OLD | NEW |
(Empty) | |
| 1 // Copyright 2012 Google Inc. All Rights Reserved. |
| 2 // |
| 3 // Use of this source code is governed by a BSD-style license |
| 4 // that can be found in the COPYING file in the root of the source |
| 5 // tree. An additional intellectual property rights grant can be found |
| 6 // in the file PATENTS. All contributing project authors may |
| 7 // be found in the AUTHORS file in the root of the source tree. |
| 8 // ----------------------------------------------------------------------------- |
| 9 // |
| 10 // main entry for the lossless encoder. |
| 11 // |
| 12 // Author: Vikas Arora (vikaas.arora@gmail.com) |
| 13 // |
| 14 |
| 15 #include <assert.h> |
| 16 #include <stdio.h> |
| 17 #include <stdlib.h> |
| 18 |
| 19 #include "./backward_references.h" |
| 20 #include "./vp8enci.h" |
| 21 #include "./vp8li.h" |
| 22 #include "../dsp/lossless.h" |
| 23 #include "../utils/bit_writer.h" |
| 24 #include "../utils/huffman_encode.h" |
| 25 #include "../utils/utils.h" |
| 26 #include "../webp/format_constants.h" |
| 27 |
| 28 #define PALETTE_KEY_RIGHT_SHIFT 22 // Key for 1K buffer. |
| 29 #define MAX_HUFF_IMAGE_SIZE (16 * 1024 * 1024) |
| 30 #define MAX_COLORS_FOR_GRAPH 64 |
| 31 |
| 32 // ----------------------------------------------------------------------------- |
| 33 // Palette |
| 34 |
| 35 static int CompareColors(const void* p1, const void* p2) { |
| 36 const uint32_t a = *(const uint32_t*)p1; |
| 37 const uint32_t b = *(const uint32_t*)p2; |
| 38 assert(a != b); |
| 39 return (a < b) ? -1 : 1; |
| 40 } |
| 41 |
| 42 // If number of colors in the image is less than or equal to MAX_PALETTE_SIZE, |
| 43 // creates a palette and returns true, else returns false. |
| 44 static int AnalyzeAndCreatePalette(const WebPPicture* const pic, |
| 45 uint32_t palette[MAX_PALETTE_SIZE], |
| 46 int* const palette_size) { |
| 47 int i, x, y, key; |
| 48 int num_colors = 0; |
| 49 uint8_t in_use[MAX_PALETTE_SIZE * 4] = { 0 }; |
| 50 uint32_t colors[MAX_PALETTE_SIZE * 4]; |
| 51 static const uint32_t kHashMul = 0x1e35a7bd; |
| 52 const uint32_t* argb = pic->argb; |
| 53 const int width = pic->width; |
| 54 const int height = pic->height; |
| 55 uint32_t last_pix = ~argb[0]; // so we're sure that last_pix != argb[0] |
| 56 |
| 57 for (y = 0; y < height; ++y) { |
| 58 for (x = 0; x < width; ++x) { |
| 59 if (argb[x] == last_pix) { |
| 60 continue; |
| 61 } |
| 62 last_pix = argb[x]; |
| 63 key = (kHashMul * last_pix) >> PALETTE_KEY_RIGHT_SHIFT; |
| 64 while (1) { |
| 65 if (!in_use[key]) { |
| 66 colors[key] = last_pix; |
| 67 in_use[key] = 1; |
| 68 ++num_colors; |
| 69 if (num_colors > MAX_PALETTE_SIZE) { |
| 70 return 0; |
| 71 } |
| 72 break; |
| 73 } else if (colors[key] == last_pix) { |
| 74 // The color is already there. |
| 75 break; |
| 76 } else { |
| 77 // Some other color sits there. |
| 78 // Do linear conflict resolution. |
| 79 ++key; |
| 80 key &= (MAX_PALETTE_SIZE * 4 - 1); // key mask for 1K buffer. |
| 81 } |
| 82 } |
| 83 } |
| 84 argb += pic->argb_stride; |
| 85 } |
| 86 |
| 87 // TODO(skal): could we reuse in_use[] to speed up EncodePalette()? |
| 88 num_colors = 0; |
| 89 for (i = 0; i < (int)(sizeof(in_use) / sizeof(in_use[0])); ++i) { |
| 90 if (in_use[i]) { |
| 91 palette[num_colors] = colors[i]; |
| 92 ++num_colors; |
| 93 } |
| 94 } |
| 95 |
| 96 qsort(palette, num_colors, sizeof(*palette), CompareColors); |
| 97 *palette_size = num_colors; |
| 98 return 1; |
| 99 } |
| 100 |
| 101 static int AnalyzeEntropy(const uint32_t* argb, |
| 102 int width, int height, int argb_stride, |
| 103 double* const nonpredicted_bits, |
| 104 double* const predicted_bits) { |
| 105 int x, y; |
| 106 const uint32_t* last_line = NULL; |
| 107 uint32_t last_pix = argb[0]; // so we're sure that pix_diff == 0 |
| 108 |
| 109 VP8LHistogramSet* const histo_set = VP8LAllocateHistogramSet(2, 0); |
| 110 if (histo_set == NULL) return 0; |
| 111 |
| 112 for (y = 0; y < height; ++y) { |
| 113 for (x = 0; x < width; ++x) { |
| 114 const uint32_t pix = argb[x]; |
| 115 const uint32_t pix_diff = VP8LSubPixels(pix, last_pix); |
| 116 if (pix_diff == 0) continue; |
| 117 if (last_line != NULL && pix == last_line[x]) { |
| 118 continue; |
| 119 } |
| 120 last_pix = pix; |
| 121 { |
| 122 const PixOrCopy pix_token = PixOrCopyCreateLiteral(pix); |
| 123 const PixOrCopy pix_diff_token = PixOrCopyCreateLiteral(pix_diff); |
| 124 VP8LHistogramAddSinglePixOrCopy(histo_set->histograms[0], &pix_token); |
| 125 VP8LHistogramAddSinglePixOrCopy(histo_set->histograms[1], |
| 126 &pix_diff_token); |
| 127 } |
| 128 } |
| 129 last_line = argb; |
| 130 argb += argb_stride; |
| 131 } |
| 132 *nonpredicted_bits = VP8LHistogramEstimateBitsBulk(histo_set->histograms[0]); |
| 133 *predicted_bits = VP8LHistogramEstimateBitsBulk(histo_set->histograms[1]); |
| 134 VP8LFreeHistogramSet(histo_set); |
| 135 return 1; |
| 136 } |
| 137 |
| 138 static int AnalyzeAndInit(VP8LEncoder* const enc, WebPImageHint image_hint) { |
| 139 const WebPPicture* const pic = enc->pic_; |
| 140 const int width = pic->width; |
| 141 const int height = pic->height; |
| 142 const int pix_cnt = width * height; |
| 143 // we round the block size up, so we're guaranteed to have |
| 144 // at max MAX_REFS_BLOCK_PER_IMAGE blocks used: |
| 145 int refs_block_size = (pix_cnt - 1) / MAX_REFS_BLOCK_PER_IMAGE + 1; |
| 146 assert(pic != NULL && pic->argb != NULL); |
| 147 |
| 148 enc->use_palette_ = |
| 149 AnalyzeAndCreatePalette(pic, enc->palette_, &enc->palette_size_); |
| 150 |
| 151 if (image_hint == WEBP_HINT_GRAPH) { |
| 152 if (enc->use_palette_ && enc->palette_size_ < MAX_COLORS_FOR_GRAPH) { |
| 153 enc->use_palette_ = 0; |
| 154 } |
| 155 } |
| 156 |
| 157 if (!enc->use_palette_) { |
| 158 if (image_hint == WEBP_HINT_PHOTO) { |
| 159 enc->use_predict_ = 1; |
| 160 enc->use_cross_color_ = 1; |
| 161 } else { |
| 162 double non_pred_entropy, pred_entropy; |
