI4(it, it->yuv_in_ + Y_OFF));
|
| +
|
| + i4_alpha = GetAlpha(&total_histo);
|
| + if (IS_BETTER_ALPHA(i4_alpha, best_alpha)) {
|
| + VP8SetIntra4Mode(it, modes);
|
| + best_alpha = i4_alpha;
|
| + }
|
| + return best_alpha;
|
| +}
|
| +
|
| +static int MBAnalyzeBestUVMode(VP8EncIterator* const it) {
|
| + int best_alpha = DEFAULT_ALPHA;
|
| + int best_mode = 0;
|
| + const int max_mode = MAX_UV_MODE;
|
| + int mode;
|
| +
|
| + VP8MakeChroma8Preds(it);
|
| + for (mode = 0; mode < max_mode; ++mode) {
|
| + VP8Histogram histo = { { 0 } };
|
| + int alpha;
|
| + VP8CollectHistogram(it->yuv_in_ + U_OFF,
|
| + it->yuv_p_ + VP8UVModeOffsets[mode],
|
| + 16, 16 + 4 + 4, &histo);
|
| + alpha = GetAlpha(&histo);
|
| + if (IS_BETTER_ALPHA(alpha, best_alpha)) {
|
| + best_alpha = alpha;
|
| + best_mode = mode;
|
| + }
|
| + }
|
| + VP8SetIntraUVMode(it, best_mode);
|
| + return best_alpha;
|
| +}
|
| +
|
| +static void MBAnalyze(VP8EncIterator* const it,
|
| + int alphas[MAX_ALPHA + 1],
|
| + int* const alpha, int* const uv_alpha) {
|
| + const VP8Encoder* const enc = it->enc_;
|
| + int best_alpha, best_uv_alpha;
|
| +
|
| + VP8SetIntra16Mode(it, 0); // default: Intra16, DC_PRED
|
| + VP8SetSkip(it, 0); // not skipped
|
| + VP8SetSegment(it, 0); // default segment, spec-wise.
|
| +
|
| + best_alpha = MBAnalyzeBestIntra16Mode(it);
|
| + if (enc->method_ >= 5) {
|
| + // We go and make a fast decision for intra4/intra16.
|
| + // It's usually not a good and definitive pick, but helps seeding the stats
|
| + // about level bit-cost.
|
| + // TODO(skal): improve criterion.
|
| + best_alpha = MBAnalyzeBestIntra4Mode(it, best_alpha);
|
| + }
|
| + best_uv_alpha = MBAnalyzeBestUVMode(it);
|
| +
|
| + // Final susceptibility mix
|
| + best_alpha = (3 * best_alpha + best_uv_alpha + 2) >> 2;
|
| + best_alpha = FinalAlphaValue(best_alpha);
|
| + alphas[best_alpha]++;
|
| + it->mb_->alpha_ = best_alpha; // for later remapping.
|
| +
|
| + // Accumulate for later complexity analysis.
|
| + *alpha += best_alpha; // mixed susceptibility (not just luma)
|
| + *uv_alpha += best_uv_alpha;
|
| +}
|
| +
|
| +static void DefaultMBInfo(VP8MBInfo* const mb) {
|
| + mb->type_ = 1; // I16x16
|
| + mb->uv_mode_ = 0;
|
| + mb->skip_ = 0; // not skipped
|
| + mb->segment_ = 0; // default segment
|
| + mb->alpha_ = 0;
|
| +}
|
| +
|
| +//------------------------------------------------------------------------------
|
| +// Main analysis loop:
|
| +// Collect all susceptibilities for each macroblock and record their
|
| +// distribution in alphas[]. Segments is assigned a-posteriori, based on
|
| +// this histogram.
|
| +// We also pick an intra16 prediction mode, which shouldn't be considered
|
| +// final except for fast-encode settings. We can also pick some intra4 modes
|
| +// and decide intra4/intra16, but that's usually almost always a bad choice at
|
| +// this stage.
|
| +
|
| +static void ResetAllMBInfo(VP8Encoder* const enc) {
|
| + int n;
|
| + for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) {
|
| + DefaultMBInfo(&enc->mb_info_[n]);
|
| + }
|
| + // Default susceptibilities.
|
| + enc->dqm_[0].alpha_ = 0;
|
| + enc->dqm_[0].beta_ = 0;
|
| + // Note: we can't compute this alpha_ / uv_alpha_ -> set to default value.
|
| + enc->alpha_ = 0;
|
| + enc->uv_alpha_ = 0;
|
| + WebPReportProgress(enc->pic_, enc->percent_ + 20, &enc->percent_);
|
| +}
|
| +
|
| +// struct used to collect job result
|
| +typedef struct {
|
| + WebPWorker worker;
|
| + int alphas[MAX_ALPHA + 1];
|
| + int alpha, uv_alpha;
|
| + VP8EncIterator it;
|
| + int delta_progress;
|
| +} SegmentJob;
|
| +
|
| +// main work call
|
| +static int DoSegmentsJob(SegmentJob* const job, VP8EncIterator* const it) {
|
| + int ok = 1;
|
| + if (!VP8IteratorIsDone(it)) {
|
| + uint8_t tmp[32 + ALIGN_CST];
|
| + uint8_t* const scratch = (uint8_t*)DO_ALIGN(tmp);
|
| + do {
|
| + // Let's pretend we have perfect lossless reconstruction.
