OLD | NEW |
(Empty) | |
| 1 // Copyright 2012 Google Inc. All Rights Reserved. |
| 2 // |
| 3 // Use of this source code is governed by a BSD-style license |
| 4 // that can be found in the COPYING file in the root of the source |
| 5 // tree. An additional intellectual property rights grant can be found |
| 6 // in the file PATENTS. All contributing project authors may |
| 7 // be found in the AUTHORS file in the root of the source tree. |
| 8 // ----------------------------------------------------------------------------- |
| 9 // |
| 10 // Image transforms and color space conversion methods for lossless decoder. |
| 11 // |
| 12 // Authors: Vikas Arora (vikaas.arora@gmail.com) |
| 13 // Jyrki Alakuijala (jyrki@google.com) |
| 14 // Urvang Joshi (urvang@google.com) |
| 15 |
| 16 #include "./dsp.h" |
| 17 |
| 18 #include <math.h> |
| 19 #include <stdlib.h> |
| 20 #include "../dec/vp8li.h" |
| 21 #include "../utils/endian_inl.h" |
| 22 #include "./lossless.h" |
| 23 #include "./yuv.h" |
| 24 |
| 25 #define MAX_DIFF_COST (1e30f) |
| 26 |
| 27 // lookup table for small values of log2(int) |
| 28 const float kLog2Table[LOG_LOOKUP_IDX_MAX] = { |
| 29 0.0000000000000000f, 0.0000000000000000f, |
| 30 1.0000000000000000f, 1.5849625007211560f, |
| 31 2.0000000000000000f, 2.3219280948873621f, |
| 32 2.5849625007211560f, 2.8073549220576041f, |
| 33 3.0000000000000000f, 3.1699250014423121f, |
| 34 3.3219280948873621f, 3.4594316186372973f, |
| 35 3.5849625007211560f, 3.7004397181410921f, |
| 36 3.8073549220576041f, 3.9068905956085187f, |
| 37 4.0000000000000000f, 4.0874628412503390f, |
| 38 4.1699250014423121f, 4.2479275134435852f, |
| 39 4.3219280948873626f, 4.3923174227787606f, |
| 40 4.4594316186372973f, 4.5235619560570130f, |
| 41 4.5849625007211560f, 4.6438561897747243f, |
| 42 4.7004397181410917f, 4.7548875021634682f, |
| 43 4.8073549220576037f, 4.8579809951275718f, |
| 44 4.9068905956085187f, 4.9541963103868749f, |
| 45 5.0000000000000000f, 5.0443941193584533f, |
| 46 5.0874628412503390f, 5.1292830169449663f, |
| 47 5.1699250014423121f, 5.2094533656289501f, |
| 48 5.2479275134435852f, 5.2854022188622487f, |
| 49 5.3219280948873626f, 5.3575520046180837f, |
| 50 5.3923174227787606f, 5.4262647547020979f, |
| 51 5.4594316186372973f, 5.4918530963296747f, |
| 52 5.5235619560570130f, 5.5545888516776376f, |
| 53 5.5849625007211560f, 5.6147098441152083f, |
| 54 5.6438561897747243f, 5.6724253419714951f, |
| 55 5.7004397181410917f, 5.7279204545631987f, |
| 56 5.7548875021634682f, 5.7813597135246599f, |
| 57 5.8073549220576037f, 5.8328900141647412f, |
| 58 5.8579809951275718f, 5.8826430493618415f, |
| 59 5.9068905956085187f, 5.9307373375628866f, |
| 60 5.9541963103868749f, 5.9772799234999167f, |
| 61 6.0000000000000000f, 6.0223678130284543f, |
| 62 6.0443941193584533f, 6.0660891904577720f, |
| 63 6.0874628412503390f, 6.1085244567781691f, |
| 64 6.1292830169449663f, 6.1497471195046822f, |
| 65 6.1699250014423121f, 6.1898245588800175f, |
| 66 6.2094533656289501f, 6.2288186904958804f, |
| 67 6.2479275134435852f, 6.2667865406949010f, |
| 68 6.2854022188622487f, 6.3037807481771030f, |
| 69 6.3219280948873626f, 6.3398500028846243f, |
| 70 6.3575520046180837f, 6.3750394313469245f, |
| 71 6.3923174227787606f, 6.4093909361377017f, |
| 72 6.4262647547020979f, 6.4429434958487279f, |
| 73 6.4594316186372973f, 6.4757334309663976f, |
| 74 6.4918530963296747f, 6.5077946401986963f, |
| 75 6.5235619560570130f, 6.5391588111080309f, |
| 76 6.5545888516776376f, 6.5698556083309478f, |
| 77 6.5849625007211560f, 6.5999128421871278f, |
| 78 6.6147098441152083f, 6.6293566200796094f, |
| 79 6.6438561897747243f, 6.6582114827517946f, |
| 80 6.6724253419714951f, 6.6865005271832185f, |
| 81 6.7004397181410917f, 6.7142455176661224f, |
| 82 6.7279204545631987f, 6.7414669864011464f, |
| 83 6.7548875021634682f, 6.7681843247769259f, |
| 84 6.7813597135246599f, 6.7944158663501061f, |
| 85 6.8073549220576037f, 6.8201789624151878f, |
| 86 6.8328900141647412f, 6.8454900509443747f, |
| 87 6.8579809951275718f, 6.8703647195834047f, |
| 88 6.8826430493618415f, 6.8948177633079437f, |
| 89 6.9068905956085187f, 6.9188632372745946f, |
| 90 6.9307373375628866f, 6.9425145053392398f, |
| 91 6.9541963103868749f, 6.9657842846620869f, |
| 92 6.9772799234999167f, 6.9886846867721654f, |
| 93 7.0000000000000000f, 7.0112272554232539f, |
| 94 7.0223678130284543f, 7.0334230015374501f, |
| 95 7.0443941193584533f, 7.0552824355011898f, |
| 96 7.0660891904577720f, 7.0768155970508308f, |
| 97 7.0874628412503390f, 7.0980320829605263f, |
| 98 7.1085244567781691f, 7.1189410727235076f, |
| 99 7.1292830169449663f, 7.1395513523987936f, |
| 100 7.1497471195046822f, 7.1598713367783890f, |
| 101 7.1699250014423121f, 7.1799090900149344f, |
