OLD | NEW |
(Empty) | |
| 1 // Copyright 2012 Google Inc. All Rights Reserved. |
| 2 // |
| 3 // Use of this source code is governed by a BSD-style license |
| 4 // that can be found in the COPYING file in the root of the source |
| 5 // tree. An additional intellectual property rights grant can be found |
| 6 // in the file PATENTS. All contributing project authors may |
| 7 // be found in the AUTHORS file in the root of the source tree. |
| 8 // ----------------------------------------------------------------------------- |
| 9 // |
| 10 // Utilities for building and looking up Huffman trees. |
| 11 // |
| 12 // Author: Urvang Joshi (urvang@google.com) |
| 13 |
| 14 #include <assert.h> |
| 15 #include <stdlib.h> |
| 16 #include <string.h> |
| 17 #include "./huffman.h" |
| 18 #include "../utils/utils.h" |
| 19 #include "../webp/format_constants.h" |
| 20 |
| 21 // Uncomment the following to use look-up table for ReverseBits() |
| 22 // (might be faster on some platform) |
| 23 // #define USE_LUT_REVERSE_BITS |
| 24 |
| 25 // Huffman data read via DecodeImageStream is represented in two (red and green) |
| 26 // bytes. |
| 27 #define MAX_HTREE_GROUPS 0x10000 |
| 28 #define NON_EXISTENT_SYMBOL (-1) |
| 29 |
| 30 static void TreeNodeInit(HuffmanTreeNode* const node) { |
| 31 node->children_ = -1; // means: 'unassigned so far' |
| 32 } |
| 33 |
| 34 static int NodeIsEmpty(const HuffmanTreeNode* const node) { |
| 35 return (node->children_ < 0); |
| 36 } |
| 37 |
| 38 static int IsFull(const HuffmanTree* const tree) { |
| 39 return (tree->num_nodes_ == tree->max_nodes_); |
| 40 } |
| 41 |
| 42 static void AssignChildren(HuffmanTree* const tree, |
| 43 HuffmanTreeNode* const node) { |
| 44 HuffmanTreeNode* const children = tree->root_ + tree->num_nodes_; |
| 45 node->children_ = (int)(children - node); |
| 46 assert(children - node == (int)(children - node)); |
| 47 tree->num_nodes_ += 2; |
| 48 TreeNodeInit(children + 0); |
| 49 TreeNodeInit(children + 1); |
| 50 } |
| 51 |
| 52 // A Huffman tree is a full binary tree; and in a full binary tree with L |
| 53 // leaves, the total number of nodes N = 2 * L - 1. |
| 54 static int HuffmanTreeMaxNodes(int num_leaves) { |
| 55 return (2 * num_leaves - 1); |
| 56 } |
| 57 |
| 58 static int HuffmanTreeAllocate(HuffmanTree* const tree, int num_nodes) { |
| 59 assert(tree != NULL); |
| 60 tree->root_ = |
| 61 (HuffmanTreeNode*)WebPSafeMalloc(num_nodes, sizeof(*tree->root_)); |
| 62 return (tree->root_ != NULL); |
| 63 } |
| 64 |
| 65 static int TreeInit(HuffmanTree* const tree, int num_leaves) { |
| 66 assert(tree != NULL); |
| 67 if (num_leaves == 0) return 0; |
| 68 tree->max_nodes_ = HuffmanTreeMaxNodes(num_leaves); |
| 69 assert(tree->max_nodes_ < (1 << 16)); // limit for the lut_jump_ table |
| 70 if (!HuffmanTreeAllocate(tree, tree->max_nodes_)) return 0; |
| 71 TreeNodeInit(tree->root_); // Initialize root. |
| 72 tree->num_nodes_ = 1; |
| 73 memset(tree->lut_bits_, 255, sizeof(tree->lut_bits_)); |
| 74 memset(tree->lut_jump_, 0, sizeof(tree->lut_jump_)); |
| 75 return 1; |
| 76 } |
| 77 |
| 78 void VP8LHuffmanTreeFree(HuffmanTree* const tree) { |
| 79 if (tree != NULL) { |
| 80 WebPSafeFree(tree->root_); |
| 81 tree->root_ = NULL; |
| 82 tree->max_nodes_ = 0; |
| 83 tree->num_nodes_ = 0; |
| 84 } |
| 85 } |
| 86 |
| 87 HTreeGroup* VP8LHtreeGroupsNew(int num_htree_groups) { |
| 88 HTreeGroup* const htree_groups = |
| 89 (HTreeGroup*)WebPSafeCalloc(num_htree_groups, sizeof(*htree_groups)); |
| 90 assert(num_htree_groups <= MAX_HTREE_GROUPS); |
| 91 if (htree_groups == NULL) { |
| 92 return NULL; |
| 93 } |
| 94 return htree_groups; |
| 95 } |
| 96 |
| 97 void VP8LHtreeGroupsFree(HTreeGroup* htree_groups, int num_htree_groups) { |
