OLD | NEW |
(Empty) | |
| 1 // Copyright 2014 Google Inc. All Rights Reserved. |
| 2 // |
| 3 // Use of this source code is governed by a BSD-style license |
| 4 // that can be found in the COPYING file in the root of the source |
| 5 // tree. An additional intellectual property rights grant can be found |
| 6 // in the file PATENTS. All contributing project authors may |
| 7 // be found in the AUTHORS file in the root of the source tree. |
| 8 // ----------------------------------------------------------------------------- |
| 9 // |
| 10 // YUV->RGB conversion functions |
| 11 // |
| 12 // Author: Skal (pascal.massimino@gmail.com) |
| 13 |
| 14 #include "./yuv.h" |
| 15 |
| 16 #if defined(WEBP_USE_SSE2) |
| 17 |
| 18 #include <emmintrin.h> |
| 19 #include <string.h> // for memcpy |
| 20 |
| 21 typedef union { // handy struct for converting SSE2 registers |
| 22 int32_t i32[4]; |
| 23 uint8_t u8[16]; |
| 24 __m128i m; |
| 25 } VP8kCstSSE2; |
| 26 |
| 27 #if defined(WEBP_YUV_USE_SSE2_TABLES) |
| 28 |
| 29 #include "./yuv_tables_sse2.h" |
| 30 |
| 31 void VP8YUVInitSSE2(void) {} |
| 32 |
| 33 #else |
| 34 |
| 35 static int done_sse2 = 0; |
| 36 static VP8kCstSSE2 VP8kUtoRGBA[256], VP8kVtoRGBA[256], VP8kYtoRGBA[256]; |
| 37 |
| 38 void VP8YUVInitSSE2(void) { |
| 39 if (!done_sse2) { |
| 40 int i; |
| 41 for (i = 0; i < 256; ++i) { |
| 42 VP8kYtoRGBA[i].i32[0] = |
| 43 VP8kYtoRGBA[i].i32[1] = |
| 44 VP8kYtoRGBA[i].i32[2] = (i - 16) * kYScale + YUV_HALF2; |
| 45 VP8kYtoRGBA[i].i32[3] = 0xff << YUV_FIX2; |
| 46 |
| 47 VP8kUtoRGBA[i].i32[0] = 0; |
| 48 VP8kUtoRGBA[i].i32[1] = -kUToG * (i - 128); |
| 49 VP8kUtoRGBA[i].i32[2] = kUToB * (i - 128); |
| 50 VP8kUtoRGBA[i].i32[3] = 0; |
| 51 |
| 52 VP8kVtoRGBA[i].i32[0] = kVToR * (i - 128); |
| 53 VP8kVtoRGBA[i].i32[1] = -kVToG * (i - 128); |
| 54 VP8kVtoRGBA[i].i32[2] = 0; |
| 55 VP8kVtoRGBA[i].i32[3] = 0; |
| 56 } |
| 57 done_sse2 = 1; |
| 58 |
| 59 #if 0 // code used to generate 'yuv_tables_sse2.h' |
| 60 printf("static const VP8kCstSSE2 VP8kYtoRGBA[256] = {\n"); |
| 61 for (i = 0; i < 256; ++i) { |
| 62 printf(" {{0x%.8x, 0x%.8x, 0x%.8x, 0x%.8x}},\n", |
| 63 VP8kYtoRGBA[i].i32[0], VP8kYtoRGBA[i].i32[1], |
| 64 VP8kYtoRGBA[i].i32[2], VP8kYtoRGBA[i].i32[3]); |
| 65 } |
| 66 printf("};\n\n"); |
| 67 printf("static const VP8kCstSSE2 VP8kUtoRGBA[256] = {\n"); |
| 68 for (i = 0; i < 256; ++i) { |
| 69 printf(" {{0, 0x%.8x, 0x%.8x, 0}},\n", |