| 163 if (!AnalyzeEntropy(pic->argb, width, height, pic->argb_stride, |
| 164 &non_pred_entropy, &pred_entropy)) { |
| 165 return 0; |
| 166 } |
| 167 if (pred_entropy < 0.95 * non_pred_entropy) { |
| 168 enc->use_predict_ = 1; |
| 169 enc->use_cross_color_ = 1; |
| 170 } |
| 171 } |
| 172 } |
| 173 if (!VP8LHashChainInit(&enc->hash_chain_, pix_cnt)) return 0; |
| 174 |
| 175 // palette-friendly input typically uses less literals |
| 176 // -> reduce block size a bit |
| 177 if (enc->use_palette_) refs_block_size /= 2; |
| 178 VP8LBackwardRefsInit(&enc->refs_[0], refs_block_size); |
| 179 VP8LBackwardRefsInit(&enc->refs_[1], refs_block_size); |
| 180 |
| 181 return 1; |
| 182 } |
| 183 |
| 184 // Returns false in case of memory error. |
| 185 static int GetHuffBitLengthsAndCodes( |
| 186 const VP8LHistogramSet* const histogram_image, |
| 187 HuffmanTreeCode* const huffman_codes) { |
| 188 int i, k; |
| 189 int ok = 0; |
| 190 uint64_t total_length_size = 0; |
| 191 uint8_t* mem_buf = NULL; |
| 192 const int histogram_image_size = histogram_image->size; |
| 193 int max_num_symbols = 0; |
| 194 uint8_t* buf_rle = NULL; |
| 195 HuffmanTree* huff_tree = NULL; |
| 196 |
| 197 // Iterate over all histograms and get the aggregate number of codes used. |
| 198 for (i = 0; i < histogram_image_size; ++i) { |
| 199 const VP8LHistogram* const histo = histogram_image->histograms[i]; |
| 200 HuffmanTreeCode* const codes = &huffman_codes[5 * i]; |
| 201 for (k = 0; k < 5; ++k) { |
| 202 const int num_symbols = |
| 203 (k == 0) ? VP8LHistogramNumCodes(histo->palette_code_bits_) : |
| 204 (k == 4) ? NUM_DISTANCE_CODES : 256; |
| 205 codes[k].num_symbols = num_symbols; |
| 206 total_length_size += num_symbols; |
| 207 } |
| 208 } |
| 209 |
| 210 // Allocate and Set Huffman codes. |
| 211 { |
| 212 uint16_t* codes; |
| 213 uint8_t* lengths; |
| 214 mem_buf = (uint8_t*)WebPSafeCalloc(total_length_size, |
| 215 sizeof(*lengths) + sizeof(*codes)); |
| 216 if (mem_buf == NULL) goto End; |
| 217 |
| 218 codes = (uint16_t*)mem_buf; |
| 219 lengths = (uint8_t*)&codes[total_length_size]; |
| 220 for (i = 0; i < 5 * histogram_image_size; ++i) { |
| 221 const int bit_length = huffman_codes[i].num_symbols; |
| 222 huffman_codes[i].codes = codes; |
| 223 huffman_codes[i].code_lengths = lengths; |
| 224 codes += bit_length; |
| 225 lengths += bit_length; |
| 226 if (max_num_symbols < bit_length) { |
| 227 max_num_symbols = bit_length; |
| 228 } |
| 229 } |
| 230 } |
| 231 |
| 232 buf_rle = (uint8_t*)WebPSafeMalloc(1ULL, max_num_symbols); |
| 233 huff_tree = (HuffmanTree*)WebPSafeMalloc(3ULL * max_num_symbols, |
| 234 sizeof(*huff_tree)); |
| 235 if (buf_rle == NULL || huff_tree == NULL) goto End; |
| 236 |
| 237 // Create Huffman trees. |
| 238 for (i = 0; i < histogram_image_size; ++i) { |
| 239 HuffmanTreeCode* const codes = &huffman_codes[5 * i]; |
| 240 VP8LHistogram* const histo = histogram_image->histograms[i]; |
| 241 VP8LCreateHuffmanTree(histo->literal_, 15, buf_rle, huff_tree, codes + 0); |
| 242 VP8LCreateHuffmanTree(histo->red_, 15, buf_rle, huff_tree, codes + 1); |
| 243 VP8LCreateHuffmanTree(histo->blue_, 15, buf_rle, huff_tree, codes + 2); |
| 244 VP8LCreateHuffmanTree(histo->alpha_, 15, buf_rle, huff_tree, codes + 3); |
| 245 VP8LCreateHuffmanTree(histo->distance_, 15, buf_rle, huff_tree, codes + 4); |
| 246 } |
| 247 ok = 1; |
| 248 End: |
| 249 WebPSafeFree(huff_tree); |
| 250 WebPSafeFree(buf_rle); |
| 251 if (!ok) { |
| 252 WebPSafeFree(mem_buf); |
| 253 memset(huffman_codes, 0, 5 * histogram_image_size * sizeof(*huffman_codes)); |
| 254 } |
| 255 return ok; |
| 256 } |
| 257 |
| 258 static void StoreHuffmanTreeOfHuffmanTreeToBitMask( |
| 259 VP8LBitWriter* const bw, const uint8_t* code_length_bitdepth) { |
| 260 // RFC 1951 will calm you down if you are worried about this funny sequence. |
| 261 // This sequence is tuned from that, but more weighted for lower symbol count, |
| 262 // and more spiking histograms. |
| 263 static const uint8_t kStorageOrder[CODE_LENGTH_CODES] = { |
| 264 17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 |
| 265 }; |
| 266 int i; |
| 267 // Throw away trailing zeros: |
| 268 int codes_to_store = CODE_LENGTH_CODES; |
| 269 for (; codes_to_store > 4; --codes_to_store) { |
| 270 if (code_length_bitdepth[kStorageOrder[codes_to_store - 1]] != 0) { |
| 271 break; |
| 272 } |
| 273 } |
| 274 VP8LWriteBits(bw, 4, codes_to_store - 4); |
| 275 for (i = 0; i < codes_to_store; ++i) { |
| 276 VP8LWriteBits(bw, 3, code_length_bitdepth[kStorageOrder[i]]); |
| 277 } |
| 278 } |
| 279 |
| 280 static void ClearHuffmanTreeIfOnlyOneSymbol( |
| 281 HuffmanTreeCode* const huffman_code) { |
| 282 int k; |
| 283 int count = 0; |
| 284 for (k = 0; k < huffman_code->num_symbols; ++k) { |
| 285 if (huffman_code->code_lengths[k] != 0) { |
| 286 ++count; |
| 287 if (count > 1) return; |
| 288 } |
| 289 } |
| 290 for (k = 0; k < huffman_code->num_symbols; ++k) { |
| 291 huffman_code->code_lengths[k] = 0; |
| 292 huffman_code->codes[k] = 0; |
| 293 } |
| 294 } |
| 295 |
| 296 static void StoreHuffmanTreeToBitMask( |
| 297 VP8LBitWriter* const bw, |
| 298 const HuffmanTreeToken* const tokens, const int num_tokens, |
| 299 const HuffmanTreeCode* const huffman_code) { |
| 300 int i; |
| 301 for (i = 0; i < num_tokens; ++i) { |
| 302 const int ix = tokens[i].code; |
| 303 const int extra_bits = tokens[i].extra_bits; |
| 304 VP8LWriteBits(bw, huffman_code->code_lengths[ix], huffman_code->codes[ix]); |
| 305 switch (ix) { |
| 306 case 16: |
| 307 VP8LWriteBits(bw, 2, extra_bits); |
| 308 break; |
| 309 case 17: |
| 310 VP8LWriteBits(bw, 3, extra_bits); |
| 311 break; |
| 312 case 18: |
| 313 VP8LWriteBits(bw, 7, extra_bits); |
| 314 break; |
| 315 } |
| 316 } |
| 317 } |
| 318 |
| 319 // 'huff_tree' and 'tokens' are pre-alloacted buffers. |
| 320 static void StoreFullHuffmanCode(VP8LBitWriter* const bw, |