| 98 if (htree_groups != NULL) { |
| 99 int i, j; |
| 100 for (i = 0; i < num_htree_groups; ++i) { |
| 101 HuffmanTree* const htrees = htree_groups[i].htrees_; |
| 102 for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) { |
| 103 VP8LHuffmanTreeFree(&htrees[j]); |
| 104 } |
| 105 } |
| 106 WebPSafeFree(htree_groups); |
| 107 } |
| 108 } |
| 109 |
| 110 int VP8LHuffmanCodeLengthsToCodes( |
| 111 const int* const code_lengths, int code_lengths_size, |
| 112 int* const huff_codes) { |
| 113 int symbol; |
| 114 int code_len; |
| 115 int code_length_hist[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 }; |
| 116 int curr_code; |
| 117 int next_codes[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 }; |
| 118 int max_code_length = 0; |
| 119 |
| 120 assert(code_lengths != NULL); |
| 121 assert(code_lengths_size > 0); |
| 122 assert(huff_codes != NULL); |
| 123 |
| 124 // Calculate max code length. |
| 125 for (symbol = 0; symbol < code_lengths_size; ++symbol) { |
| 126 if (code_lengths[symbol] > max_code_length) { |
| 127 max_code_length = code_lengths[symbol]; |
| 128 } |
| 129 } |
| 130 if (max_code_length > MAX_ALLOWED_CODE_LENGTH) return 0; |
| 131 |
| 132 // Calculate code length histogram. |
| 133 for (symbol = 0; symbol < code_lengths_size; ++symbol) { |
| 134 ++code_length_hist[code_lengths[symbol]]; |
| 135 } |
| 136 code_length_hist[0] = 0; |
| 137 |
| 138 // Calculate the initial values of 'next_codes' for each code length. |
| 139 // next_codes[code_len] denotes the code to be assigned to the next symbol |
| 140 // of code length 'code_len'. |
| 141 curr_code = 0; |
| 142 next_codes[0] = -1; // Unused, as code length = 0 implies code doesn't exist. |
| 143 for (code_len = 1; code_len <= max_code_length; ++code_len) { |
| 144 curr_code = (curr_code + code_length_hist[code_len - 1]) << 1; |
| 145 next_codes[code_len] = curr_code; |
| 146 } |
| 147 |
| 148 // Get symbols. |
| 149 for (symbol = 0; symbol < code_lengths_size; ++symbol) { |
| 150 if (code_lengths[symbol] > 0) { |
| 151 huff_codes[symbol] = next_codes[code_lengths[symbol]]++; |
| 152 } else { |
| 153 huff_codes[symbol] = NON_EXISTENT_SYMBOL; |
| 154 } |
| 155 } |
| 156 return 1; |
| 157 } |
| 158 |
| 159 #ifndef USE_LUT_REVERSE_BITS |
| 160 |
| 161 static int ReverseBitsShort(int bits, int num_bits) { |
| 162 int retval = 0; |
| 163 int i; |
| 164 assert(num_bits <= 8); // Not a hard requirement, just for coherency. |
| 165 for (i = 0; i < num_bits; ++i) { |
| 166 retval <<= 1; |
| 167 retval |= bits & 1; |
| 168 bits >>= 1; |
| 169 } |
| 170 return retval; |
| 171 } |
| 172 |
| 173 #else |
| 174 |
| 175 static const uint8_t kReversedBits[16] = { // Pre-reversed 4-bit values. |
| 176 0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe, |
| 177 0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf |
| 178 }; |
| 179 |
| 180 static int ReverseBitsShort(int bits, int num_bits) { |
| 181 const uint8_t v = (kReversedBits[bits & 0xf] << 4) | kReversedBits[bits >> 4]; |
| 182 assert(num_bits <= 8); |
| 183 return v >> (8 - num_bits); |
| 184 } |
| 185 |
| 186 #endif |
| 187 |
| 188 static int TreeAddSymbol(HuffmanTree* const tree, |
| 189 int symbol, int code, int code_length) { |
| 190 int step = HUFF_LUT_BITS; |
| 191 int base_code; |
| 192 HuffmanTreeNode* node = tree->root_; |
| 193 const HuffmanTreeNode* const max_node = tree->root_ + tree->max_nodes_; |
| 194 assert(symbol == (int16_t)symbol); |
| 195 if (code_length <= HUFF_LUT_BITS) { |
| 196 int i; |
| 197 base_code = ReverseBitsShort(code, code_length); |
| 198 for (i = 0; i < (1 << (HUFF_LUT_BITS - code_length)); ++i) { |
| 199 const int idx = base_code | (i << code_length); |
| 200 tree->lut_symbol_[idx] = (int16_t)symbol; |