| 70 VP8kUtoRGBA[i].i32[1], VP8kUtoRGBA[i].i32[2]); |
| 71 } |
| 72 printf("};\n\n"); |
| 73 printf("static VP8kCstSSE2 VP8kVtoRGBA[256] = {\n"); |
| 74 for (i = 0; i < 256; ++i) { |
| 75 printf(" {{0x%.8x, 0x%.8x, 0, 0}},\n", |
| 76 VP8kVtoRGBA[i].i32[0], VP8kVtoRGBA[i].i32[1]); |
| 77 } |
| 78 printf("};\n\n"); |
| 79 #endif |
| 80 } |
| 81 } |
| 82 |
| 83 #endif // WEBP_YUV_USE_SSE2_TABLES |
| 84 |
| 85 //----------------------------------------------------------------------------- |
| 86 |
| 87 static WEBP_INLINE __m128i LoadUVPart(int u, int v) { |
| 88 const __m128i u_part = _mm_loadu_si128(&VP8kUtoRGBA[u].m); |
| 89 const __m128i v_part = _mm_loadu_si128(&VP8kVtoRGBA[v].m); |
| 90 const __m128i uv_part = _mm_add_epi32(u_part, v_part); |
| 91 return uv_part; |
| 92 } |
| 93 |
| 94 static WEBP_INLINE __m128i GetRGBA32bWithUV(int y, const __m128i uv_part) { |
| 95 const __m128i y_part = _mm_loadu_si128(&VP8kYtoRGBA[y].m); |
| 96 const __m128i rgba1 = _mm_add_epi32(y_part, uv_part); |
| 97 const __m128i rgba2 = _mm_srai_epi32(rgba1, YUV_FIX2); |
| 98 return rgba2; |
| 99 } |
| 100 |
| 101 static WEBP_INLINE __m128i GetRGBA32b(int y, int u, int v) { |
| 102 const __m128i uv_part = LoadUVPart(u, v); |
| 103 return GetRGBA32bWithUV(y, uv_part); |
| 104 } |
| 105 |
| 106 static WEBP_INLINE void YuvToRgbSSE2(uint8_t y, uint8_t u, uint8_t v, |
| 107 uint8_t* const rgb) { |
| 108 const __m128i tmp0 = GetRGBA32b(y, u, v); |
| 109 const __m128i tmp1 = _mm_packs_epi32(tmp0, tmp0); |
| 110 const __m128i tmp2 = _mm_packus_epi16(tmp1, tmp1); |
| 111 // Note: we store 8 bytes at a time, not 3 bytes! -> memory stomp |
| 112 _mm_storel_epi64((__m128i*)rgb, tmp2); |
| 113 } |
| 114 |
| 115 static WEBP_INLINE void YuvToBgrSSE2(uint8_t y, uint8_t u, uint8_t v, |
| 116 uint8_t* const bgr) { |
| 117 const __m128i tmp0 = GetRGBA32b(y, u, v); |
| 118 const __m128i tmp1 = _mm_shuffle_epi32(tmp0, _MM_SHUFFLE(3, 0, 1, 2)); |
| 119 const __m128i tmp2 = _mm_packs_epi32(tmp1, tmp1); |
| 120 const __m128i tmp3 = _mm_packus_epi16(tmp2, tmp2); |
| 121 // Note: we store 8 bytes at a time, not 3 bytes! -> memory stomp |
| 122 _mm_storel_epi64((__m128i*)bgr, tmp3); |
| 123 } |
| 124 |
| 125 //----------------------------------------------------------------------------- |
| 126 // Convert spans of 32 pixels to various RGB formats for the fancy upsampler. |
| 127 |
| 128 #ifdef FANCY_UPSAMPLING |
| 129 |