|
| + VP8IteratorImport(it, scratch);
|
| + MBAnalyze(it, job->alphas, &job->alpha, &job->uv_alpha);
|
| + ok = VP8IteratorProgress(it, job->delta_progress);
|
| + } while (ok && VP8IteratorNext(it));
|
| + }
|
| + return ok;
|
| +}
|
| +
|
| +static void MergeJobs(const SegmentJob* const src, SegmentJob* const dst) {
|
| + int i;
|
| + for (i = 0; i <= MAX_ALPHA; ++i) dst->alphas[i] += src->alphas[i];
|
| + dst->alpha += src->alpha;
|
| + dst->uv_alpha += src->uv_alpha;
|
| +}
|
| +
|
| +// initialize the job struct with some TODOs
|
| +static void InitSegmentJob(VP8Encoder* const enc, SegmentJob* const job,
|
| + int start_row, int end_row) {
|
| + WebPGetWorkerInterface()->Init(&job->worker);
|
| + job->worker.data1 = job;
|
| + job->worker.data2 = &job->it;
|
| + job->worker.hook = (WebPWorkerHook)DoSegmentsJob;
|
| + VP8IteratorInit(enc, &job->it);
|
| + VP8IteratorSetRow(&job->it, start_row);
|
| + VP8IteratorSetCountDown(&job->it, (end_row - start_row) * enc->mb_w_);
|
| + memset(job->alphas, 0, sizeof(job->alphas));
|
| + job->alpha = 0;
|
| + job->uv_alpha = 0;
|
| + // only one of both jobs can record the progress, since we don't
|
| + // expect the user's hook to be multi-thread safe
|
| + job->delta_progress = (start_row == 0) ? 20 : 0;
|
| +}
|
| +
|
| +// main entry point
|
| +int VP8EncAnalyze(VP8Encoder* const enc) {
|
| + int ok = 1;
|
| + const int do_segments =
|
| + enc->config_->emulate_jpeg_size || // We need the complexity evaluation.
|
| + (enc->segment_hdr_.num_segments_ > 1) ||
|
| + (enc->method_ == 0); // for method 0, we need preds_[] to be filled.
|
| + if (do_segments) {
|
| + const int last_row = enc->mb_h_;
|
| + // We give a little more than a half work to the main thread.
|
| + const int split_row = (9 * last_row + 15) >> 4;
|
| + const int total_mb = last_row * enc->mb_w_;
|
| +#ifdef WEBP_USE_THREAD
|
| + const int kMinSplitRow = 2; // minimal rows needed for mt to be worth it
|
| + const int do_mt = (enc->thread_level_ > 0) && (split_row >= kMinSplitRow);
|
| +#else
|
| + const int do_mt = 0;
|
| +#endif
|
| + const WebPWorkerInterface* const worker_interface =
|
| + WebPGetWorkerInterface();
|
| + SegmentJob main_job;
|
| + if (do_mt) {
|
| + SegmentJob side_job;
|
| + // Note the use of '&' instead of '&&' because we must call the functions
|
| + // no matter what.
|
| + InitSegmentJob(enc, &main_job, 0, split_row);
|
| + InitSegmentJob(enc, &side_job, split_row, last_row);
|
| + // we don't need to call Reset() on main_job.worker, since we're calling
|
| + // WebPWorkerExecute() on it
|
| + ok &= worker_interface->Reset(&side_job.worker);
|
| + // launch the two jobs in parallel
|
| + if (ok) {
|
| + worker_interface->Launch(&side_job.worker);
|
| + worker_interface->Execute(&main_job.worker);
|
| + ok &= worker_interface->Sync(&side_job.worker);
|
| + ok &= worker_interface->Sync(&main_job.worker);
|
| + }
|
| + worker_interface->End(&side_job.worker);
|
| + if (ok) MergeJobs(&side_job, &main_job); // merge results together
|
| + } else {
|
| + // Even for single-thread case, we use the generic Worker tools.
|
| + InitSegmentJob(enc, &main_job, 0, last_row);
|
| + worker_interface->Execute(&main_job.worker);
|
| + ok &= worker_interface->Sync(&main_job.worker);
|
| + }
|
| + worker_interface->End(&main_job.worker);
|
| + if (ok) {
|
| + enc->alpha_ = main_job.alpha / total_mb;
|
| + enc->uv_alpha_ = main_job.uv_alpha / total_mb;
|
| + AssignSegments(enc, main_job.alphas);
|
| + }
|
| + } else { // Use only one default segment.
|
| + ResetAllMBInfo(enc);
|
| + }
|
| + return ok;
|
| +}
|
| +
|
|
|