OLD | NEW |
(Empty) | |
| 1 // Copyright 2011 Google Inc. All Rights Reserved. |
| 2 // |
| 3 // Use of this source code is governed by a BSD-style license |
| 4 // that can be found in the COPYING file in the root of the source |
| 5 // tree. An additional intellectual property rights grant can be found |
| 6 // in the file PATENTS. All contributing project authors may |
| 7 // be found in the AUTHORS file in the root of the source tree. |
| 8 // ----------------------------------------------------------------------------- |
| 9 // |
| 10 // Author: Jyrki Alakuijala (jyrki@google.com) |
| 11 // |
| 12 // Entropy encoding (Huffman) for webp lossless. |
| 13 |
| 14 #include <assert.h> |
| 15 #include <stdlib.h> |
| 16 #include <string.h> |
| 17 #include "./huffman_encode.h" |
| 18 #include "../utils/utils.h" |
| 19 #include "../webp/format_constants.h" |
| 20 |
| 21 // ----------------------------------------------------------------------------- |
| 22 // Util function to optimize the symbol map for RLE coding |
| 23 |
| 24 // Heuristics for selecting the stride ranges to collapse. |
| 25 static int ValuesShouldBeCollapsedToStrideAverage(int a, int b) { |
| 26 return abs(a - b) < 4; |
| 27 } |
| 28 |
| 29 // Change the population counts in a way that the consequent |
| 30 // Huffman tree compression, especially its RLE-part, give smaller output. |
| 31 static void OptimizeHuffmanForRle(int length, uint8_t* const good_for_rle, |
| 32 uint32_t* const counts) { |
| 33 // 1) Let's make the Huffman code more compatible with rle encoding. |
| 34 int i; |
| 35 for (; length >= 0; --length) { |
| 36 if (length == 0) { |
| 37 return; // All zeros. |
| 38 } |
| 39 if (counts[length - 1] != 0) { |
| 40 // Now counts[0..length - 1] does not have trailing zeros. |
| 41 break; |
| 42 } |
| 43 } |
| 44 // 2) Let's mark all population counts that already can be encoded |
| 45 // with an rle code. |
| 46 { |
| 47 // Let's not spoil any of the existing good rle codes. |
| 48 // Mark any seq of 0's that is longer as 5 as a good_for_rle. |
| 49 // Mark any seq of non-0's that is longer as 7 as a good_for_rle. |
| 50 uint32_t symbol = counts[0]; |
| 51 int stride = 0; |
| 52 for (i = 0; i < length + 1; ++i) { |
| 53 if (i == length || counts[i] != symbol) { |
| 54 if ((symbol == 0 && stride >= 5) || |
| 55 (symbol != 0 && stride >= 7)) { |
| 56 int k; |
| 57 for (k = 0; k < stride; ++k) { |
| 58 good_for_rle[i - k - 1] = 1; |
| 59 } |
| 60 } |
| 61 stride = 1; |
| 62 if (i != length) { |
| 63 symbol = counts[i]; |
| 64 } |
| 65 } else { |
| 66 ++stride; |
| 67 } |
| 68 } |
| 69 } |
| 70 // 3) Let's replace those population counts that lead to more rle codes. |
| 71 { |
| 72 uint32_t stride = 0; |
| 73 uint32_t limit = counts[0]; |
| 74 uint32_t sum = 0; |
| 75 for (i = 0; i < length + 1; ++i) { |
| 76 if (i == length || good_for_rle[i] || |
| 77 (i != 0 && good_for_rle[i - 1]) || |
| 78 !ValuesShouldBeCollapsedToStrideAverage(counts[i], limit)) { |
| 79 if (stride >= 4 || (stride >= 3 && sum == 0)) { |
| 80 uint32_t k; |
| 81 // The stride must end, collapse what we have, if we have enough (4). |
| 82 uint32_t count = (sum + stride / 2) / stride; |
| 83 if (count < 1) { |
| 84 count = 1; |
| 85 } |
| 86 if (sum == 0) { |
| 87 // Don't make an all zeros stride to be upgraded to ones. |
| 88 count = 0; |
| 89 } |
| 90 for (k = 0; k < stride; ++k) { |
| 91 // We don't want to change value at counts[i], |
| 92 // that is already belonging to the next stride. Thus - 1. |
| 93 counts[i - k - 1] = count; |
| 94 } |
| 95 } |
| 96 stride = 0; |
| 97 sum = 0; |
| 98 if (i < length - 3) { |
| 99 // All interesting strides have a count of at least 4, |