| 102 7.1898245588800175f, 7.1996723448363644f, |
| 103 7.2094533656289501f, 7.2191685204621611f, |
| 104 7.2288186904958804f, 7.2384047393250785f, |
| 105 7.2479275134435852f, 7.2573878426926521f, |
| 106 7.2667865406949010f, 7.2761244052742375f, |
| 107 7.2854022188622487f, 7.2946207488916270f, |
| 108 7.3037807481771030f, 7.3128829552843557f, |
| 109 7.3219280948873626f, 7.3309168781146167f, |
| 110 7.3398500028846243f, 7.3487281542310771f, |
| 111 7.3575520046180837f, 7.3663222142458160f, |
| 112 7.3750394313469245f, 7.3837042924740519f, |
| 113 7.3923174227787606f, 7.4008794362821843f, |
| 114 7.4093909361377017f, 7.4178525148858982f, |
| 115 7.4262647547020979f, 7.4346282276367245f, |
| 116 7.4429434958487279f, 7.4512111118323289f, |
| 117 7.4594316186372973f, 7.4676055500829976f, |
| 118 7.4757334309663976f, 7.4838157772642563f, |
| 119 7.4918530963296747f, 7.4998458870832056f, |
| 120 7.5077946401986963f, 7.5156998382840427f, |
| 121 7.5235619560570130f, 7.5313814605163118f, |
| 122 7.5391588111080309f, 7.5468944598876364f, |
| 123 7.5545888516776376f, 7.5622424242210728f, |
| 124 7.5698556083309478f, 7.5774288280357486f, |
| 125 7.5849625007211560f, 7.5924570372680806f, |
| 126 7.5999128421871278f, 7.6073303137496104f, |
| 127 7.6147098441152083f, 7.6220518194563764f, |
| 128 7.6293566200796094f, 7.6366246205436487f, |
| 129 7.6438561897747243f, 7.6510516911789281f, |
| 130 7.6582114827517946f, 7.6653359171851764f, |
| 131 7.6724253419714951f, 7.6794800995054464f, |
| 132 7.6865005271832185f, 7.6934869574993252f, |
| 133 7.7004397181410917f, 7.7073591320808825f, |
| 134 7.7142455176661224f, 7.7210991887071855f, |
| 135 7.7279204545631987f, 7.7347096202258383f, |
| 136 7.7414669864011464f, 7.7481928495894605f, |
| 137 7.7548875021634682f, 7.7615512324444795f, |
| 138 7.7681843247769259f, 7.7747870596011736f, |
| 139 7.7813597135246599f, 7.7879025593914317f, |
| 140 7.7944158663501061f, 7.8008998999203047f, |
| 141 7.8073549220576037f, 7.8137811912170374f, |
| 142 7.8201789624151878f, 7.8265484872909150f, |
| 143 7.8328900141647412f, 7.8392037880969436f, |
| 144 7.8454900509443747f, 7.8517490414160571f, |
| 145 7.8579809951275718f, 7.8641861446542797f, |
| 146 7.8703647195834047f, 7.8765169465649993f, |
| 147 7.8826430493618415f, 7.8887432488982591f, |
| 148 7.8948177633079437f, 7.9008668079807486f, |
| 149 7.9068905956085187f, 7.9128893362299619f, |
| 150 7.9188632372745946f, 7.9248125036057812f, |
| 151 7.9307373375628866f, 7.9366379390025709f, |
| 152 7.9425145053392398f, 7.9483672315846778f, |
| 153 7.9541963103868749f, 7.9600019320680805f, |
| 154 7.9657842846620869f, 7.9715435539507719f, |
| 155 7.9772799234999167f, 7.9829935746943103f, |
| 156 7.9886846867721654f, 7.9943534368588577f |
| 157 }; |
| 158 |
| 159 const float kSLog2Table[LOG_LOOKUP_IDX_MAX] = { |
| 160 0.00000000f, 0.00000000f, 2.00000000f, 4.75488750f, |
| 161 8.00000000f, 11.60964047f, 15.50977500f, 19.65148445f, |
| 162 24.00000000f, 28.52932501f, 33.21928095f, 38.05374781f, |
| 163 43.01955001f, 48.10571634f, 53.30296891f, 58.60335893f, |
| 164 64.00000000f, 69.48686830f, 75.05865003f, 80.71062276f, |
| 165 86.43856190f, 92.23866588f, 98.10749561f, 104.04192499f, |
| 166 110.03910002f, 116.09640474f, 122.21143267f, 128.38196256f, |
| 167 134.60593782f, 140.88144886f, 147.20671787f, 153.58008562f, |
| 168 160.00000000f, 166.46500594f, 172.97373660f, 179.52490559f, |
| 169 186.11730005f, 192.74977453f, 199.42124551f, 206.13068654f, |
| 170 212.87712380f, 219.65963219f, 226.47733176f, 233.32938445f, |
| 171 240.21499122f, 247.13338933f, 254.08384998f, 261.06567603f, |
| 172 268.07820003f, 275.12078236f, 282.19280949f, 289.29369244f, |
| 173 296.42286534f, 303.57978409f, 310.76392512f, 317.97478424f, |
| 174 325.21187564f, 332.47473081f, 339.76289772f, 347.07593991f, |
| 175 354.41343574f, 361.77497759f, 369.16017124f, 376.56863518f, |
| 176 384.00000000f, 391.45390785f, 398.93001188f, 406.42797576f, |
| 177 413.94747321f, 421.48818752f, 429.04981119f, 436.63204548f, |
| 178 444.23460010f, 451.85719280f, 459.49954906f, 467.16140179f, |
| 179 474.84249102f, 482.54256363f, 490.26137307f, 497.99867911f, |
| 180 505.75424759f, 513.52785023f, 521.31926438f, 529.12827280f, |
| 181 536.95466351f, 544.79822957f, 552.65876890f, 560.53608414f, |
| 182 568.42998244f, 576.34027536f, 584.26677867f, 592.20931226f, |
| 183 600.16769996f, 608.14176943f, 616.13135206f, 624.13628279f, |
| 184 632.15640007f, 640.19154569f, 648.24156472f, 656.30630539f, |
| 185 664.38561898f, 672.47935976f, 680.58738488f, 688.70955430f, |
| 186 696.84573069f, 704.99577935f, 713.15956818f, 721.33696754f, |
| 187 729.52785023f, 737.73209140f, 745.94956849f, 754.18016116f, |
| 188 762.42375127f, 770.68022275f, 778.94946161f, 787.23135586f, |