| 321 HuffmanTree* const huff_tree, |
| 322 HuffmanTreeToken* const tokens, |
| 323 const HuffmanTreeCode* const tree) { |
| 324 uint8_t code_length_bitdepth[CODE_LENGTH_CODES] = { 0 }; |
| 325 uint16_t code_length_bitdepth_symbols[CODE_LENGTH_CODES] = { 0 }; |
| 326 const int max_tokens = tree->num_symbols; |
| 327 int num_tokens; |
| 328 HuffmanTreeCode huffman_code; |
| 329 huffman_code.num_symbols = CODE_LENGTH_CODES; |
| 330 huffman_code.code_lengths = code_length_bitdepth; |
| 331 huffman_code.codes = code_length_bitdepth_symbols; |
| 332 |
| 333 VP8LWriteBits(bw, 1, 0); |
| 334 num_tokens = VP8LCreateCompressedHuffmanTree(tree, tokens, max_tokens); |
| 335 { |
| 336 uint32_t histogram[CODE_LENGTH_CODES] = { 0 }; |
| 337 uint8_t buf_rle[CODE_LENGTH_CODES] = { 0 }; |
| 338 int i; |
| 339 for (i = 0; i < num_tokens; ++i) { |
| 340 ++histogram[tokens[i].code]; |
| 341 } |
| 342 |
| 343 VP8LCreateHuffmanTree(histogram, 7, buf_rle, huff_tree, &huffman_code); |
| 344 } |
| 345 |
| 346 StoreHuffmanTreeOfHuffmanTreeToBitMask(bw, code_length_bitdepth); |
| 347 ClearHuffmanTreeIfOnlyOneSymbol(&huffman_code); |
| 348 { |
| 349 int trailing_zero_bits = 0; |
| 350 int trimmed_length = num_tokens; |
| 351 int write_trimmed_length; |
| 352 int length; |
| 353 int i = num_tokens; |
| 354 while (i-- > 0) { |
| 355 const int ix = tokens[i].code; |
| 356 if (ix == 0 || ix == 17 || ix == 18) { |
| 357 --trimmed_length; // discount trailing zeros |
| 358 trailing_zero_bits += code_length_bitdepth[ix]; |
| 359 if (ix == 17) { |
| 360 trailing_zero_bits += 3; |
| 361 } else if (ix == 18) { |
| 362 trailing_zero_bits += 7; |
| 363 } |
| 364 } else { |
| 365 break; |
| 366 } |
| 367 } |
| 368 write_trimmed_length = (trimmed_length > 1 && trailing_zero_bits > 12); |
| 369 length = write_trimmed_length ? trimmed_length : num_tokens; |
| 370 VP8LWriteBits(bw, 1, write_trimmed_length); |
| 371 if (write_trimmed_length) { |
| 372 const int nbits = VP8LBitsLog2Ceiling(trimmed_length - 1); |
| 373 const int nbitpairs = (nbits == 0) ? 1 : (nbits + 1) / 2; |
| 374 VP8LWriteBits(bw, 3, nbitpairs - 1); |
| 375 assert(trimmed_length >= 2); |
| 376 VP8LWriteBits(bw, nbitpairs * 2, trimmed_length - 2); |
| 377 } |
| 378 StoreHuffmanTreeToBitMask(bw, tokens, length, &huffman_code); |
| 379 } |
| 380 } |
| 381 |
| 382 // 'huff_tree' and 'tokens' are pre-alloacted buffers. |
| 383 static void StoreHuffmanCode(VP8LBitWriter* const bw, |
| 384 HuffmanTree* const huff_tree, |
| 385 HuffmanTreeToken* const tokens, |
| 386 const HuffmanTreeCode* const huffman_code) { |
| 387 int i; |
| 388 int count = 0; |
| 389 int symbols[2] = { 0, 0 }; |
| 390 const int kMaxBits = 8; |
| 391 const int kMaxSymbol = 1 << kMaxBits; |
| 392 |
| 393 // Check whether it's a small tree. |
| 394 for (i = 0; i < huffman_code->num_symbols && count < 3; ++i) { |
| 395 if (huffman_code->code_lengths[i] != 0) { |
| 396 if (count < 2) symbols[count] = i; |
| 397 ++count; |
| 398 } |
| 399 } |
| 400 |
| 401 if (count == 0) { // emit minimal tree for empty cases |
| 402 // bits: small tree marker: 1, count-1: 0, large 8-bit code: 0, code: 0 |
| 403 VP8LWriteBits(bw, 4, 0x01); |
| 404 } else if (count <= 2 && symbols[0] < kMaxSymbol && symbols[1] < kMaxSymbol) { |
| 405 VP8LWriteBits(bw, 1, 1); // Small tree marker to encode 1 or 2 symbols. |
| 406 VP8LWriteBits(bw, 1, count - 1); |
| 407 if (symbols[0] <= 1) { |
| 408 VP8LWriteBits(bw, 1, 0); // Code bit for small (1 bit) symbol value. |
| 409 VP8LWriteBits(bw, 1, symbols[0]); |
| 410 } else { |
| 411 VP8LWriteBits(bw, 1, 1); |
| 412 VP8LWriteBits(bw, 8, symbols[0]); |
| 413 } |
| 414 if (count == 2) { |
| 415 VP8LWriteBits(bw, 8, symbols[1]); |
| 416 } |
| 417 } else { |
| 418 StoreFullHuffmanCode(bw, huff_tree, tokens, huffman_code); |
| 419 } |
| 420 } |
| 421 |
| 422 static void WriteHuffmanCode(VP8LBitWriter* const bw, |
| 423 const HuffmanTreeCode* const code, |
| 424 int code_index) { |
| 425 const int depth = code->code_lengths[code_index]; |
| 426 const int symbol = code->codes[code_index]; |
| 427 VP8LWriteBits(bw, depth, symbol); |
| 428 } |
| 429 |
| 430 static WebPEncodingError StoreImageToBitMask( |
| 431 VP8LBitWriter* const bw, int width, int histo_bits, |
| 432 VP8LBackwardRefs* const refs, |
| 433 const uint16_t* histogram_symbols, |
| 434 const HuffmanTreeCode* const huffman_codes) { |
| 435 // x and y trace the position in the image. |
| 436 int x = 0; |
| 437 int y = 0; |
| 438 const int histo_xsize = histo_bits ? VP8LSubSampleSize(width, histo_bits) : 1; |
| 439 VP8LRefsCursor c = VP8LRefsCursorInit(refs); |
| 440 while (VP8LRefsCursorOk(&c)) { |
| 441 const PixOrCopy* const v = c.cur_pos; |
| 442 const int histogram_ix = histogram_symbols[histo_bits ? |
| 443 (y >> histo_bits) * histo_xsize + |
| 444 (x >> histo_bits) : 0]; |
| 445 const HuffmanTreeCode* const codes = huffman_codes + 5 * histogram_ix; |
| 446 if (PixOrCopyIsCacheIdx(v)) { |
| 447 const int code = PixOrCopyCacheIdx(v); |
| 448 const int literal_ix = 256 + NUM_LENGTH_CODES + code; |
| 449 WriteHuffmanCode(bw, codes, literal_ix); |
| 450 } else if (PixOrCopyIsLiteral(v)) { |
| 451 static const int order[] = { 1, 2, 0, 3 }; |
| 452 int k; |
| 453 for (k = 0; k < 4; ++k) { |
| 454 const int code = PixOrCopyLiteral(v, order[k]); |
| 455 WriteHuffmanCode(bw, codes + k, code); |
| 456 } |
| 457 } else { |
| 458 int bits, n_bits; |
| 459 int code, distance; |
| 460 |
| 461 VP8LPrefixEncode(v->len, &code, &n_bits, &bits); |
| 462 WriteHuffmanCode(bw, codes, 256 + code); |
| 463 VP8LWriteBits(bw, n_bits, bits); |
| 464 |
| 465 distance = PixOrCopyDistance(v); |
| 466 VP8LPrefixEncode(distance, &code, &n_bits, &bits); |
| 467 WriteHuffmanCode(bw, codes + 4, code); |
| 468 VP8LWriteBits(bw, n_bits, bits); |
| 469 } |
| 470 x += PixOrCopyLength(v); |
| 471 while (x >= width) { |
| 472 x -= width; |
| 473 ++y; |
| 474 } |