| 100 // at least when non-zeros. |
| 101 limit = (counts[i] + counts[i + 1] + |
| 102 counts[i + 2] + counts[i + 3] + 2) / 4; |
| 103 } else if (i < length) { |
| 104 limit = counts[i]; |
| 105 } else { |
| 106 limit = 0; |
| 107 } |
| 108 } |
| 109 ++stride; |
| 110 if (i != length) { |
| 111 sum += counts[i]; |
| 112 if (stride >= 4) { |
| 113 limit = (sum + stride / 2) / stride; |
| 114 } |
| 115 } |
| 116 } |
| 117 } |
| 118 } |
| 119 |
| 120 // A comparer function for two Huffman trees: sorts first by 'total count' |
| 121 // (more comes first), and then by 'value' (more comes first). |
| 122 static int CompareHuffmanTrees(const void* ptr1, const void* ptr2) { |
| 123 const HuffmanTree* const t1 = (const HuffmanTree*)ptr1; |
| 124 const HuffmanTree* const t2 = (const HuffmanTree*)ptr2; |
| 125 if (t1->total_count_ > t2->total_count_) { |
| 126 return -1; |
| 127 } else if (t1->total_count_ < t2->total_count_) { |
| 128 return 1; |
| 129 } else { |
| 130 assert(t1->value_ != t2->value_); |
| 131 return (t1->value_ < t2->value_) ? -1 : 1; |
| 132 } |
| 133 } |
| 134 |
| 135 static void SetBitDepths(const HuffmanTree* const tree, |
| 136 const HuffmanTree* const pool, |
| 137 uint8_t* const bit_depths, int level) { |
| 138 if (tree->pool_index_left_ >= 0) { |
| 139 SetBitDepths(&pool[tree->pool_index_left_], pool, bit_depths, level + 1); |
| 140 SetBitDepths(&pool[tree->pool_index_right_], pool, bit_depths, level + 1); |
| 141 } else { |
| 142 bit_depths[tree->value_] = level; |
| 143 } |
| 144 } |
| 145 |
| 146 // Create an optimal Huffman tree. |
| 147 // |
| 148 // (data,length): population counts. |
| 149 // tree_limit: maximum bit depth (inclusive) of the codes. |
| 150 // bit_depths[]: how many bits are used for the symbol. |
| 151 // |
| 152 // Returns 0 when an error has occurred. |
| 153 // |
| 154 // The catch here is that the tree cannot be arbitrarily deep |
| 155 // |
| 156 // count_limit is the value that is to be faked as the minimum value |
| 157 // and this minimum value is raised until the tree matches the |
| 158 // maximum length requirement. |
| 159 // |
| 160 // This algorithm is not of excellent performance for very long data blocks, |
| 161 // especially when population counts are longer than 2**tree_limit, but |
| 162 // we are not planning to use this with extremely long blocks. |
| 163 // |
| 164 // See http://en.wikipedia.org/wiki/Huffman_coding |
| 165 static void GenerateOptimalTree(const uint32_t* const histogram, |
| 166 int histogram_size, |
| 167 HuffmanTree* tree, int tree_depth_limit, |
| 168 uint8_t* const bit_depths) { |
| 169 uint32_t count_min; |
| 170 HuffmanTree* tree_pool; |
| 171 int tree_size_orig = 0; |
| 172 int i; |
| 173 |
| 174 for (i = 0; i < histogram_size; ++i) { |
| 175 if (histogram[i] != 0) { |
| 176 ++tree_size_orig; |
| 177 } |
| 178 } |
| 179 |
| 180 if (tree_size_orig == 0) { // pretty optimal already! |
| 181 return; |
| 182 } |
| 183 |
| 184 tree_pool = tree + tree_size_orig; |
| 185 |
| 186 // For block sizes with less than 64k symbols we never need to do a |
| 187 // second iteration of this loop. |
| 188 // If we actually start running inside this loop a lot, we would perhaps |
| 189 // be better off with the Katajainen algorithm. |
| 190 assert(tree_size_orig <= (1 << (tree_depth_limit - 1))); |
| 191 for (count_min = 1; ; count_min *= 2) { |
| 192 int tree_size = tree_size_orig; |
| 193 // We need to pack the Huffman tree in tree_depth_limit bits. |
| 194 // So, we try by faking histogram entries to be at least 'count_min'. |
| 195 int idx = 0; |
| 196 int j; |
| 197 for (j = 0; j < histogram_size; ++j) { |
| 198 if (histogram[j] != 0) { |