| 130 void VP8YuvToRgba32(const uint8_t* y, const uint8_t* u, const uint8_t* v, |
| 131 uint8_t* dst) { |
| 132 int n; |
| 133 for (n = 0; n < 32; n += 4) { |
| 134 const __m128i tmp0_1 = GetRGBA32b(y[n + 0], u[n + 0], v[n + 0]); |
| 135 const __m128i tmp0_2 = GetRGBA32b(y[n + 1], u[n + 1], v[n + 1]); |
| 136 const __m128i tmp0_3 = GetRGBA32b(y[n + 2], u[n + 2], v[n + 2]); |
| 137 const __m128i tmp0_4 = GetRGBA32b(y[n + 3], u[n + 3], v[n + 3]); |
| 138 const __m128i tmp1_1 = _mm_packs_epi32(tmp0_1, tmp0_2); |
| 139 const __m128i tmp1_2 = _mm_packs_epi32(tmp0_3, tmp0_4); |
| 140 const __m128i tmp2 = _mm_packus_epi16(tmp1_1, tmp1_2); |
| 141 _mm_storeu_si128((__m128i*)dst, tmp2); |
| 142 dst += 4 * 4; |
| 143 } |
| 144 } |
| 145 |
| 146 void VP8YuvToBgra32(const uint8_t* y, const uint8_t* u, const uint8_t* v, |
| 147 uint8_t* dst) { |
| 148 int n; |
| 149 for (n = 0; n < 32; n += 2) { |
| 150 const __m128i tmp0_1 = GetRGBA32b(y[n + 0], u[n + 0], v[n + 0]); |
| 151 const __m128i tmp0_2 = GetRGBA32b(y[n + 1], u[n + 1], v[n + 1]); |
| 152 const __m128i tmp1_1 = _mm_shuffle_epi32(tmp0_1, _MM_SHUFFLE(3, 0, 1, 2)); |
| 153 const __m128i tmp1_2 = _mm_shuffle_epi32(tmp0_2, _MM_SHUFFLE(3, 0, 1, 2)); |
| 154 const __m128i tmp2_1 = _mm_packs_epi32(tmp1_1, tmp1_2); |
| 155 const __m128i tmp3 = _mm_packus_epi16(tmp2_1, tmp2_1); |
| 156 _mm_storel_epi64((__m128i*)dst, tmp3); |
| 157 dst += 4 * 2; |
| 158 } |
| 159 } |
| 160 |
| 161 void VP8YuvToRgb32(const uint8_t* y, const uint8_t* u, const uint8_t* v, |
| 162 uint8_t* dst) { |
| 163 int n; |
| 164 uint8_t tmp0[2 * 3 + 5 + 15]; |
| 165 uint8_t* const tmp = (uint8_t*)((uintptr_t)(tmp0 + 15) & ~15); // align |
| 166 for (n = 0; n < 30; ++n) { // we directly stomp the *dst memory |
| 167 YuvToRgbSSE2(y[n], u[n], v[n], dst + n * 3); |
| 168 } |
| 169 // Last two pixels are special: we write in a tmp buffer before sending |
| 170 // to dst. |
| 171 YuvToRgbSSE2(y[n + 0], u[n + 0], v[n + 0], tmp + 0); |
| 172 YuvToRgbSSE2(y[n + 1], u[n + 1], v[n + 1], tmp + 3); |
| 173 memcpy(dst + n * 3, tmp, 2 * 3); |
| 174 } |
| 175 |
| 176 void VP8YuvToBgr32(const uint8_t* y, const uint8_t* u, const uint8_t* v, |
| 177 uint8_t* dst) { |
| 178 int n; |
| 179 uint8_t tmp0[2 * 3 + 5 + 15]; |
| 180 uint8_t* const tmp = (uint8_t*)((uintptr_t)(tmp0 + 15) & ~15); // align |
| 181 for (n = 0; n < 30; ++n) { |
| 182 YuvToBgrSSE2(y[n], u[n], v[n], dst + n * 3); |
| 183 } |