| 475 VP8LRefsCursorNext(&c); |
| 476 } |
| 477 return bw->error_ ? VP8_ENC_ERROR_OUT_OF_MEMORY : VP8_ENC_OK; |
| 478 } |
| 479 |
| 480 // Special case of EncodeImageInternal() for cache-bits=0, histo_bits=31 |
| 481 static WebPEncodingError EncodeImageNoHuffman(VP8LBitWriter* const bw, |
| 482 const uint32_t* const argb, |
| 483 VP8LHashChain* const hash_chain, |
| 484 VP8LBackwardRefs refs_array[2], |
| 485 int width, int height, |
| 486 int quality) { |
| 487 int i; |
| 488 int max_tokens = 0; |
| 489 WebPEncodingError err = VP8_ENC_OK; |
| 490 VP8LBackwardRefs* refs; |
| 491 HuffmanTreeToken* tokens = NULL; |
| 492 HuffmanTreeCode huffman_codes[5] = { { 0, NULL, NULL } }; |
| 493 const uint16_t histogram_symbols[1] = { 0 }; // only one tree, one symbol |
| 494 VP8LHistogramSet* const histogram_image = VP8LAllocateHistogramSet(1, 0); |
| 495 HuffmanTree* const huff_tree = (HuffmanTree*)WebPSafeMalloc( |
| 496 3ULL * CODE_LENGTH_CODES, sizeof(*huff_tree)); |
| 497 if (histogram_image == NULL || huff_tree == NULL) { |
| 498 err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
| 499 goto Error; |
| 500 } |
| 501 |
| 502 // Calculate backward references from ARGB image. |
| 503 refs = VP8LGetBackwardReferences(width, height, argb, quality, 0, 1, |
| 504 hash_chain, refs_array); |
| 505 if (refs == NULL) { |
| 506 err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
| 507 goto Error; |
| 508 } |
| 509 // Build histogram image and symbols from backward references. |
| 510 VP8LHistogramStoreRefs(refs, histogram_image->histograms[0]); |
| 511 |
| 512 // Create Huffman bit lengths and codes for each histogram image. |
| 513 assert(histogram_image->size == 1); |
| 514 if (!GetHuffBitLengthsAndCodes(histogram_image, huffman_codes)) { |
| 515 err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
| 516 goto Error; |
| 517 } |
| 518 |
| 519 // No color cache, no Huffman image. |
| 520 VP8LWriteBits(bw, 1, 0); |
| 521 |
| 522 // Find maximum number of symbols for the huffman tree-set. |
| 523 for (i = 0; i < 5; ++i) { |
| 524 HuffmanTreeCode* const codes = &huffman_codes[i]; |
| 525 if (max_tokens < codes->num_symbols) { |
| 526 max_tokens = codes->num_symbols; |
| 527 } |
| 528 } |
| 529 |
| 530 tokens = (HuffmanTreeToken*)WebPSafeMalloc(max_tokens, sizeof(*tokens)); |
| 531 if (tokens == NULL) { |
| 532 err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
| 533 goto Error; |
| 534 } |
| 535 |
| 536 // Store Huffman codes. |
| 537 for (i = 0; i < 5; ++i) { |
| 538 HuffmanTreeCode* const codes = &huffman_codes[i]; |
| 539 StoreHuffmanCode(bw, huff_tree, tokens, codes); |
| 540 ClearHuffmanTreeIfOnlyOneSymbol(codes); |
| 541 } |
| 542 |
| 543 // Store actual literals. |
| 544 err = StoreImageToBitMask(bw, width, 0, refs, histogram_symbols, |
| 545 huffman_codes); |
| 546 |
| 547 Error: |
| 548 WebPSafeFree(tokens); |
| 549 WebPSafeFree(huff_tree); |
| 550 VP8LFreeHistogramSet(histogram_image); |
| 551 WebPSafeFree(huffman_codes[0].codes); |
| 552 return err; |
| 553 } |
| 554 |
| 555 static WebPEncodingError EncodeImageInternal(VP8LBitWriter* const bw, |
| 556 const uint32_t* const argb, |
| 557 VP8LHashChain* const hash_chain, |
| 558 VP8LBackwardRefs refs_array[2], |
| 559 int width, int height, int quality, |
| 560 int cache_bits, |
| 561 int histogram_bits) { |
| 562 WebPEncodingError err = VP8_ENC_OK; |
| 563 const int use_2d_locality = 1; |
| 564 const int use_color_cache = (cache_bits > 0); |
| 565 const uint32_t histogram_image_xysize = |
| 566 VP8LSubSampleSize(width, histogram_bits) * |
| 567 VP8LSubSampleSize(height, histogram_bits); |
| 568 VP8LHistogramSet* histogram_image = |
| 569 VP8LAllocateHistogramSet(histogram_image_xysize, cache_bits); |
| 570 int histogram_image_size = 0; |
| 571 size_t bit_array_size = 0; |
| 572 HuffmanTree* huff_tree = NULL; |
| 573 HuffmanTreeToken* tokens = NULL; |
| 574 HuffmanTreeCode* huffman_codes = NULL; |
| 575 VP8LBackwardRefs refs; |
| 576 VP8LBackwardRefs* best_refs; |
| 577 uint16_t* const histogram_symbols = |
| 578 (uint16_t*)WebPSafeMalloc(histogram_image_xysize, |
| 579 sizeof(*histogram_symbols)); |
| 580 assert(histogram_bits >= MIN_HUFFMAN_BITS); |
| 581 assert(histogram_bits <= MAX_HUFFMAN_BITS); |
| 582 |
| 583 VP8LBackwardRefsInit(&refs, refs_array[0].block_size_); |
| 584 if (histogram_image == NULL || histogram_symbols == NULL) { |
| 585 VP8LFreeHistogramSet(histogram_image); |
| 586 WebPSafeFree(histogram_symbols); |
| 587 return 0; |
| 588 } |
| 589 |
| 590 // 'best_refs' is the reference to the best backward refs and points to one |
| 591 // of refs_array[0] or refs_array[1]. |
| 592 // Calculate backward references from ARGB image. |
| 593 best_refs = VP8LGetBackwardReferences(width, height, argb, quality, |
| 594 cache_bits, use_2d_locality, |
| 595 hash_chain, refs_array); |
| 596 if (best_refs == NULL || !VP8LBackwardRefsCopy(best_refs, &refs)) { |
| 597 goto Error; |
| 598 } |
| 599 // Build histogram image and symbols from backward references. |
| 600 if (!VP8LGetHistoImageSymbols(width, height, &refs, |
| 601 quality, histogram_bits, cache_bits, |
| 602 histogram_image, |
| 603 histogram_symbols)) { |
| 604 goto Error; |
| 605 } |
| 606 // Create Huffman bit lengths and codes for each histogram image. |
| 607 histogram_image_size = histogram_image->size; |
| 608 bit_array_size = 5 * histogram_image_size; |
| 609 huffman_codes = (HuffmanTreeCode*)WebPSafeCalloc(bit_array_size, |
| 610 sizeof(*huffman_codes)); |
| 611 if (huffman_codes == NULL || |
| 612 !GetHuffBitLengthsAndCodes(histogram_image, huffman_codes)) { |
| 613 goto Error; |
| 614 } |
| 615 // Free combined histograms. |
| 616 VP8LFreeHistogramSet(histogram_image); |
| 617 histogram_image = NULL; |
| 618 |
| 619 // Color Cache parameters. |
| 620 VP8LWriteBits(bw, 1, use_color_cache); |
| 621 if (use_color_cache) { |
| 622 VP8LWriteBits(bw, 4, cache_bits); |