| 199 const uint32_t count = |
| 200 (histogram[j] < count_min) ? count_min : histogram[j]; |
| 201 tree[idx].total_count_ = count; |
| 202 tree[idx].value_ = j; |
| 203 tree[idx].pool_index_left_ = -1; |
| 204 tree[idx].pool_index_right_ = -1; |
| 205 ++idx; |
| 206 } |
| 207 } |
| 208 |
| 209 // Build the Huffman tree. |
| 210 qsort(tree, tree_size, sizeof(*tree), CompareHuffmanTrees); |
| 211 |
| 212 if (tree_size > 1) { // Normal case. |
| 213 int tree_pool_size = 0; |
| 214 while (tree_size > 1) { // Finish when we have only one root. |
| 215 uint32_t count; |
| 216 tree_pool[tree_pool_size++] = tree[tree_size - 1]; |
| 217 tree_pool[tree_pool_size++] = tree[tree_size - 2]; |
| 218 count = tree_pool[tree_pool_size - 1].total_count_ + |
| 219 tree_pool[tree_pool_size - 2].total_count_; |
| 220 tree_size -= 2; |
| 221 { |
| 222 // Search for the insertion point. |
| 223 int k; |
| 224 for (k = 0; k < tree_size; ++k) { |
| 225 if (tree[k].total_count_ <= count) { |
| 226 break; |
| 227 } |
| 228 } |
| 229 memmove(tree + (k + 1), tree + k, (tree_size - k) * sizeof(*tree)); |
| 230 tree[k].total_count_ = count; |
| 231 tree[k].value_ = -1; |
| 232 |
| 233 tree[k].pool_index_left_ = tree_pool_size - 1; |
| 234 tree[k].pool_index_right_ = tree_pool_size - 2; |
| 235 tree_size = tree_size + 1; |
| 236 } |
| 237 } |
| 238 SetBitDepths(&tree[0], tree_pool, bit_depths, 0); |
| 239 } else if (tree_size == 1) { // Trivial case: only one element. |
| 240 bit_depths[tree[0].value_] = 1; |
| 241 } |
| 242 |
| 243 { |
| 244 // Test if this Huffman tree satisfies our 'tree_depth_limit' criteria. |
| 245 int max_depth = bit_depths[0]; |
| 246 for (j = 1; j < histogram_size; ++j) { |
| 247 if (max_depth < bit_depths[j]) { |
| 248 max_depth = bit_depths[j]; |
| 249 } |
| 250 } |
| 251 if (max_depth <= tree_depth_limit) { |
| 252 break; |
| 253 } |
| 254 } |
| 255 } |
| 256 } |
| 257 |
| 258 // ----------------------------------------------------------------------------- |
| 259 // Coding of the Huffman tree values |
| 260 |
| 261 static HuffmanTreeToken* CodeRepeatedValues(int repetitions, |
| 262 HuffmanTreeToken* tokens, |
| 263 int value, int prev_value) { |
| 264 assert(value <= MAX_ALLOWED_CODE_LENGTH); |
| 265 if (value != prev_value) { |
| 266 tokens->code = value; |
| 267 tokens->extra_bits = 0; |
| 268 ++tokens; |
| 269 --repetitions; |
| 270 } |
| 271 while (repetitions >= 1) { |
| 272 if (repetitions < 3) { |
| 273 int i; |
| 274 for (i = 0; i < repetitions; ++i) { |
| 275 tokens->code = value; |
| 276 tokens->extra_bits = 0; |
| 277 ++tokens; |
| 278 } |
| 279 break; |
| 280 } else if (repetitions < 7) { |
| 281 tokens->code = 16; |
| 282 tokens->extra_bits = repetitions - 3; |
| 283 ++tokens; |
| 284 break; |
| 285 } else { |
| 286 tokens->code = 16; |
| 287 tokens->extra_bits = 3; |
| 288 ++tokens; |
| 289 repetitions -= 6; |
| 290 } |
| 291 } |
| 292 return tokens; |
| 293 } |
| 294 |
| 295 static HuffmanTreeToken* CodeRepeatedZeros(int repetitions, |
| 296 HuffmanTreeToken* tokens) { |
| 297 while (repetitions >= 1) { |
| 298 if (repetitions < 3) { |
| 299 int i; |
| 300 for (i = 0; i < repetitions; ++i) { |
| 301 tokens->code = 0; // 0-value |
| 302 tokens->extra_bits = 0; |
| 303 ++tokens; |
| 304 } |
| 305 break; |
| 306 } else if (repetitions < 11) { |
| 307 tokens->code = 17; |
| 308 tokens->extra_bits = repetitions - 3; |
| 309 ++tokens; |
| 310 break; |
| 311 } else if (repetitions < 139) { |
| 312 tokens->code = 18; |
| 313 tokens->extra_bits = repetitions - 11; |
| 314 ++tokens; |
| 315 break; |
| 316 } else { |
| 317 tokens->code = 18; |
| 318 tokens->extra_bits = 0x7f; // 138 repeated 0s |
| 319 ++tokens; |