| 201 tree->lut_bits_[idx] = code_length; |
| 202 } |
| 203 } else { |
| 204 base_code = ReverseBitsShort((code >> (code_length - HUFF_LUT_BITS)), |
| 205 HUFF_LUT_BITS); |
| 206 } |
| 207 while (code_length-- > 0) { |
| 208 if (node >= max_node) { |
| 209 return 0; |
| 210 } |
| 211 if (NodeIsEmpty(node)) { |
| 212 if (IsFull(tree)) return 0; // error: too many symbols. |
| 213 AssignChildren(tree, node); |
| 214 } else if (!HuffmanTreeNodeIsNotLeaf(node)) { |
| 215 return 0; // leaf is already occupied. |
| 216 } |
| 217 node += node->children_ + ((code >> code_length) & 1); |
| 218 if (--step == 0) { |
| 219 tree->lut_jump_[base_code] = (int16_t)(node - tree->root_); |
| 220 } |
| 221 } |
| 222 if (NodeIsEmpty(node)) { |
| 223 node->children_ = 0; // turn newly created node into a leaf. |
| 224 } else if (HuffmanTreeNodeIsNotLeaf(node)) { |
| 225 return 0; // trying to assign a symbol to already used code. |
| 226 } |
| 227 node->symbol_ = symbol; // Add symbol in this node. |
| 228 return 1; |
| 229 } |
| 230 |
| 231 int VP8LHuffmanTreeBuildImplicit(HuffmanTree* const tree, |
| 232 const int* const code_lengths, |
| 233 int* const codes, |
| 234 int code_lengths_size) { |
| 235 int symbol; |
| 236 int num_symbols = 0; |
| 237 int root_symbol = 0; |
| 238 |
| 239 assert(tree != NULL); |
| 240 assert(code_lengths != NULL); |
| 241 |
| 242 // Find out number of symbols and the root symbol. |
| 243 for (symbol = 0; symbol < code_lengths_size; ++symbol) { |
| 244 if (code_lengths[symbol] > 0) { |
| 245 // Note: code length = 0 indicates non-existent symbol. |
| 246 ++num_symbols; |
| 247 root_symbol = symbol; |
| 248 } |
| 249 } |
| 250 |
| 251 // Initialize the tree. Will fail for num_symbols = 0 |
| 252 if (!TreeInit(tree, num_symbols)) return 0; |
| 253 |
| 254 // Build tree. |
| 255 if (num_symbols == 1) { // Trivial case. |
| 256 const int max_symbol = code_lengths_size; |
| 257 if (root_symbol < 0 || root_symbol >= max_symbol) { |
| 258 VP8LHuffmanTreeFree(tree); |
| 259 return 0; |
| 260 } |
| 261 return TreeAddSymbol(tree, root_symbol, 0, 0); |
| 262 } else { // Normal case. |
| 263 int ok = 0; |
| 264 memset(codes, 0, code_lengths_size * sizeof(*codes)); |
| 265 |
| 266 if (!VP8LHuffmanCodeLengthsToCodes(code_lengths, code_lengths_size, |
| 267 codes)) { |
| 268 goto End; |
| 269 } |
| 270 |
| 271 // Add symbols one-by-one. |
| 272 for (symbol = 0; symbol < code_lengths_size; ++symbol) { |
| 273 if (code_lengths[symbol] > 0) { |
| 274 if (!TreeAddSymbol(tree, symbol, codes[symbol], |
| 275 code_lengths[symbol])) { |
| 276 goto End; |
| 277 } |
| 278 } |
| 279 } |
| 280 ok = 1; |
| 281 End: |
| 282 ok = ok && IsFull(tree); |
| 283 if (!ok) VP8LHuffmanTreeFree(tree); |
| 284 return ok; |
| 285 } |
| 286 } |
| 287 |
| 288 int VP8LHuffmanTreeBuildExplicit(HuffmanTree* const tree, |
| 289 const int* const code_lengths, |
| 290 const int* const codes, |
| 291 const int* const symbols, int max_symbol, |
| 292 int num_symbols) { |
| 293 int ok = 0; |
| 294 int i; |
| 295 assert(tree != NULL); |
| 296 assert(code_lengths != NULL); |
| 297 assert(codes != NULL); |
| 298 assert(symbols != NULL); |
| 299 |
| 300 // Initialize the tree. Will fail if num_symbols = 0. |
| 301 if (!TreeInit(tree, num_symbols)) return 0; |
| 302 |
| 303 // Add symbols one-by-one. |
| 304 for (i = 0; i < num_symbols; ++i) { |
| 305 if (codes[i] != NON_EXISTENT_SYMBOL) { |
| 306 if (symbols[i] < 0 || symbols[i] >= max_symbol) { |
| 307 goto End; |
| 308 } |
| 309 if (!TreeAddSymbol(tree, symbols[i], codes[i], code_lengths[i])) { |
| 310 goto End; |
| 311 } |
| 312 } |
| 313 } |
| 314 ok = 1; |
| 315 End: |
| 316 ok = ok && IsFull(tree); |
| 317 if (!ok) VP8LHuffmanTreeFree(tree); |
| 318 return ok; |
| 319 } |
OLD | NEW |