| 623 } |
| 624 |
| 625 // Huffman image + meta huffman. |
| 626 { |
| 627 const int write_histogram_image = (histogram_image_size > 1); |
| 628 VP8LWriteBits(bw, 1, write_histogram_image); |
| 629 if (write_histogram_image) { |
| 630 uint32_t* const histogram_argb = |
| 631 (uint32_t*)WebPSafeMalloc(histogram_image_xysize, |
| 632 sizeof(*histogram_argb)); |
| 633 int max_index = 0; |
| 634 uint32_t i; |
| 635 if (histogram_argb == NULL) goto Error; |
| 636 for (i = 0; i < histogram_image_xysize; ++i) { |
| 637 const int symbol_index = histogram_symbols[i] & 0xffff; |
| 638 histogram_argb[i] = 0xff000000 | (symbol_index << 8); |
| 639 if (symbol_index >= max_index) { |
| 640 max_index = symbol_index + 1; |
| 641 } |
| 642 } |
| 643 histogram_image_size = max_index; |
| 644 |
| 645 VP8LWriteBits(bw, 3, histogram_bits - 2); |
| 646 err = EncodeImageNoHuffman(bw, histogram_argb, hash_chain, refs_array, |
| 647 VP8LSubSampleSize(width, histogram_bits), |
| 648 VP8LSubSampleSize(height, histogram_bits), |
| 649 quality); |
| 650 WebPSafeFree(histogram_argb); |
| 651 if (err != VP8_ENC_OK) goto Error; |
| 652 } |
| 653 } |
| 654 |
| 655 // Store Huffman codes. |
| 656 { |
| 657 int i; |
| 658 int max_tokens = 0; |
| 659 huff_tree = (HuffmanTree*)WebPSafeMalloc(3ULL * CODE_LENGTH_CODES, |
| 660 sizeof(*huff_tree)); |
| 661 if (huff_tree == NULL) goto Error; |
| 662 // Find maximum number of symbols for the huffman tree-set. |
| 663 for (i = 0; i < 5 * histogram_image_size; ++i) { |
| 664 HuffmanTreeCode* const codes = &huffman_codes[i]; |
| 665 if (max_tokens < codes->num_symbols) { |
| 666 max_tokens = codes->num_symbols; |
| 667 } |
| 668 } |
| 669 tokens = (HuffmanTreeToken*)WebPSafeMalloc(max_tokens, |
| 670 sizeof(*tokens)); |
| 671 if (tokens == NULL) goto Error; |
| 672 for (i = 0; i < 5 * histogram_image_size; ++i) { |
| 673 HuffmanTreeCode* const codes = &huffman_codes[i]; |
| 674 StoreHuffmanCode(bw, huff_tree, tokens, codes); |
| 675 ClearHuffmanTreeIfOnlyOneSymbol(codes); |
| 676 } |
| 677 } |
| 678 |
| 679 // Store actual literals. |
| 680 err = StoreImageToBitMask(bw, width, histogram_bits, &refs, |
| 681 histogram_symbols, huffman_codes); |
| 682 |
| 683 Error: |
| 684 WebPSafeFree(tokens); |
| 685 WebPSafeFree(huff_tree); |
| 686 VP8LFreeHistogramSet(histogram_image); |
| 687 VP8LBackwardRefsClear(&refs); |
| 688 if (huffman_codes != NULL) { |
| 689 WebPSafeFree(huffman_codes->codes); |
| 690 WebPSafeFree(huffman_codes); |
| 691 } |
| 692 WebPSafeFree(histogram_symbols); |
| 693 return err; |
| 694 } |
| 695 |
| 696 // ----------------------------------------------------------------------------- |
| 697 // Transforms |
| 698 |
| 699 // Check if it would be a good idea to subtract green from red and blue. We |
| 700 // only impact entropy in red/blue components, don't bother to look at others. |
| 701 static WebPEncodingError EvalAndApplySubtractGreen(VP8LEncoder* const enc, |
| 702 int width, int height, |
| 703 VP8LBitWriter* const bw) { |
| 704 if (!enc->use_palette_) { |
| 705 int i; |
| 706 const uint32_t* const argb = enc->argb_; |
| 707 double bit_cost_before, bit_cost_after; |
| 708 // Allocate histogram with cache_bits = 1. |
| 709 VP8LHistogram* const histo = VP8LAllocateHistogram(1); |
| 710 if (histo == NULL) return VP8_ENC_ERROR_OUT_OF_MEMORY; |
| 711 for (i = 0; i < width * height; ++i) { |
| 712 const uint32_t c = argb[i]; |
| 713 ++histo->red_[(c >> 16) & 0xff]; |
| 714 ++histo->blue_[(c >> 0) & 0xff]; |
| 715 } |
| 716 bit_cost_before = VP8LHistogramEstimateBits(histo); |
| 717 |
| 718 VP8LHistogramInit(histo, 1); |
| 719 for (i = 0; i < width * height; ++i) { |
| 720 const uint32_t c = argb[i]; |
| 721 const int green = (c >> 8) & 0xff; |
| 722 ++histo->red_[((c >> 16) - green) & 0xff]; |
| 723 ++histo->blue_[((c >> 0) - green) & 0xff]; |
| 724 } |
| 725 bit_cost_after = VP8LHistogramEstimateBits(histo); |
| 726 VP8LFreeHistogram(histo); |
| 727 |
| 728 // Check if subtracting green yields low entropy. |
| 729 enc->use_subtract_green_ = (bit_cost_after < bit_cost_before); |
| 730 if (enc->use_subtract_green_) { |
| 731 VP8LWriteBits(bw, 1, TRANSFORM_PRESENT); |
| 732 VP8LWriteBits(bw, 2, SUBTRACT_GREEN); |
| 733 VP8LSubtractGreenFromBlueAndRed(enc->argb_, width * height); |
| 734 } |
| 735 } |
| 736 return VP8_ENC_OK; |
| 737 } |
| 738 |
| 739 static WebPEncodingError ApplyPredictFilter(const VP8LEncoder* const enc, |
| 740 int width, int height, int quality, |
| 741 VP8LBitWriter* const bw) { |
| 742 const int pred_bits = enc->transform_bits_; |
| 743 const int transform_width = VP8LSubSampleSize(width, pred_bits); |
| 744 const int transform_height = VP8LSubSampleSize(height, pred_bits); |
| 745 |
| 746 VP8LResidualImage(width, height, pred_bits, enc->argb_, enc->argb_scratch_, |
| 747 enc->transform_data_); |
| 748 VP8LWriteBits(bw, 1, TRANSFORM_PRESENT); |
| 749 VP8LWriteBits(bw, 2, PREDICTOR_TRANSFORM); |
| 750 assert(pred_bits >= 2); |
| 751 VP8LWriteBits(bw, 3, pred_bits - 2); |
| 752 return EncodeImageNoHuffman(bw, enc->transform_data_, |
| 753 (VP8LHashChain*)&enc->hash_chain_, |
| 754 (VP8LBackwardRefs*)enc->refs_, // cast const away |
| 755 transform_width, transform_height, |
| 756 quality); |
| 757 } |
| 758 |
| 759 static WebPEncodingError ApplyCrossColorFilter(const VP8LEncoder* const enc, |
| 760 int width, int height, |
| 761 int quality, |
| 762 VP8LBitWriter* const bw) { |
| 763 const int ccolor_transform_bits = enc->transform_bits_; |
| 764 const int transform_width = VP8LSubSampleSize(width, ccolor_transform_bits); |
| 765 const int transform_height = VP8LSubSampleSize(height, ccolor_transform_bits); |
| 766 |
| 767 VP8LColorSpaceTransform(width, height, ccolor_transform_bits, quality, |
| 768 enc->argb_, enc->transform_data_); |
| 769 VP8LWriteBits(bw, 1, TRANSFORM_PRESENT); |
| 770 VP8LWriteBits(bw, 2, CROSS_COLOR_TRANSFORM); |