| 320 repetitions -= 138; |
| 321 } |
| 322 } |
| 323 return tokens; |
| 324 } |
| 325 |
| 326 int VP8LCreateCompressedHuffmanTree(const HuffmanTreeCode* const tree, |
| 327 HuffmanTreeToken* tokens, int max_tokens) { |
| 328 HuffmanTreeToken* const starting_token = tokens; |
| 329 HuffmanTreeToken* const ending_token = tokens + max_tokens; |
| 330 const int depth_size = tree->num_symbols; |
| 331 int prev_value = 8; // 8 is the initial value for rle. |
| 332 int i = 0; |
| 333 assert(tokens != NULL); |
| 334 while (i < depth_size) { |
| 335 const int value = tree->code_lengths[i]; |
| 336 int k = i + 1; |
| 337 int runs; |
| 338 while (k < depth_size && tree->code_lengths[k] == value) ++k; |
| 339 runs = k - i; |
| 340 if (value == 0) { |
| 341 tokens = CodeRepeatedZeros(runs, tokens); |
| 342 } else { |
| 343 tokens = CodeRepeatedValues(runs, tokens, value, prev_value); |
| 344 prev_value = value; |
| 345 } |
| 346 i += runs; |
| 347 assert(tokens <= ending_token); |
| 348 } |
| 349 (void)ending_token; // suppress 'unused variable' warning |
| 350 return (int)(tokens - starting_token); |
| 351 } |
| 352 |
| 353 // ----------------------------------------------------------------------------- |
| 354 |
| 355 // Pre-reversed 4-bit values. |
| 356 static const uint8_t kReversedBits[16] = { |
| 357 0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe, |
| 358 0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf |
| 359 }; |
| 360 |
| 361 static uint32_t ReverseBits(int num_bits, uint32_t bits) { |
| 362 uint32_t retval = 0; |
| 363 int i = 0; |
| 364 while (i < num_bits) { |
| 365 i += 4; |
| 366 retval |= kReversedBits[bits & 0xf] << (MAX_ALLOWED_CODE_LENGTH + 1 - i); |
| 367 bits >>= 4; |
| 368 } |
| 369 retval >>= (MAX_ALLOWED_CODE_LENGTH + 1 - num_bits); |
| 370 return retval; |
| 371 } |
| 372 |
| 373 // Get the actual bit values for a tree of bit depths. |
| 374 static void ConvertBitDepthsToSymbols(HuffmanTreeCode* const tree) { |
| 375 // 0 bit-depth means that the symbol does not exist. |
| 376 int i; |
| 377 int len; |
| 378 uint32_t next_code[MAX_ALLOWED_CODE_LENGTH + 1]; |
| 379 int depth_count[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 }; |
| 380 |
| 381 assert(tree != NULL); |
| 382 len = tree->num_symbols; |
| 383 for (i = 0; i < len; ++i) { |
| 384 const int code_length = tree->code_lengths[i]; |
| 385 assert(code_length <= MAX_ALLOWED_CODE_LENGTH); |
| 386 ++depth_count[code_length]; |
| 387 } |
| 388 depth_count[0] = 0; // ignore unused symbol |
| 389 next_code[0] = 0; |
| 390 { |
| 391 uint32_t code = 0; |
| 392 for (i = 1; i <= MAX_ALLOWED_CODE_LENGTH; ++i) { |
| 393 code = (code + depth_count[i - 1]) << 1; |
| 394 next_code[i] = code; |
| 395 } |
| 396 } |
| 397 for (i = 0; i < len; ++i) { |
| 398 const int code_length = tree->code_lengths[i]; |
| 399 tree->codes[i] = ReverseBits(code_length, next_code[code_length]++); |
| 400 } |
| 401 } |
| 402 |
| 403 // ----------------------------------------------------------------------------- |
| 404 // Main entry point |
| 405 |
| 406 void VP8LCreateHuffmanTree(uint32_t* const histogram, int tree_depth_limit, |
| 407 uint8_t* const buf_rle, |
| 408 HuffmanTree* const huff_tree, |
| 409 HuffmanTreeCode* const huff_code) { |
| 410 const int num_symbols = huff_code->num_symbols; |
| 411 memset(buf_rle, 0, num_symbols * sizeof(*buf_rle)); |
| 412 OptimizeHuffmanForRle(num_symbols, buf_rle, histogram); |
| 413 GenerateOptimalTree(histogram, num_symbols, huff_tree, tree_depth_limit, |
| 414 huff_code->code_lengths); |
| 415 // Create the actual bit codes for the bit lengths. |
| 416 ConvertBitDepthsToSymbols(huff_code); |
| 417 } |
OLD | NEW |