Index: third_party/libwebp/utils/huffman.c |
diff --git a/third_party/libwebp/utils/huffman.c b/third_party/libwebp/utils/huffman.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..c4c16d9e6ce2bb4b7ec2e7afe875e9f19e2ed406 |
--- /dev/null |
+++ b/third_party/libwebp/utils/huffman.c |
@@ -0,0 +1,319 @@ |
+// Copyright 2012 Google Inc. All Rights Reserved. |
+// |
+// Use of this source code is governed by a BSD-style license |
+// that can be found in the COPYING file in the root of the source |
+// tree. An additional intellectual property rights grant can be found |
+// in the file PATENTS. All contributing project authors may |
+// be found in the AUTHORS file in the root of the source tree. |
+// ----------------------------------------------------------------------------- |
+// |
+// Utilities for building and looking up Huffman trees. |
+// |
+// Author: Urvang Joshi (urvang@google.com) |
+ |
+#include <assert.h> |
+#include <stdlib.h> |
+#include <string.h> |
+#include "./huffman.h" |
+#include "../utils/utils.h" |
+#include "../webp/format_constants.h" |
+ |
+// Uncomment the following to use look-up table for ReverseBits() |
+// (might be faster on some platform) |
+// #define USE_LUT_REVERSE_BITS |
+ |
+// Huffman data read via DecodeImageStream is represented in two (red and green) |
+// bytes. |
+#define MAX_HTREE_GROUPS 0x10000 |
+#define NON_EXISTENT_SYMBOL (-1) |
+ |
+static void TreeNodeInit(HuffmanTreeNode* const node) { |
+ node->children_ = -1; // means: 'unassigned so far' |
+} |
+ |
+static int NodeIsEmpty(const HuffmanTreeNode* const node) { |
+ return (node->children_ < 0); |
+} |
+ |
+static int IsFull(const HuffmanTree* const tree) { |
+ return (tree->num_nodes_ == tree->max_nodes_); |
+} |
+ |
+static void AssignChildren(HuffmanTree* const tree, |
+ HuffmanTreeNode* const node) { |
+ HuffmanTreeNode* const children = tree->root_ + tree->num_nodes_; |
+ node->children_ = (int)(children - node); |
+ assert(children - node == (int)(children - node)); |
+ tree->num_nodes_ += 2; |
+ TreeNodeInit(children + 0); |
+ TreeNodeInit(children + 1); |
+} |
+ |
+// A Huffman tree is a full binary tree; and in a full binary tree with L |
+// leaves, the total number of nodes N = 2 * L - 1. |
+static int HuffmanTreeMaxNodes(int num_leaves) { |
+ return (2 * num_leaves - 1); |
+} |
+ |
+static int HuffmanTreeAllocate(HuffmanTree* const tree, int num_nodes) { |
+ assert(tree != NULL); |
+ tree->root_ = |
+ (HuffmanTreeNode*)WebPSafeMalloc(num_nodes, sizeof(*tree->root_)); |
+ return (tree->root_ != NULL); |
+} |
+ |
+static int TreeInit(HuffmanTree* const tree, int num_leaves) { |
+ assert(tree != NULL); |
+ if (num_leaves == 0) return 0; |
+ tree->max_nodes_ = HuffmanTreeMaxNodes(num_leaves); |
+ assert(tree->max_nodes_ < (1 << 16)); // limit for the lut_jump_ table |
+ if (!HuffmanTreeAllocate(tree, tree->max_nodes_)) return 0; |
+ TreeNodeInit(tree->root_); // Initialize root. |
+ tree->num_nodes_ = 1; |
+ memset(tree->lut_bits_, 255, sizeof(tree->lut_bits_)); |
+ memset(tree->lut_jump_, 0, sizeof(tree->lut_jump_)); |
+ return 1; |
+} |
+ |
+void VP8LHuffmanTreeFree(HuffmanTree* const tree) { |
+ if (tree != NULL) { |
+ WebPSafeFree(tree->root_); |
+ tree->root_ = NULL; |
+ tree->max_nodes_ = 0; |
+ tree->num_nodes_ = 0; |
+ } |
+} |
+ |
+HTreeGroup* VP8LHtreeGroupsNew(int num_htree_groups) { |
+ HTreeGroup* const htree_groups = |