| 771 assert(ccolor_transform_bits >= 2); |
| 772 VP8LWriteBits(bw, 3, ccolor_transform_bits - 2); |
| 773 return EncodeImageNoHuffman(bw, enc->transform_data_, |
| 774 (VP8LHashChain*)&enc->hash_chain_, |
| 775 (VP8LBackwardRefs*)enc->refs_, // cast const away |
| 776 transform_width, transform_height, |
| 777 quality); |
| 778 } |
| 779 |
| 780 // ----------------------------------------------------------------------------- |
| 781 |
| 782 static WebPEncodingError WriteRiffHeader(const WebPPicture* const pic, |
| 783 size_t riff_size, size_t vp8l_size) { |
| 784 uint8_t riff[RIFF_HEADER_SIZE + CHUNK_HEADER_SIZE + VP8L_SIGNATURE_SIZE] = { |
| 785 'R', 'I', 'F', 'F', 0, 0, 0, 0, 'W', 'E', 'B', 'P', |
| 786 'V', 'P', '8', 'L', 0, 0, 0, 0, VP8L_MAGIC_BYTE, |
| 787 }; |
| 788 PutLE32(riff + TAG_SIZE, (uint32_t)riff_size); |
| 789 PutLE32(riff + RIFF_HEADER_SIZE + TAG_SIZE, (uint32_t)vp8l_size); |
| 790 if (!pic->writer(riff, sizeof(riff), pic)) { |
| 791 return VP8_ENC_ERROR_BAD_WRITE; |
| 792 } |
| 793 return VP8_ENC_OK; |
| 794 } |
| 795 |
| 796 static int WriteImageSize(const WebPPicture* const pic, |
| 797 VP8LBitWriter* const bw) { |
| 798 const int width = pic->width - 1; |
| 799 const int height = pic->height - 1; |
| 800 assert(width < WEBP_MAX_DIMENSION && height < WEBP_MAX_DIMENSION); |
| 801 |
| 802 VP8LWriteBits(bw, VP8L_IMAGE_SIZE_BITS, width); |
| 803 VP8LWriteBits(bw, VP8L_IMAGE_SIZE_BITS, height); |
| 804 return !bw->error_; |
| 805 } |
| 806 |
| 807 static int WriteRealAlphaAndVersion(VP8LBitWriter* const bw, int has_alpha) { |
| 808 VP8LWriteBits(bw, 1, has_alpha); |
| 809 VP8LWriteBits(bw, VP8L_VERSION_BITS, VP8L_VERSION); |
| 810 return !bw->error_; |
| 811 } |
| 812 |
| 813 static WebPEncodingError WriteImage(const WebPPicture* const pic, |
| 814 VP8LBitWriter* const bw, |
| 815 size_t* const coded_size) { |
| 816 WebPEncodingError err = VP8_ENC_OK; |
| 817 const uint8_t* const webpll_data = VP8LBitWriterFinish(bw); |
| 818 const size_t webpll_size = VP8LBitWriterNumBytes(bw); |
| 819 const size_t vp8l_size = VP8L_SIGNATURE_SIZE + webpll_size; |
| 820 const size_t pad = vp8l_size & 1; |
| 821 const size_t riff_size = TAG_SIZE + CHUNK_HEADER_SIZE + vp8l_size + pad; |
| 822 |
| 823 err = WriteRiffHeader(pic, riff_size, vp8l_size); |
| 824 if (err != VP8_ENC_OK) goto Error; |
| 825 |
| 826 if (!pic->writer(webpll_data, webpll_size, pic)) { |
| 827 err = VP8_ENC_ERROR_BAD_WRITE; |
| 828 goto Error; |
| 829 } |
| 830 |
| 831 if (pad) { |
| 832 const uint8_t pad_byte[1] = { 0 }; |
| 833 if (!pic->writer(pad_byte, 1, pic)) { |
| 834 err = VP8_ENC_ERROR_BAD_WRITE; |
| 835 goto Error; |
| 836 } |
| 837 } |
| 838 *coded_size = CHUNK_HEADER_SIZE + riff_size; |
| 839 return VP8_ENC_OK; |
| 840 |
| 841 Error: |
| 842 return err; |
| 843 } |
| 844 |
| 845 // ----------------------------------------------------------------------------- |
| 846 |
| 847 // Allocates the memory for argb (W x H) buffer, 2 rows of context for |
| 848 // prediction and transform data. |
| 849 static WebPEncodingError AllocateTransformBuffer(VP8LEncoder* const enc, |
| 850 int width, int height) { |
| 851 WebPEncodingError err = VP8_ENC_OK; |
| 852 const int tile_size = 1 << enc->transform_bits_; |
| 853 const uint64_t image_size = width * height; |
| 854 const uint64_t argb_scratch_size = tile_size * width + width; |
| 855 const int transform_data_size = |
| 856 VP8LSubSampleSize(width, enc->transform_bits_) * |
| 857 VP8LSubSampleSize(height, enc->transform_bits_); |
| 858 const uint64_t total_size = |
| 859 image_size + argb_scratch_size + (uint64_t)transform_data_size; |
| 860 uint32_t* mem = (uint32_t*)WebPSafeMalloc(total_size, sizeof(*mem)); |
| 861 if (mem == NULL) { |
| 862 err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
| 863 goto Error; |
| 864 } |
| 865 enc->argb_ = mem; |
| 866 mem += image_size; |
| 867 enc->argb_scratch_ = mem; |
| 868 mem += argb_scratch_size; |
| 869 enc->transform_data_ = mem; |
| 870 enc->current_width_ = width; |
| 871 |
| 872 Error: |
| 873 return err; |
| 874 } |
| 875 |
| 876 static void ApplyPalette(uint32_t* src, uint32_t* dst, |
| 877 uint32_t src_stride, uint32_t dst_stride, |
| 878 const uint32_t* palette, int palette_size, |
| 879 int width, int height, int xbits, uint8_t* row) { |
| 880 int i, x, y; |
| 881 int use_LUT = 1; |
| 882 for (i = 0; i < palette_size; ++i) { |
| 883 if ((palette[i] & 0xffff00ffu) != 0) { |
| 884 use_LUT = 0; |
| 885 break; |
| 886 } |
| 887 } |
| 888 |
| 889 if (use_LUT) { |
| 890 uint8_t inv_palette[MAX_PALETTE_SIZE] = { 0 }; |
| 891 for (i = 0; i < palette_size; ++i) { |
| 892 const int color = (palette[i] >> 8) & 0xff; |
| 893 inv_palette[color] = i; |
| 894 } |
| 895 for (y = 0; y < height; ++y) { |
| 896 for (x = 0; x < width; ++x) { |
| 897 const int color = (src[x] >> 8) & 0xff; |
| 898 row[x] = inv_palette[color]; |
| 899 } |
| 900 VP8LBundleColorMap(row, width, xbits, dst); |
| 901 src += src_stride; |
| 902 dst += dst_stride; |
| 903 } |
| 904 } else { |
| 905 // Use 1 pixel cache for ARGB pixels. |
| 906 uint32_t last_pix = palette[0]; |
| 907 int last_idx = 0; |
| 908 for (y = 0; y < height; ++y) { |
| 909 for (x = 0; x < width; ++x) { |
| 910 const uint32_t pix = src[x]; |
| 911 if (pix != last_pix) { |
| 912 for (i = 0; i < palette_size; ++i) { |
| 913 if (pix == palette[i]) { |
| 914 last_idx = i; |
| 915 last_pix = pix; |
| 916 break; |
| 917 } |
| 918 } |
| 919 } |
| 920 row[x] = last_idx; |
| 921 } |
| 922 VP8LBundleColorMap(row, width, xbits, dst); |
| 923 src += src_stride; |
| 924 dst += dst_stride; |
| 925 } |
| 926 } |
| 927 } |
| 928 |
| 929 // Note: Expects "enc->palette_" to be set properly. |
| 930 // Also, "enc->palette_" will be modified after this call and should not be used |
| 931 // later. |
| 932 static WebPEncodingError EncodePalette(VP8LBitWriter* const bw, |
| 933 VP8LEncoder* const enc, int quality) { |