| 189 795.52579543f, 803.83267219f, 812.15187982f, 820.48331383f, |
| 190 828.82687147f, 837.18245171f, 845.54995518f, 853.92928416f, |
| 191 862.32034249f, 870.72303558f, 879.13727036f, 887.56295522f, |
| 192 896.00000000f, 904.44831595f, 912.90781569f, 921.37841320f, |
| 193 929.86002376f, 938.35256392f, 946.85595152f, 955.37010560f, |
| 194 963.89494641f, 972.43039537f, 980.97637504f, 989.53280911f, |
| 195 998.09962237f, 1006.67674069f, 1015.26409097f, 1023.86160116f, |
| 196 1032.46920021f, 1041.08681805f, 1049.71438560f, 1058.35183469f, |
| 197 1066.99909811f, 1075.65610955f, 1084.32280357f, 1092.99911564f, |
| 198 1101.68498204f, 1110.38033993f, 1119.08512727f, 1127.79928282f, |
| 199 1136.52274614f, 1145.25545758f, 1153.99735821f, 1162.74838989f, |
| 200 1171.50849518f, 1180.27761738f, 1189.05570047f, 1197.84268914f, |
| 201 1206.63852876f, 1215.44316535f, 1224.25654560f, 1233.07861684f, |
| 202 1241.90932703f, 1250.74862473f, 1259.59645914f, 1268.45278005f, |
| 203 1277.31753781f, 1286.19068338f, 1295.07216828f, 1303.96194457f, |
| 204 1312.85996488f, 1321.76618236f, 1330.68055071f, 1339.60302413f, |
| 205 1348.53355734f, 1357.47210556f, 1366.41862452f, 1375.37307041f, |
| 206 1384.33539991f, 1393.30557020f, 1402.28353887f, 1411.26926400f, |
| 207 1420.26270412f, 1429.26381818f, 1438.27256558f, 1447.28890615f, |
| 208 1456.31280014f, 1465.34420819f, 1474.38309138f, 1483.42941118f, |
| 209 1492.48312945f, 1501.54420843f, 1510.61261078f, 1519.68829949f, |
| 210 1528.77123795f, 1537.86138993f, 1546.95871952f, 1556.06319119f, |
| 211 1565.17476976f, 1574.29342040f, 1583.41910860f, 1592.55180020f, |
| 212 1601.69146137f, 1610.83805860f, 1619.99155871f, 1629.15192882f, |
| 213 1638.31913637f, 1647.49314911f, 1656.67393509f, 1665.86146266f, |
| 214 1675.05570047f, 1684.25661744f, 1693.46418280f, 1702.67836605f, |
| 215 1711.89913698f, 1721.12646563f, 1730.36032233f, 1739.60067768f, |
| 216 1748.84750254f, 1758.10076802f, 1767.36044551f, 1776.62650662f, |
| 217 1785.89892323f, 1795.17766747f, 1804.46271172f, 1813.75402857f, |
| 218 1823.05159087f, 1832.35537170f, 1841.66534438f, 1850.98148244f, |
| 219 1860.30375965f, 1869.63214999f, 1878.96662767f, 1888.30716711f, |
| 220 1897.65374295f, 1907.00633003f, 1916.36490342f, 1925.72943838f, |
| 221 1935.09991037f, 1944.47629506f, 1953.85856831f, 1963.24670620f, |
| 222 1972.64068498f, 1982.04048108f, 1991.44607117f, 2000.85743204f, |
| 223 2010.27454072f, 2019.69737440f, 2029.12591044f, 2038.56012640f |
| 224 }; |
| 225 |
| 226 const VP8LPrefixCode kPrefixEncodeCode[PREFIX_LOOKUP_IDX_MAX] = { |
| 227 { 0, 0}, { 0, 0}, { 1, 0}, { 2, 0}, { 3, 0}, { 4, 1}, { 4, 1}, { 5, 1}, |
| 228 { 5, 1}, { 6, 2}, { 6, 2}, { 6, 2}, { 6, 2}, { 7, 2}, { 7, 2}, { 7, 2}, |
| 229 { 7, 2}, { 8, 3}, { 8, 3}, { 8, 3}, { 8, 3}, { 8, 3}, { 8, 3}, { 8, 3}, |
| 230 { 8, 3}, { 9, 3}, { 9, 3}, { 9, 3}, { 9, 3}, { 9, 3}, { 9, 3}, { 9, 3}, |
| 231 { 9, 3}, {10, 4}, {10, 4}, {10, 4}, {10, 4}, {10, 4}, {10, 4}, {10, 4}, |
| 232 {10, 4}, {10, 4}, {10, 4}, {10, 4}, {10, 4}, {10, 4}, {10, 4}, {10, 4}, |
| 233 {10, 4}, {11, 4}, {11, 4}, {11, 4}, {11, 4}, {11, 4}, {11, 4}, {11, 4}, |
| 234 {11, 4}, {11, 4}, {11, 4}, {11, 4}, {11, 4}, {11, 4}, {11, 4}, {11, 4}, |
| 235 {11, 4}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, |
| 236 {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, |
| 237 {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, |
| 238 {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, |
| 239 {12, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, |
| 240 {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, |
| 241 {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, |
| 242 {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, |
| 243 {13, 5}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, |
| 244 {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, |
| 245 {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, |
| 246 {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, |
| 247 {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, |
| 248 {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, |
| 249 {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, |
| 250 {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, |
| 251 {14, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, |
| 252 {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, |
| 253 {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, |
| 254 {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, |
| 255 {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, |
| 256 {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, |
| 257 {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, |