| 184 YuvToBgrSSE2(y[n + 0], u[n + 0], v[n + 0], tmp + 0); |
| 185 YuvToBgrSSE2(y[n + 1], u[n + 1], v[n + 1], tmp + 3); |
| 186 memcpy(dst + n * 3, tmp, 2 * 3); |
| 187 } |
| 188 |
| 189 #endif // FANCY_UPSAMPLING |
| 190 |
| 191 //----------------------------------------------------------------------------- |
| 192 // Arbitrary-length row conversion functions |
| 193 |
| 194 static void YuvToRgbaRowSSE2(const uint8_t* y, |
| 195 const uint8_t* u, const uint8_t* v, |
| 196 uint8_t* dst, int len) { |
| 197 int n; |
| 198 for (n = 0; n + 4 <= len; n += 4) { |
| 199 const __m128i uv_0 = LoadUVPart(u[0], v[0]); |
| 200 const __m128i uv_1 = LoadUVPart(u[1], v[1]); |
| 201 const __m128i tmp0_1 = GetRGBA32bWithUV(y[0], uv_0); |
| 202 const __m128i tmp0_2 = GetRGBA32bWithUV(y[1], uv_0); |
| 203 const __m128i tmp0_3 = GetRGBA32bWithUV(y[2], uv_1); |
| 204 const __m128i tmp0_4 = GetRGBA32bWithUV(y[3], uv_1); |
| 205 const __m128i tmp1_1 = _mm_packs_epi32(tmp0_1, tmp0_2); |
| 206 const __m128i tmp1_2 = _mm_packs_epi32(tmp0_3, tmp0_4); |
| 207 const __m128i tmp2 = _mm_packus_epi16(tmp1_1, tmp1_2); |
| 208 _mm_storeu_si128((__m128i*)dst, tmp2); |
| 209 dst += 4 * 4; |
| 210 y += 4; |
| 211 u += 2; |
| 212 v += 2; |
| 213 } |
| 214 // Finish off |
| 215 while (n < len) { |
| 216 VP8YuvToRgba(y[0], u[0], v[0], dst); |
| 217 dst += 4; |
| 218 ++y; |
| 219 u += (n & 1); |
| 220 v += (n & 1); |
| 221 ++n; |
| 222 } |
| 223 } |
| 224 |
| 225 static void YuvToBgraRowSSE2(const uint8_t* y, |
| 226 const uint8_t* u, const uint8_t* v, |
| 227 uint8_t* dst, int len) { |
| 228 int n; |
| 229 for (n = 0; n + 2 <= len; n += 2) { |
| 230 const __m128i uv_0 = LoadUVPart(u[0], v[0]); |
| 231 const __m128i tmp0_1 = GetRGBA32bWithUV(y[0], uv_0); |
| 232 const __m128i tmp0_2 = GetRGBA32bWithUV(y[1], uv_0); |
| 233 const __m128i tmp1_1 = _mm_shuffle_epi32(tmp0_1, _MM_SHUFFLE(3, 0, 1, 2)); |
| 234 const __m128i tmp1_2 = _mm_shuffle_epi32(tmp0_2, _MM_SHUFFLE(3, 0, 1, 2)); |
| 235 const __m128i tmp2_1 = _mm_packs_epi32(tmp1_1, tmp1_2); |
| 236 const __m128i tmp3 = _mm_packus_epi16(tmp2_1, tmp2_1); |
| 237 _mm_storel_epi64((__m128i*)dst, tmp3); |
| 238 dst += 4 * 2; |
| 239 y += 2; |
| 240 ++u; |
| 241 ++v; |
| 242 } |
| 243 // Finish off |
| 244 if (len & 1) { |
| 245 VP8YuvToBgra(y[0], u[0], v[0], dst); |
| 246 } |
| 247 } |
| 248 |
| 249 static void YuvToArgbRowSSE2(const uint8_t* y, |
| 250 const uint8_t* u, const uint8_t* v, |
| 251 uint8_t* dst, int len) { |