| 934 WebPEncodingError err = VP8_ENC_OK; |
| 935 int i; |
| 936 const WebPPicture* const pic = enc->pic_; |
| 937 uint32_t* src = pic->argb; |
| 938 uint32_t* dst; |
| 939 const int width = pic->width; |
| 940 const int height = pic->height; |
| 941 uint32_t* const palette = enc->palette_; |
| 942 const int palette_size = enc->palette_size_; |
| 943 uint8_t* row = NULL; |
| 944 int xbits; |
| 945 |
| 946 // Replace each input pixel by corresponding palette index. |
| 947 // This is done line by line. |
| 948 if (palette_size <= 4) { |
| 949 xbits = (palette_size <= 2) ? 3 : 2; |
| 950 } else { |
| 951 xbits = (palette_size <= 16) ? 1 : 0; |
| 952 } |
| 953 |
| 954 err = AllocateTransformBuffer(enc, VP8LSubSampleSize(width, xbits), height); |
| 955 if (err != VP8_ENC_OK) goto Error; |
| 956 dst = enc->argb_; |
| 957 |
| 958 row = (uint8_t*)WebPSafeMalloc(width, sizeof(*row)); |
| 959 if (row == NULL) return VP8_ENC_ERROR_OUT_OF_MEMORY; |
| 960 |
| 961 ApplyPalette(src, dst, pic->argb_stride, enc->current_width_, |
| 962 palette, palette_size, width, height, xbits, row); |
| 963 |
| 964 // Save palette to bitstream. |
| 965 VP8LWriteBits(bw, 1, TRANSFORM_PRESENT); |
| 966 VP8LWriteBits(bw, 2, COLOR_INDEXING_TRANSFORM); |
| 967 assert(palette_size >= 1); |
| 968 VP8LWriteBits(bw, 8, palette_size - 1); |
| 969 for (i = palette_size - 1; i >= 1; --i) { |
| 970 palette[i] = VP8LSubPixels(palette[i], palette[i - 1]); |
| 971 } |
| 972 err = EncodeImageNoHuffman(bw, palette, &enc->hash_chain_, enc->refs_, |
| 973 palette_size, 1, quality); |
| 974 |
| 975 Error: |
| 976 WebPSafeFree(row); |
| 977 return err; |
| 978 } |
| 979 |
| 980 // ----------------------------------------------------------------------------- |
| 981 |
| 982 static int GetHistoBits(int method, int use_palette, int width, int height) { |
| 983 const int hist_size = VP8LGetHistogramSize(MAX_COLOR_CACHE_BITS); |
| 984 // Make tile size a function of encoding method (Range: 0 to 6). |
| 985 int histo_bits = (use_palette ? 9 : 7) - method; |
| 986 while (1) { |
| 987 const int huff_image_size = VP8LSubSampleSize(width, histo_bits) * |
| 988 VP8LSubSampleSize(height, histo_bits); |
| 989 if ((uint64_t)huff_image_size * hist_size <= MAX_HUFF_IMAGE_SIZE) break; |
| 990 ++histo_bits; |
| 991 } |
| 992 return (histo_bits < MIN_HUFFMAN_BITS) ? MIN_HUFFMAN_BITS : |
| 993 (histo_bits > MAX_HUFFMAN_BITS) ? MAX_HUFFMAN_BITS : histo_bits; |
| 994 } |
| 995 |
| 996 static int GetTransformBits(int method, int histo_bits) { |
| 997 const int max_transform_bits = (method < 4) ? 6 : (method > 4) ? 4 : 5; |
| 998 return (histo_bits > max_transform_bits) ? max_transform_bits : histo_bits; |
| 999 } |
| 1000 |
| 1001 static int GetCacheBits(float quality) { |
| 1002 return (quality <= 25.f) ? 0 : 7; |
| 1003 } |
| 1004 |
| 1005 static void FinishEncParams(VP8LEncoder* const enc) { |
| 1006 const WebPConfig* const config = enc->config_; |
| 1007 const WebPPicture* const pic = enc->pic_; |
| 1008 const int method = config->method; |
| 1009 const float quality = config->quality; |
| 1010 const int use_palette = enc->use_palette_; |
| 1011 enc->histo_bits_ = GetHistoBits(method, use_palette, pic->width, pic->height); |
| 1012 enc->transform_bits_ = GetTransformBits(method, enc->histo_bits_); |
| 1013 enc->cache_bits_ = GetCacheBits(quality); |
| 1014 } |
| 1015 |
| 1016 // ----------------------------------------------------------------------------- |
| 1017 // VP8LEncoder |
| 1018 |
| 1019 static VP8LEncoder* VP8LEncoderNew(const WebPConfig* const config, |
| 1020 const WebPPicture* const picture) { |
| 1021 VP8LEncoder* const enc = (VP8LEncoder*)WebPSafeCalloc(1ULL, sizeof(*enc)); |
| 1022 if (enc == NULL) { |
| 1023 WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY); |
| 1024 return NULL; |
| 1025 } |
| 1026 enc->config_ = config; |
| 1027 enc->pic_ = picture; |
| 1028 |
| 1029 VP8LDspInit(); |
| 1030 |
| 1031 return enc; |
| 1032 } |
| 1033 |
| 1034 static void VP8LEncoderDelete(VP8LEncoder* enc) { |
| 1035 if (enc != NULL) { |
| 1036 VP8LHashChainClear(&enc->hash_chain_); |
| 1037 VP8LBackwardRefsClear(&enc->refs_[0]); |
| 1038 VP8LBackwardRefsClear(&enc->refs_[1]); |
| 1039 WebPSafeFree(enc->argb_); |
| 1040 WebPSafeFree(enc); |
| 1041 } |
| 1042 } |
| 1043 |
| 1044 // ----------------------------------------------------------------------------- |
| 1045 // Main call |
| 1046 |
| 1047 WebPEncodingError VP8LEncodeStream(const WebPConfig* const config, |
| 1048 const WebPPicture* const picture, |
| 1049 VP8LBitWriter* const bw) { |
| 1050 WebPEncodingError err = VP8_ENC_OK; |
| 1051 const int quality = (int)config->quality; |
| 1052 const int width = picture->width; |
| 1053 const int height = picture->height; |
| 1054 VP8LEncoder* const enc = VP8LEncoderNew(config, picture); |
| 1055 const size_t byte_position = VP8LBitWriterNumBytes(bw); |
| 1056 |
| 1057 if (enc == NULL) { |
| 1058 err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
| 1059 goto Error; |
| 1060 } |
| 1061 |
| 1062 // --------------------------------------------------------------------------- |
| 1063 // Analyze image (entropy, num_palettes etc) |
| 1064 |
| 1065 if (!AnalyzeAndInit(enc, config->image_hint)) { |
| 1066 err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
| 1067 goto Error; |
| 1068 } |
| 1069 |
| 1070 FinishEncParams(enc); |
| 1071 |
| 1072 if (enc->use_palette_) { |
| 1073 err = EncodePalette(bw, enc, quality); |
| 1074 if (err != VP8_ENC_OK) goto Error; |
| 1075 // Color cache is disabled for palette. |
| 1076 enc->cache_bits_ = 0; |
| 1077 } |
| 1078 |
| 1079 // In case image is not packed. |
| 1080 if (enc->argb_ == NULL) { |
| 1081 int y; |
| 1082 err = AllocateTransformBuffer(enc, width, height); |
| 1083 if (err != VP8_ENC_OK) goto Error; |
| 1084 for (y = 0; y < height; ++y) { |
| 1085 memcpy(enc->argb_ + y * width, |
| 1086 picture->argb + y * picture->argb_stride, |