| 258 {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, |
| 259 {15, 6}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, |
| 260 {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, |
| 261 {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, |
| 262 {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, |
| 263 {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, |
| 264 {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, |
| 265 {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, |
| 266 {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, |
| 267 {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, |
| 268 {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, |
| 269 {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, |
| 270 {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, |
| 271 {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, |
| 272 {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, |
| 273 {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, |
| 274 {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, |
| 275 {16, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, |
| 276 {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, |
| 277 {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, |
| 278 {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, |
| 279 {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, |
| 280 {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, |
| 281 {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, |
| 282 {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, |
| 283 {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, |
| 284 {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, |
| 285 {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, |
| 286 {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, |
| 287 {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, |
| 288 {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, |
| 289 {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, |
| 290 {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, |
| 291 }; |
| 292 |
| 293 const uint8_t kPrefixEncodeExtraBitsValue[PREFIX_LOOKUP_IDX_MAX] = { |
| 294 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 2, 3, 0, 1, 2, 3, |
| 295 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, |
| 296 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, |
| 297 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, |
| 298 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, |
| 299 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, |
| 300 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, |
| 301 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, |
| 302 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, |
| 303 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, |
| 304 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, |
| 305 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, |
| 306 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, |
| 307 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, |
| 308 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, |
| 309 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, |
| 310 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, |
| 311 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, |
| 312 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, |
| 313 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, |
| 314 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, |
| 315 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, |
| 316 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, |
| 317 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, |
| 318 127, |
| 319 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, |
| 320 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, |
| 321 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, |
| 322 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, |
| 323 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, |
| 324 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, |
| 325 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, |
| 326 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126 |
| 327 }; |
| 328 |
| 329 // The threshold till approximate version of log_2 can be used. |
| 330 // Practically, we can get rid of the call to log() as the two values match to |
| 331 // very high degree (the ratio of these two is 0.99999x). |
| 332 // Keeping a high threshold for now. |
| 333 #define APPROX_LOG_WITH_CORRECTION_MAX 65536 |
| 334 #define APPROX_LOG_MAX 4096 |
| 335 #define LOG_2_RECIPROCAL 1.44269504088896338700465094007086 |
| 336 static float FastSLog2Slow(uint32_t v) { |