+ (HTreeGroup*)WebPSafeCalloc(num_htree_groups, sizeof(*htree_groups)); |
+ assert(num_htree_groups <= MAX_HTREE_GROUPS); |
+ if (htree_groups == NULL) { |
+ return NULL; |
+ } |
+ return htree_groups; |
+} |
+ |
+void VP8LHtreeGroupsFree(HTreeGroup* htree_groups, int num_htree_groups) { |
+ if (htree_groups != NULL) { |
+ int i, j; |
+ for (i = 0; i < num_htree_groups; ++i) { |
+ HuffmanTree* const htrees = htree_groups[i].htrees_; |
+ for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) { |
+ VP8LHuffmanTreeFree(&htrees[j]); |
+ } |
+ } |
+ WebPSafeFree(htree_groups); |
+ } |
+} |
+ |
+int VP8LHuffmanCodeLengthsToCodes( |
+ const int* const code_lengths, int code_lengths_size, |
+ int* const huff_codes) { |
+ int symbol; |
+ int code_len; |
+ int code_length_hist[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 }; |
+ int curr_code; |
+ int next_codes[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 }; |
+ int max_code_length = 0; |
+ |
+ assert(code_lengths != NULL); |
+ assert(code_lengths_size > 0); |
+ assert(huff_codes != NULL); |
+ |
+ // Calculate max code length. |
+ for (symbol = 0; symbol < code_lengths_size; ++symbol) { |
+ if (code_lengths[symbol] > max_code_length) { |
+ max_code_length = code_lengths[symbol]; |
+ } |
+ } |
+ if (max_code_length > MAX_ALLOWED_CODE_LENGTH) return 0; |
+ |
+ // Calculate code length histogram. |
+ for (symbol = 0; symbol < code_lengths_size; ++symbol) { |
+ ++code_length_hist[code_lengths[symbol]]; |
+ } |
+ code_length_hist[0] = 0; |
+ |
+ // Calculate the initial values of 'next_codes' for each code length. |
+ // next_codes[code_len] denotes the code to be assigned to the next symbol |
+ // of code length 'code_len'. |
+ curr_code = 0; |
+ next_codes[0] = -1; // Unused, as code length = 0 implies code doesn't exist. |
+ for (code_len = 1; code_len <= max_code_length; ++code_len) { |
+ curr_code = (curr_code + code_length_hist[code_len - 1]) << 1; |
+ next_codes[code_len] = curr_code; |
+ } |
+ |
+ // Get symbols. |
+ for (symbol = 0; symbol < code_lengths_size; ++symbol) { |
+ if (code_lengths[symbol] > 0) { |
+ huff_codes[symbol] = next_codes[code_lengths[symbol]]++; |
+ } else { |
+ huff_codes[symbol] = NON_EXISTENT_SYMBOL; |
+ } |
+ } |
+ return 1; |
+} |
+ |
+#ifndef USE_LUT_REVERSE_BITS |
+ |
+static int ReverseBitsShort(int bits, int num_bits) { |
+ int retval = 0; |
+ int i; |
+ assert(num_bits <= 8); // Not a hard requirement, just for coherency. |
+ for (i = 0; i < num_bits; ++i) { |
+ retval <<= 1; |
+ retval |= bits & 1; |
+ bits >>= 1; |
+ } |
+ return retval; |
+} |
+ |
+#else |
+ |
+static const uint8_t kReversedBits[16] = { // Pre-reversed 4-bit values. |
+ 0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe, |
+ 0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf |
+}; |
+ |
+static int ReverseBitsShort(int bits, int num_bits) { |
+ const uint8_t v = (kReversedBits[bits & 0xf] << 4) | kReversedBits[bits >> 4]; |
+ assert(num_bits <= 8); |
+ return v >> (8 - num_bits); |
+} |
+ |
+#endif |
+ |
+static int TreeAddSymbol(HuffmanTree* const tree, |
+ int symbol, int code, int code_length) { |
+ int step = HUFF_LUT_BITS; |
+ int base_code; |
+ HuffmanTreeNode* node = tree->root_; |
+ const HuffmanTreeNode* const max_node = tree->root_ + tree->max_nodes_; |
+ assert(symbol == (int16_t)symbol); |
+ if (code_length <= HUFF_LUT_BITS) { |
+ int i; |
+ base_code = ReverseBitsShort(code, code_length); |