| 1087 width * sizeof(*enc->argb_)); |
| 1088 } |
| 1089 enc->current_width_ = width; |
| 1090 } |
| 1091 |
| 1092 // --------------------------------------------------------------------------- |
| 1093 // Apply transforms and write transform data. |
| 1094 |
| 1095 err = EvalAndApplySubtractGreen(enc, enc->current_width_, height, bw); |
| 1096 if (err != VP8_ENC_OK) goto Error; |
| 1097 |
| 1098 if (enc->use_predict_) { |
| 1099 err = ApplyPredictFilter(enc, enc->current_width_, height, quality, bw); |
| 1100 if (err != VP8_ENC_OK) goto Error; |
| 1101 } |
| 1102 |
| 1103 if (enc->use_cross_color_) { |
| 1104 err = ApplyCrossColorFilter(enc, enc->current_width_, height, quality, bw); |
| 1105 if (err != VP8_ENC_OK) goto Error; |
| 1106 } |
| 1107 |
| 1108 VP8LWriteBits(bw, 1, !TRANSFORM_PRESENT); // No more transforms. |
| 1109 |
| 1110 // --------------------------------------------------------------------------- |
| 1111 // Estimate the color cache size. |
| 1112 |
| 1113 if (enc->cache_bits_ > 0) { |
| 1114 if (!VP8LCalculateEstimateForCacheSize(enc->argb_, enc->current_width_, |
| 1115 height, quality, &enc->hash_chain_, |
| 1116 &enc->refs_[0], &enc->cache_bits_)) { |
| 1117 err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
| 1118 goto Error; |
| 1119 } |
| 1120 } |
| 1121 |
| 1122 // --------------------------------------------------------------------------- |
| 1123 // Encode and write the transformed image. |
| 1124 |
| 1125 err = EncodeImageInternal(bw, enc->argb_, &enc->hash_chain_, enc->refs_, |
| 1126 enc->current_width_, height, quality, |
| 1127 enc->cache_bits_, enc->histo_bits_); |
| 1128 if (err != VP8_ENC_OK) goto Error; |
| 1129 |
| 1130 if (picture->stats != NULL) { |
| 1131 WebPAuxStats* const stats = picture->stats; |
| 1132 stats->lossless_features = 0; |
| 1133 if (enc->use_predict_) stats->lossless_features |= 1; |
| 1134 if (enc->use_cross_color_) stats->lossless_features |= 2; |
| 1135 if (enc->use_subtract_green_) stats->lossless_features |= 4; |
| 1136 if (enc->use_palette_) stats->lossless_features |= 8; |
| 1137 stats->histogram_bits = enc->histo_bits_; |
| 1138 stats->transform_bits = enc->transform_bits_; |
| 1139 stats->cache_bits = enc->cache_bits_; |
| 1140 stats->palette_size = enc->palette_size_; |
| 1141 stats->lossless_size = (int)(VP8LBitWriterNumBytes(bw) - byte_position); |
| 1142 } |
| 1143 |
| 1144 Error: |
| 1145 VP8LEncoderDelete(enc); |
| 1146 return err; |
| 1147 } |
| 1148 |
| 1149 int VP8LEncodeImage(const WebPConfig* const config, |
| 1150 const WebPPicture* const picture) { |
| 1151 int width, height; |
| 1152 int has_alpha; |
| 1153 size_t coded_size; |
| 1154 int percent = 0; |
| 1155 int initial_size; |
| 1156 WebPEncodingError err = VP8_ENC_OK; |
| 1157 VP8LBitWriter bw; |
| 1158 |
| 1159 if (picture == NULL) return 0; |
| 1160 |
| 1161 if (config == NULL || picture->argb == NULL) { |
| 1162 err = VP8_ENC_ERROR_NULL_PARAMETER; |
| 1163 WebPEncodingSetError(picture, err); |
| 1164 return 0; |
| 1165 } |
| 1166 |
| 1167 width = picture->width; |
| 1168 height = picture->height; |
| 1169 // Initialize BitWriter with size corresponding to 16 bpp to photo images and |
| 1170 // 8 bpp for graphical images. |
| 1171 initial_size = (config->image_hint == WEBP_HINT_GRAPH) ? |
| 1172 width * height : width * height * 2; |
| 1173 if (!VP8LBitWriterInit(&bw, initial_size)) { |
| 1174 err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
| 1175 goto Error; |
| 1176 } |
| 1177 |
| 1178 if (!WebPReportProgress(picture, 1, &percent)) { |
| 1179 UserAbort: |
| 1180 err = VP8_ENC_ERROR_USER_ABORT; |
| 1181 goto Error; |
| 1182 } |
| 1183 // Reset stats (for pure lossless coding) |
| 1184 if (picture->stats != NULL) { |
| 1185 WebPAuxStats* const stats = picture->stats; |
| 1186 memset(stats, 0, sizeof(*stats)); |
| 1187 stats->PSNR[0] = 99.f; |
| 1188 stats->PSNR[1] = 99.f; |
| 1189 stats->PSNR[2] = 99.f; |
| 1190 stats->PSNR[3] = 99.f; |
| 1191 stats->PSNR[4] = 99.f; |
| 1192 } |
| 1193 |
| 1194 // Write image size. |
| 1195 if (!WriteImageSize(picture, &bw)) { |
| 1196 err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
| 1197 goto Error; |
| 1198 } |
| 1199 |
| 1200 has_alpha = WebPPictureHasTransparency(picture); |
| 1201 // Write the non-trivial Alpha flag and lossless version. |
| 1202 if (!WriteRealAlphaAndVersion(&bw, has_alpha)) { |
| 1203 err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
| 1204 goto Error; |
| 1205 } |
| 1206 |
| 1207 if (!WebPReportProgress(picture, 5, &percent)) goto UserAbort; |
| 1208 |
| 1209 // Encode main image stream. |
| 1210 err = VP8LEncodeStream(config, picture, &bw); |
| 1211 if (err != VP8_ENC_OK) goto Error; |
| 1212 |
| 1213 // TODO(skal): have a fine-grained progress report in VP8LEncodeStream(). |
| 1214 if (!WebPReportProgress(picture, 90, &percent)) goto UserAbort; |
| 1215 |
| 1216 // Finish the RIFF chunk. |
| 1217 err = WriteImage(picture, &bw, &coded_size); |
| 1218 if (err != VP8_ENC_OK) goto Error; |
| 1219 |
| 1220 if (!WebPReportProgress(picture, 100, &percent)) goto UserAbort; |
| 1221 |
| 1222 // Save size. |
| 1223 if (picture->stats != NULL) { |
| 1224 picture->stats->coded_size += (int)coded_size; |
| 1225 picture->stats->lossless_size = (int)coded_size; |
| 1226 } |
| 1227 |
| 1228 if (picture->extra_info != NULL) { |
| 1229 const int mb_w = (width + 15) >> 4; |
| 1230 const int mb_h = (height + 15) >> 4; |
| 1231 memset(picture->extra_info, 0, mb_w * mb_h * sizeof(*picture->extra_info)); |
| 1232 } |
| 1233 |
| 1234 Error: |
| 1235 if (bw.error_) err = VP8_ENC_ERROR_OUT_OF_MEMORY; |
| 1236 VP8LBitWriterDestroy(&bw); |
| 1237 if (err != VP8_ENC_OK) { |
| 1238 WebPEncodingSetError(picture, err); |
| 1239 return 0; |
| 1240 } |
| 1241 return 1; |
| 1242 } |
| 1243 |
| 1244 //------------------------------------------------------------------------------ |
OLD | NEW |