| 337 assert(v >= LOG_LOOKUP_IDX_MAX); |
| 338 if (v < APPROX_LOG_WITH_CORRECTION_MAX) { |
| 339 int log_cnt = 0; |
| 340 uint32_t y = 1; |
| 341 int correction = 0; |
| 342 const float v_f = (float)v; |
| 343 const uint32_t orig_v = v; |
| 344 do { |
| 345 ++log_cnt; |
| 346 v = v >> 1; |
| 347 y = y << 1; |
| 348 } while (v >= LOG_LOOKUP_IDX_MAX); |
| 349 // vf = (2^log_cnt) * Xf; where y = 2^log_cnt and Xf < 256 |
| 350 // Xf = floor(Xf) * (1 + (v % y) / v) |
| 351 // log2(Xf) = log2(floor(Xf)) + log2(1 + (v % y) / v) |
| 352 // The correction factor: log(1 + d) ~ d; for very small d values, so |
| 353 // log2(1 + (v % y) / v) ~ LOG_2_RECIPROCAL * (v % y)/v |
| 354 // LOG_2_RECIPROCAL ~ 23/16 |
| 355 correction = (23 * (orig_v & (y - 1))) >> 4; |
| 356 return v_f * (kLog2Table[v] + log_cnt) + correction; |
| 357 } else { |
| 358 return (float)(LOG_2_RECIPROCAL * v * log((double)v)); |
| 359 } |
| 360 } |
| 361 |
| 362 static float FastLog2Slow(uint32_t v) { |
| 363 assert(v >= LOG_LOOKUP_IDX_MAX); |
| 364 if (v < APPROX_LOG_WITH_CORRECTION_MAX) { |
| 365 int log_cnt = 0; |
| 366 uint32_t y = 1; |
| 367 const uint32_t orig_v = v; |
| 368 double log_2; |
| 369 do { |
| 370 ++log_cnt; |
| 371 v = v >> 1; |
| 372 y = y << 1; |
| 373 } while (v >= LOG_LOOKUP_IDX_MAX); |
| 374 log_2 = kLog2Table[v] + log_cnt; |
| 375 if (orig_v >= APPROX_LOG_MAX) { |
| 376 // Since the division is still expensive, add this correction factor only |
| 377 // for large values of 'v'. |
| 378 const int correction = (23 * (orig_v & (y - 1))) >> 4; |
| 379 log_2 += (double)correction / orig_v; |
| 380 } |
| 381 return (float)log_2; |
| 382 } else { |
| 383 return (float)(LOG_2_RECIPROCAL * log((double)v)); |
| 384 } |
| 385 } |
| 386 |
| 387 //------------------------------------------------------------------------------ |
| 388 // Image transforms. |
| 389 |
| 390 // Mostly used to reduce code size + readability |
| 391 static WEBP_INLINE int GetMin(int a, int b) { return (a > b) ? b : a; } |
| 392 |
| 393 // In-place sum of each component with mod 256. |
| 394 static WEBP_INLINE void AddPixelsEq(uint32_t* a, uint32_t b) { |
| 395 const uint32_t alpha_and_green = (*a & 0xff00ff00u) + (b & 0xff00ff00u); |
| 396 const uint32_t red_and_blue = (*a & 0x00ff00ffu) + (b & 0x00ff00ffu); |
| 397 *a = (alpha_and_green & 0xff00ff00u) | (red_and_blue & 0x00ff00ffu); |
| 398 } |
| 399 |
| 400 static WEBP_INLINE uint32_t Average2(uint32_t a0, uint32_t a1) { |
| 401 return (((a0 ^ a1) & 0xfefefefeL) >> 1) + (a0 & a1); |
| 402 } |
| 403 |
| 404 static WEBP_INLINE uint32_t Average3(uint32_t a0, uint32_t a1, uint32_t a2) { |
| 405 return Average2(Average2(a0, a2), a1); |
| 406 } |
| 407 |
| 408 static WEBP_INLINE uint32_t Average4(uint32_t a0, uint32_t a1, |
| 409 uint32_t a2, uint32_t a3) { |
| 410 return Average2(Average2(a0, a1), Average2(a2, a3)); |
| 411 } |
| 412 |
| 413 static WEBP_INLINE uint32_t Clip255(uint32_t a) { |
| 414 if (a < 256) { |
| 415 return a; |
| 416 } |
| 417 // return 0, when a is a negative integer. |
| 418 // return 255, when a is positive. |
| 419 return ~a >> 24; |
| 420 } |
| 421 |
| 422 static WEBP_INLINE int AddSubtractComponentFull(int a, int b, int c) { |
| 423 return Clip255(a + b - c); |
| 424 } |
| 425 |
| 426 static WEBP_INLINE uint32_t ClampedAddSubtractFull(uint32_t c0, uint32_t c1, |
| 427 uint32_t c2) { |
| 428 const int a = AddSubtractComponentFull(c0 >> 24, c1 >> 24, c2 >> 24); |
| 429 const int r = AddSubtractComponentFull((c0 >> 16) & 0xff, |
| 430 (c1 >> 16) & 0xff, |
| 431 (c2 >> 16) & 0xff); |
| 432 const int g = AddSubtractComponentFull((c0 >> 8) & 0xff, |
| 433 (c1 >> 8) & 0xff, |
| 434 (c2 >> 8) & 0xff); |
| 435 const int b = AddSubtractComponentFull(c0 & 0xff, c1 & 0xff, c2 & 0xff); |
| 436 return ((uint32_t)a << 24) | (r << 16) | (g << 8) | b; |
| 437 } |
| 438 |
| 439 static WEBP_INLINE int AddSubtractComponentHalf(int a, int b) { |
| 440 return Clip255(a + (a - b) / 2); |
| 441 } |
| 442 |
| 443 static WEBP_INLINE uint32_t ClampedAddSubtractHalf(uint32_t c0, uint32_t c1, |
| 444 uint32_t c2) { |
| 445 const uint32_t ave = Average2(c0, c1); |
| 446 const int a = AddSubtractComponentHalf(ave >> 24, c2 >> 24); |
| 447 const int r = AddSubtractComponentHalf((ave >> 16) & 0xff, (c2 >> 16) & 0xff); |
| 448 const int g = AddSubtractComponentHalf((ave >> 8) & 0xff, (c2 >> 8) & 0xff); |
| 449 const int b = AddSubtractComponentHalf((ave >> 0) & 0xff, (c2 >> 0) & 0xff); |
| 450 return ((uint32_t)a << 24) | (r << 16) | (g << 8) | b; |
| 451 } |
| 452 |
| 453 // gcc-4.9 on ARM generates incorrect code in Select() when Sub3() is inlined. |
| 454 #if defined(__arm__) && LOCAL_GCC_VERSION == 0x409 |
| 455 # define LOCAL_INLINE __attribute__ ((noinline)) |
