OLD | NEW |
(Empty) | |
| 1 // Copyright 2011 Google Inc. All Rights Reserved. |
| 2 // |
| 3 // Use of this source code is governed by a BSD-style license |
| 4 // that can be found in the COPYING file in the root of the source |
| 5 // tree. An additional intellectual property rights grant can be found |
| 6 // in the file PATENTS. All contributing project authors may |
| 7 // be found in the AUTHORS file in the root of the source tree. |
| 8 // ----------------------------------------------------------------------------- |
| 9 // |
| 10 // Quantize levels for specified number of quantization-levels ([2, 256]). |
| 11 // Min and max values are preserved (usual 0 and 255 for alpha plane). |
| 12 // |
| 13 // Author: Skal (pascal.massimino@gmail.com) |
| 14 |
| 15 #include <assert.h> |
| 16 |
| 17 #include "./quant_levels.h" |
| 18 |
| 19 #define NUM_SYMBOLS 256 |
| 20 |
| 21 #define MAX_ITER 6 // Maximum number of convergence steps. |
| 22 #define ERROR_THRESHOLD 1e-4 // MSE stopping criterion. |
| 23 |
| 24 // ----------------------------------------------------------------------------- |
| 25 // Quantize levels. |
| 26 |
| 27 int QuantizeLevels(uint8_t* const data, int width, int height, |
| 28 int num_levels, uint64_t* const sse) { |
| 29 int freq[NUM_SYMBOLS] = { 0 }; |
| 30 int q_level[NUM_SYMBOLS] = { 0 }; |
| 31 double inv_q_level[NUM_SYMBOLS] = { 0 }; |
| 32 int min_s = 255, max_s = 0; |
| 33 const size_t data_size = height * width; |
| 34 int i, num_levels_in, iter; |
| 35 double last_err = 1.e38, err = 0.; |
| 36 const double err_threshold = ERROR_THRESHOLD * data_size; |
| 37 |
| 38 if (data == NULL) { |
| 39 return 0; |
| 40 } |
| 41 |
| 42 if (width <= 0 || height <= 0) { |
| 43 return 0; |
| 44 } |
| 45 |
| 46 if (num_levels < 2 || num_levels > 256) { |
| 47 return 0; |
| 48 } |
| 49 |
| 50 { |
| 51 size_t n; |
| 52 num_levels_in = 0; |
| 53 for (n = 0; n < data_size; ++n) { |
| 54 num_levels_in += (freq[data[n]] == 0); |
| 55 if (min_s > data[n]) min_s = data[n]; |
| 56 if (max_s < data[n]) max_s = data[n]; |
| 57 ++freq[data[n]]; |
| 58 } |
| 59 } |
| 60 |
| 61 if (num_levels_in <= num_levels) goto End; // nothing to do! |
| 62 |
| 63 // Start with uniformly spread centroids. |
| 64 for (i = 0; i < num_levels; ++i) { |
| 65 inv_q_level[i] = min_s + (double)(max_s - min_s) * i / (num_levels - 1); |
| 66 } |
| 67 |
| 68 // Fixed values. Won't be changed. |
| 69 q_level[min_s] = 0; |
| 70 q_level[max_s] = num_levels - 1; |
| 71 assert(inv_q_level[0] == min_s); |
| 72 assert(inv_q_level[num_levels - 1] == max_s); |
| 73 |
| 74 // k-Means iterations. |
| 75 for (iter = 0; iter < MAX_ITER; ++iter) { |
| 76 double q_sum[NUM_SYMBOLS] = { 0 }; |
| 77 double q_count[NUM_SYMBOLS] = { 0 }; |
| 78 int s, slot = 0; |
| 79 |
| 80 // Assign classes to representatives. |
| 81 for (s = min_s; s <= max_s; ++s) { |
| 82 // Keep track of the nearest neighbour 'slot' |
| 83 while (slot < num_levels - 1 && |
| 84 2 * s > inv_q_level[slot] + inv_q_level[slot + 1]) { |
| 85 ++slot; |
| 86 } |
| 87 if (freq[s] > 0) { |
| 88 q_sum[slot] += s * freq[s]; |
| 89 q_count[slot] += freq[s]; |
| 90 } |
| 91 q_level[s] = slot; |
| 92 } |
| 93 |
| 94 // Assign new representatives to classes. |
| 95 if (num_levels > 2) { |
| 96 for (slot = 1; slot < num_levels - 1; ++slot) { |
| 97 const double count = q_count[slot]; |
| 98 if (count > 0.) { |
| 99 inv_q_level[slot] = q_sum[slot] / count; |
| 100 } |
| 101 } |
| 102 } |
| 103 |
| 104 // Compute convergence error. |
| 105 err = 0.; |
| 106 for (s = min_s; s <= max_s; ++s) { |
| 107 const double error = s - inv_q_level[q_level[s]]; |
| 108 err += freq[s] * error * error; |
| 109 } |
| 110 |
| 111 // Check for convergence: we stop as soon as the error is no |
| 112 // longer improving. |
| 113 if (last_err - err < err_threshold) break; |
| 114 last_err = err; |
| 115 } |
| 116 |
| 117 // Remap the alpha plane to quantized values. |
| 118 { |
| 119 // double->int rounding operation can be costly, so we do it |
| 120 // once for all before remapping. We also perform the data[] -> slot |
| 121 // mapping, while at it (avoid one indirection in the final loop). |
| 122 uint8_t map[NUM_SYMBOLS]; |
| 123 int s; |
| 124 size_t n; |
| 125 for (s = min_s; s <= max_s; ++s) { |
| 126 const int slot = q_level[s]; |
| 127 map[s] = (uint8_t)(inv_q_level[slot] + .5); |
| 128 } |
| 129 // Final pass. |
| 130 for (n = 0; n < data_size; ++n) { |
| 131 data[n] = map[data[n]]; |
| 132 } |
| 133 } |
| 134 End: |
| 135 // Store sum of squared error if needed. |
| 136 if (sse != NULL) *sse = (uint64_t)err; |
| 137 |
| 138 return 1; |
| 139 } |
| 140 |
OLD | NEW |