+ for (i = 0; i < (1 << (HUFF_LUT_BITS - code_length)); ++i) { |
+ const int idx = base_code | (i << code_length); |
+ tree->lut_symbol_[idx] = (int16_t)symbol; |
+ tree->lut_bits_[idx] = code_length; |
+ } |
+ } else { |
+ base_code = ReverseBitsShort((code >> (code_length - HUFF_LUT_BITS)), |
+ HUFF_LUT_BITS); |
+ } |
+ while (code_length-- > 0) { |
+ if (node >= max_node) { |
+ return 0; |
+ } |
+ if (NodeIsEmpty(node)) { |
+ if (IsFull(tree)) return 0; // error: too many symbols. |
+ AssignChildren(tree, node); |
+ } else if (!HuffmanTreeNodeIsNotLeaf(node)) { |
+ return 0; // leaf is already occupied. |
+ } |
+ node += node->children_ + ((code >> code_length) & 1); |
+ if (--step == 0) { |
+ tree->lut_jump_[base_code] = (int16_t)(node - tree->root_); |
+ } |
+ } |
+ if (NodeIsEmpty(node)) { |
+ node->children_ = 0; // turn newly created node into a leaf. |
+ } else if (HuffmanTreeNodeIsNotLeaf(node)) { |
+ return 0; // trying to assign a symbol to already used code. |
+ } |
+ node->symbol_ = symbol; // Add symbol in this node. |
+ return 1; |
+} |
+ |
+int VP8LHuffmanTreeBuildImplicit(HuffmanTree* const tree, |
+ const int* const code_lengths, |
+ int* const codes, |
+ int code_lengths_size) { |
+ int symbol; |
+ int num_symbols = 0; |
+ int root_symbol = 0; |
+ |
+ assert(tree != NULL); |
+ assert(code_lengths != NULL); |
+ |
+ // Find out number of symbols and the root symbol. |
+ for (symbol = 0; symbol < code_lengths_size; ++symbol) { |
+ if (code_lengths[symbol] > 0) { |
+ // Note: code length = 0 indicates non-existent symbol. |
+ ++num_symbols; |
+ root_symbol = symbol; |
+ } |
+ } |
+ |
+ // Initialize the tree. Will fail for num_symbols = 0 |
+ if (!TreeInit(tree, num_symbols)) return 0; |
+ |
+ // Build tree. |
+ if (num_symbols == 1) { // Trivial case. |
+ const int max_symbol = code_lengths_size; |
+ if (root_symbol < 0 || root_symbol >= max_symbol) { |
+ VP8LHuffmanTreeFree(tree); |
+ return 0; |
+ } |
+ return TreeAddSymbol(tree, root_symbol, 0, 0); |
+ } else { // Normal case. |
+ int ok = 0; |
+ memset(codes, 0, code_lengths_size * sizeof(*codes)); |
+ |
+ if (!VP8LHuffmanCodeLengthsToCodes(code_lengths, code_lengths_size, |
+ codes)) { |
+ goto End; |
+ } |
+ |
+ // Add symbols one-by-one. |
+ for (symbol = 0; symbol < code_lengths_size; ++symbol) { |
+ if (code_lengths[symbol] > 0) { |
+ if (!TreeAddSymbol(tree, symbol, codes[symbol], |
+ code_lengths[symbol])) { |
+ goto End; |
+ } |
+ } |
+ } |
+ ok = 1; |
+ End: |
+ ok = ok && IsFull(tree); |
+ if (!ok) VP8LHuffmanTreeFree(tree); |
+ return ok; |
+ } |
+} |
+ |
+int VP8LHuffmanTreeBuildExplicit(HuffmanTree* const tree, |
+ const int* const code_lengths, |
+ const int* const codes, |
+ const int* const symbols, int max_symbol, |
+ int num_symbols) { |
+ int ok = 0; |
+ int i; |
+ assert(tree != NULL); |
+ assert(code_lengths != NULL); |
+ assert(codes != NULL); |
+ assert(symbols != NULL); |
+ |
+ // Initialize the tree. Will fail if num_symbols = 0. |
+ if (!TreeInit(tree, num_symbols)) return 0; |
+ |
+ // Add symbols one-by-one. |
+ for (i = 0; i < num_symbols; ++i) { |
+ if (codes[i] != NON_EXISTENT_SYMBOL) { |
+ if (symbols[i] < 0 || symbols[i] >= max_symbol) { |
+ goto End; |
+ } |
+ if (!TreeAddSymbol(tree, symbols[i], codes[i], code_lengths[i])) { |
+ goto End; |
+ } |
+ } |
+ } |
+ ok = 1; |
+ End: |
+ ok = ok && IsFull(tree); |
+ if (!ok) VP8LHuffmanTreeFree(tree); |
+ return ok; |
+} |