| 456 #else |
| 457 # define LOCAL_INLINE WEBP_INLINE |
| 458 #endif |
| 459 |
| 460 static LOCAL_INLINE int Sub3(int a, int b, int c) { |
| 461 const int pb = b - c; |
| 462 const int pa = a - c; |
| 463 return abs(pb) - abs(pa); |
| 464 } |
| 465 |
| 466 #undef LOCAL_INLINE |
| 467 |
| 468 static WEBP_INLINE uint32_t Select(uint32_t a, uint32_t b, uint32_t c) { |
| 469 const int pa_minus_pb = |
| 470 Sub3((a >> 24) , (b >> 24) , (c >> 24) ) + |
| 471 Sub3((a >> 16) & 0xff, (b >> 16) & 0xff, (c >> 16) & 0xff) + |
| 472 Sub3((a >> 8) & 0xff, (b >> 8) & 0xff, (c >> 8) & 0xff) + |
| 473 Sub3((a ) & 0xff, (b ) & 0xff, (c ) & 0xff); |
| 474 return (pa_minus_pb <= 0) ? a : b; |
| 475 } |
| 476 |
| 477 //------------------------------------------------------------------------------ |
| 478 // Predictors |
| 479 |
| 480 static uint32_t Predictor0(uint32_t left, const uint32_t* const top) { |
| 481 (void)top; |
| 482 (void)left; |
| 483 return ARGB_BLACK; |
| 484 } |
| 485 static uint32_t Predictor1(uint32_t left, const uint32_t* const top) { |
| 486 (void)top; |
| 487 return left; |
| 488 } |
| 489 static uint32_t Predictor2(uint32_t left, const uint32_t* const top) { |
| 490 (void)left; |
| 491 return top[0]; |
| 492 } |
| 493 static uint32_t Predictor3(uint32_t left, const uint32_t* const top) { |
| 494 (void)left; |
| 495 return top[1]; |
| 496 } |
| 497 static uint32_t Predictor4(uint32_t left, const uint32_t* const top) { |
| 498 (void)left; |
| 499 return top[-1]; |
| 500 } |
| 501 static uint32_t Predictor5(uint32_t left, const uint32_t* const top) { |
| 502 const uint32_t pred = Average3(left, top[0], top[1]); |
| 503 return pred; |
| 504 } |
| 505 static uint32_t Predictor6(uint32_t left, const uint32_t* const top) { |
| 506 const uint32_t pred = Average2(left, top[-1]); |
| 507 return pred; |
| 508 } |
| 509 static uint32_t Predictor7(uint32_t left, const uint32_t* const top) { |
| 510 const uint32_t pred = Average2(left, top[0]); |
| 511 return pred; |
| 512 } |
| 513 static uint32_t Predictor8(uint32_t left, const uint32_t* const top) { |
| 514 const uint32_t pred = Average2(top[-1], top[0]); |
| 515 (void)left; |
| 516 return pred; |
| 517 } |
| 518 static uint32_t Predictor9(uint32_t left, const uint32_t* const top) { |
| 519 const uint32_t pred = Average2(top[0], top[1]); |
| 520 (void)left; |
| 521 return pred; |
| 522 } |
| 523 static uint32_t Predictor10(uint32_t left, const uint32_t* const top) { |
| 524 const uint32_t pred = Average4(left, top[-1], top[0], top[1]); |
| 525 return pred; |
| 526 } |
| 527 static uint32_t Predictor11(uint32_t left, const uint32_t* const top) { |
| 528 const uint32_t pred = Select(top[0], left, top[-1]); |
| 529 return pred; |
| 530 } |
| 531 static uint32_t Predictor12(uint32_t left, const uint32_t* const top) { |
| 532 const uint32_t pred = ClampedAddSubtractFull(left, top[0], top[-1]); |
| 533 return pred; |
| 534 } |
| 535 static uint32_t Predictor13(uint32_t left, const uint32_t* const top) { |
| 536 const uint32_t pred = ClampedAddSubtractHalf(left, top[0], top[-1]); |
| 537 return pred; |
| 538 } |
| 539 |
| 540 static const VP8LPredictorFunc kPredictorsC[16] = { |
| 541 Predictor0, Predictor1, Predictor2, Predictor3, |
| 542 Predictor4, Predictor5, Predictor6, Predictor7, |
| 543 Predictor8, Predictor9, Predictor10, Predictor11, |
| 544 Predictor12, Predictor13, |
| 545 Predictor0, Predictor0 // <- padding security sentinels |
| 546 }; |
| 547 |
| 548 static float PredictionCostSpatial(const int counts[256], int weight_0, |
| 549 double exp_val) { |
| 550 const int significant_symbols = 256 >> 4; |
| 551 const double exp_decay_factor = 0.6; |
| 552 double bits = weight_0 * counts[0]; |
| 553 int i; |
| 554 for (i = 1; i < significant_symbols; ++i) { |
| 555 bits += exp_val * (counts[i] + counts[256 - i]); |
| 556 exp_val *= exp_decay_factor; |
| 557 } |
| 558 return (float)(-0.1 * bits); |
| 559 } |
| 560 |
| 561 // Compute the combined Shanon's entropy for distribution {X} and {X+Y} |
| 562 static float CombinedShannonEntropy(const int X[256], const int Y[256]) { |
| 563 int i; |
| 564 double retval = 0.; |
| 565 int sumX = 0, sumXY = 0; |
| 566 for (i = 0; i < 256; ++i) { |
| 567 const int x = X[i]; |
| 568 const int xy = x + Y[i]; |
| 569 if (x != 0) { |
| 570 sumX += x; |
| 571 retval -= VP8LFastSLog2(x); |
| 572 sumXY += xy; |
| 573 retval -= VP8LFastSLog2(xy); |
| 574 } else if (xy != 0) { |
| 575 sumXY += xy; |
| 576 retval -= VP8LFastSLog2(xy); |
| 577 } |
| 578 } |
| 579 retval += VP8LFastSLog2(sumX) + VP8LFastSLog2(sumXY); |
| 580 return (float)retval; |
| 581 } |
| 582 |
| 583 static float PredictionCostSpatialHistogram(const int accumulated[4][256], |
| 584 const int tile[4][256]) { |