| 252 int n; |
| 253 for (n = 0; n + 2 <= len; n += 2) { |
| 254 const __m128i uv_0 = LoadUVPart(u[0], v[0]); |
| 255 const __m128i tmp0_1 = GetRGBA32bWithUV(y[0], uv_0); |
| 256 const __m128i tmp0_2 = GetRGBA32bWithUV(y[1], uv_0); |
| 257 const __m128i tmp1_1 = _mm_shuffle_epi32(tmp0_1, _MM_SHUFFLE(2, 1, 0, 3)); |
| 258 const __m128i tmp1_2 = _mm_shuffle_epi32(tmp0_2, _MM_SHUFFLE(2, 1, 0, 3)); |
| 259 const __m128i tmp2_1 = _mm_packs_epi32(tmp1_1, tmp1_2); |
| 260 const __m128i tmp3 = _mm_packus_epi16(tmp2_1, tmp2_1); |
| 261 _mm_storel_epi64((__m128i*)dst, tmp3); |
| 262 dst += 4 * 2; |
| 263 y += 2; |
| 264 ++u; |
| 265 ++v; |
| 266 } |
| 267 // Finish off |
| 268 if (len & 1) { |
| 269 VP8YuvToArgb(y[0], u[0], v[0], dst); |
| 270 } |
| 271 } |
| 272 |
| 273 static void YuvToRgbRowSSE2(const uint8_t* y, |
| 274 const uint8_t* u, const uint8_t* v, |
| 275 uint8_t* dst, int len) { |
| 276 int n; |
| 277 for (n = 0; n + 2 < len; ++n) { // we directly stomp the *dst memory |
| 278 YuvToRgbSSE2(y[0], u[0], v[0], dst); // stomps 8 bytes |
| 279 dst += 3; |
| 280 ++y; |
| 281 u += (n & 1); |
| 282 v += (n & 1); |
| 283 } |
| 284 VP8YuvToRgb(y[0], u[0], v[0], dst); |
| 285 if (len > 1) { |
| 286 VP8YuvToRgb(y[1], u[n & 1], v[n & 1], dst + 3); |
| 287 } |
| 288 } |
| 289 |
| 290 static void YuvToBgrRowSSE2(const uint8_t* y, |
| 291 const uint8_t* u, const uint8_t* v, |
| 292 uint8_t* dst, int len) { |
| 293 int n; |
| 294 for (n = 0; n + 2 < len; ++n) { // we directly stomp the *dst memory |
| 295 YuvToBgrSSE2(y[0], u[0], v[0], dst); // stomps 8 bytes |
| 296 dst += 3; |
| 297 ++y; |
| 298 u += (n & 1); |
| 299 v += (n & 1); |
| 300 } |
| 301 VP8YuvToBgr(y[0], u[0], v[0], dst + 0); |
| 302 if (len > 1) { |
| 303 VP8YuvToBgr(y[1], u[n & 1], v[n & 1], dst + 3); |
| 304 } |
| 305 } |
| 306 |
| 307 #endif // WEBP_USE_SSE2 |
| 308 |
| 309 //------------------------------------------------------------------------------ |
| 310 // Entry point |
| 311 |
| 312 extern void WebPInitSamplersSSE2(void); |
| 313 |
| 314 void WebPInitSamplersSSE2(void) { |
| 315 #if defined(WEBP_USE_SSE2) |
| 316 WebPSamplers[MODE_RGB] = YuvToRgbRowSSE2; |
| 317 WebPSamplers[MODE_RGBA] = YuvToRgbaRowSSE2; |
| 318 WebPSamplers[MODE_BGR] = YuvToBgrRowSSE2; |
| 319 WebPSamplers[MODE_BGRA] = YuvToBgraRowSSE2; |
| 320 WebPSamplers[MODE_ARGB] = YuvToArgbRowSSE2; |
| 321 #endif // WEBP_USE_SSE2 |
| 322 } |
OLD | NEW |