| 585 int i; |
| 586 double retval = 0; |
| 587 for (i = 0; i < 4; ++i) { |
| 588 const double kExpValue = 0.94; |
| 589 retval += PredictionCostSpatial(tile[i], 1, kExpValue); |
| 590 retval += CombinedShannonEntropy(tile[i], accumulated[i]); |
| 591 } |
| 592 return (float)retval; |
| 593 } |
| 594 |
| 595 static WEBP_INLINE void UpdateHisto(int histo_argb[4][256], uint32_t argb) { |
| 596 ++histo_argb[0][argb >> 24]; |
| 597 ++histo_argb[1][(argb >> 16) & 0xff]; |
| 598 ++histo_argb[2][(argb >> 8) & 0xff]; |
| 599 ++histo_argb[3][argb & 0xff]; |
| 600 } |
| 601 |
| 602 static int GetBestPredictorForTile(int width, int height, |
| 603 int tile_x, int tile_y, int bits, |
| 604 const int accumulated[4][256], |
| 605 const uint32_t* const argb_scratch) { |
| 606 const int kNumPredModes = 14; |
| 607 const int col_start = tile_x << bits; |
| 608 const int row_start = tile_y << bits; |
| 609 const int tile_size = 1 << bits; |
| 610 const int max_y = GetMin(tile_size, height - row_start); |
| 611 const int max_x = GetMin(tile_size, width - col_start); |
| 612 float best_diff = MAX_DIFF_COST; |
| 613 int best_mode = 0; |
| 614 int mode; |
| 615 for (mode = 0; mode < kNumPredModes; ++mode) { |
| 616 const uint32_t* current_row = argb_scratch; |
| 617 const VP8LPredictorFunc pred_func = VP8LPredictors[mode]; |
| 618 float cur_diff; |
| 619 int y; |
| 620 int histo_argb[4][256]; |
| 621 memset(histo_argb, 0, sizeof(histo_argb)); |
| 622 for (y = 0; y < max_y; ++y) { |
| 623 int x; |
| 624 const int row = row_start + y; |
| 625 const uint32_t* const upper_row = current_row; |
| 626 current_row = upper_row + width; |
| 627 for (x = 0; x < max_x; ++x) { |
| 628 const int col = col_start + x; |
| 629 uint32_t predict; |
| 630 if (row == 0) { |
| 631 predict = (col == 0) ? ARGB_BLACK : current_row[col - 1]; // Left. |
| 632 } else if (col == 0) { |
| 633 predict = upper_row[col]; // Top. |
| 634 } else { |
| 635 predict = pred_func(current_row[col - 1], upper_row + col); |
| 636 } |
| 637 UpdateHisto(histo_argb, VP8LSubPixels(current_row[col], predict)); |
| 638 } |
| 639 } |
| 640 cur_diff = PredictionCostSpatialHistogram( |
| 641 accumulated, (const int (*)[256])histo_argb); |
| 642 if (cur_diff < best_diff) { |
| 643 best_diff = cur_diff; |
| 644 best_mode = mode; |
| 645 } |
| 646 } |
| 647 |
| 648 return best_mode; |
| 649 } |
| 650 |
| 651 static void CopyTileWithPrediction(int width, int height, |
| 652 int tile_x, int tile_y, int bits, int mode, |
| 653 const uint32_t* const argb_scratch, |
| 654 uint32_t* const argb) { |
| 655 const int col_start = tile_x << bits; |
| 656 const int row_start = tile_y << bits; |
| 657 const int tile_size = 1 << bits; |
| 658 const int max_y = GetMin(tile_size, height - row_start); |
| 659 const int max_x = GetMin(tile_size, width - col_start); |
| 660 const VP8LPredictorFunc pred_func = VP8LPredictors[mode]; |
| 661 const uint32_t* current_row = argb_scratch; |
| 662 |
| 663 int y; |
| 664 for (y = 0; y < max_y; ++y) { |
| 665 int x; |
| 666 const int row = row_start + y; |
| 667 const uint32_t* const upper_row = current_row; |
| 668 current_row = upper_row + width; |
| 669 for (x = 0; x < max_x; ++x) { |
| 670 const int col = col_start + x; |
| 671 const int pix = row * width + col; |
| 672 uint32_t predict; |
| 673 if (row == 0) { |
| 674 predict = (col == 0) ? ARGB_BLACK : current_row[col - 1]; // Left. |
| 675 } else if (col == 0) { |
| 676 predict = upper_row[col]; // Top. |
| 677 } else { |
| 678 predict = pred_func(current_row[col - 1], upper_row + col); |
| 679 } |
| 680 argb[pix] = VP8LSubPixels(current_row[col], predict); |
| 681 } |
| 682 } |
| 683 } |
| 684 |
| 685 void VP8LResidualImage(int width, int height, int bits, |
| 686 uint32_t* const argb, uint32_t* const argb_scratch, |
| 687 uint32_t* const image) { |
| 688 const int max_tile_size = 1 << bits; |
| 689 const int tiles_per_row = VP8LSubSampleSize(width, bits); |
| 690 const int tiles_per_col = VP8LSubSampleSize(height, bits); |
| 691 uint32_t* const upper_row = argb_scratch; |
| 692 uint32_t* const current_tile_rows = argb_scratch + width; |
| 693 int tile_y; |
| 694 int histo[4][256]; |
| 695 memset(histo, 0, sizeof(histo)); |
| 696 for (tile_y = 0; tile_y < tiles_per_col; ++tile_y) { |
| 697 const int tile_y_offset = tile_y * max_tile_size; |
| 698 const int this_tile_height = |
| 699 (tile_y < tiles_per_col - 1) ? max_tile_size : height - tile_y_offset; |
| 700 int tile_x; |
| 701 if (tile_y > 0) { |
| 702 memcpy(upper_row, current_tile_rows + (max_tile_size - 1) * width, |
| 703 width * sizeof(*upper_row)); |
| 704 } |
| 705 memcpy(current_tile_rows, &argb[tile_y_offset * width], |
| 706 this_tile_height * width * sizeof(*current_tile_rows)); |
| 707 for (tile_x = 0; tile_x < tiles_per_row; ++tile_x) { |
| 708 int pred; |
| 709 int y; |
| 710 const int tile_x_offset = tile_x * max_tile_size; |
| 711 int all_x_max = tile_x_offset + max_tile_size; |
| 712 if (all_x_max > width) { |
| 713 all_x_max = width; |
| 714 } |
| 715 pred = GetBestPredictorForTile(width, height, tile_x, tile_y, bits, |
| 716 (const int (*)[256])histo, |
| 717 argb_scratch); |
| 718 image[tile_y * tiles_per_row + tile_x] = 0xff000000u | (pred << 8); |
| 719 CopyTileWithPrediction(width, height, tile_x, tile_y, bits, pred, |
| 720 argb_scratch, argb); |
| 721 for (y = 0; y < max_tile_size; ++y) { |
| 722 int ix; |
| 723 int all_x; |
| 724 int all_y = tile_y_offset + y; |
| 725 if (all_y >= height) { |
| 726 break; |
| 727 } |
| 728 ix = all_y * width + tile_x_offset; |
| 729 for (all_x = tile_x_offset; all_x < all_x_max; ++all_x, ++ix) { |
| 730 UpdateHisto(histo, argb[ix]); |
| 731 } |
| 732 } |
| 733 } |
| 734 } |
| 735 } |
| 736 |
| 737 // Inverse prediction. |
| 738 static void PredictorInverseTransform(const VP8LTransform* const transform, |
| 739 int y_start, int y_end, uint32_t* data) { |
| 740 const int width = transform->xsize_; |
| 741 if (y_start == 0) { // First Row follows the L (mode=1) mode. |
| 742 int x; |
| 743 const uint32_t pred0 = Predictor0(data[-1], NULL); |
| 744 AddPixelsEq(data, pred0); |
| 745 for (x = 1; x < width; ++x) { |
| 746 const uint32_t pred1 = Predictor1(data[x - 1], NULL); |
| 747 AddPixelsEq(data + x, pred1); |
| 748 } |
| 749 data += width; |
| 750 ++y_start; |
| 751 } |
| 752 |
| 753 { |
| 754 int y = y_start; |
| 755 const int tile_width = 1 << transform->bits_; |
| 756 const int mask = tile_width - 1; |
| 757 const int safe_width = width & ~mask; |
| 758 const int tiles_per_row = VP8LSubSampleSize(width, transform->bits_); |
| 759 const uint32_t* pred_mode_base = |
| 760 transform->data_ + (y >> transform->bits_) * tiles_per_row; |
| 761 |
| 762 while (y < y_end) { |
| 763 const uint32_t pred2 = Predictor2(data[-1], data - width); |
| 764 const uint32_t* pred_mode_src = pred_mode_base; |
| 765 VP8LPredictorFunc pred_func; |
| 766 int x = 1; |
| 767 int t = 1; |
| 768 // First pixel follows the T (mode=2) mode. |
| 769 AddPixelsEq(data, pred2); |
| 770 // .. the rest: |
| 771 while (x < safe_width) { |
| 772 pred_func = VP8LPredictors[((*pred_mode_src++) >> 8) & 0xf]; |
| 773 for (; t < tile_width; ++t, ++x) { |
| 774 const uint32_t pred = pred_func(data[x - 1], data + x - width); |
| 775 AddPixelsEq(data + x, pred); |
| 776 } |
| 777 t = 0; |
| 778 } |
| 779 if (x < width) { |
| 780 pred_func = VP8LPredictors[((*pred_mode_src++) >> 8) & 0xf]; |
| 781 for (; x < width; ++x) { |
| 782 const uint32_t pred = pred_func(data[x - 1], data + x - width); |
| 783 AddPixelsEq(data + x, pred); |
| 784 } |
| 785 } |
| 786 data += width; |
| 787 ++y; |
| 788 if ((y & mask) == 0) { // Use the same mask, since tiles are squares. |
| 789 pred_mode_base += tiles_per_row; |
| 790 } |
| 791 } |
| 792 } |
| 793 } |
| 794 |
| 795 void VP8LSubtractGreenFromBlueAndRed_C(uint32_t* argb_data, int num_pixels) { |
| 796 int i; |
| 797 for (i = 0; i < num_pixels; ++i) { |
| 798 const uint32_t argb = argb_data[i]; |
| 799 const uint32_t green = (argb >> 8) & 0xff; |
| 800 const uint32_t new_r = (((argb >> 16) & 0xff) - green) & 0xff; |
| 801 const uint32_t new_b = ((argb & 0xff) - green) & 0xff; |
| 802 argb_data[i] = (argb & 0xff00ff00) | (new_r << 16) | new_b; |
| 803 } |
| 804 } |
| 805 |
| 806 // Add green to blue and red channels (i.e. perform the inverse transform of |
| 807 // 'subtract green'). |
| 808 void VP8LAddGreenToBlueAndRed_C(uint32_t* data, int num_pixels) { |
| 809 int i; |
| 810 for (i = 0; i < num_pixels; ++i) { |
| 811 const uint32_t argb = data[i]; |
| 812 const uint32_t green = ((argb >> 8) & 0xff); |
| 813 uint32_t red_blue = (argb & 0x00ff00ffu); |
| 814 red_blue += (green << 16) | green; |
| 815 red_blue &= 0x00ff00ffu; |
| 816 data[i] = (argb & 0xff00ff00u) | red_blue; |
| 817 } |
| 818 } |
| 819 |
| 820 static WEBP_INLINE void MultipliersClear(VP8LMultipliers* const m) { |
| 821 m->green_to_red_ = 0; |
| 822 m->green_to_blue_ = 0; |
| 823 m->red_to_blue_ = 0; |
| 824 } |
| 825 |
| 826 static WEBP_INLINE uint32_t ColorTransformDelta(int8_t color_pred, |
| 827 int8_t color) { |
| 828 return (uint32_t)((int)(color_pred) * color) >> 5; |
| 829 } |
| 830 |
| 831 static WEBP_INLINE void ColorCodeToMultipliers(uint32_t color_code, |
| 832 VP8LMultipliers* const m) { |
| 833 m->green_to_red_ = (color_code >> 0) & 0xff; |
| 834 m->green_to_blue_ = (color_code >> 8) & 0xff; |
| 835 m->red_to_blue_ = (color_code >> 16) & 0xff; |
| 836 } |
| 837 |
| 838 static WEBP_INLINE uint32_t MultipliersToColorCode( |
| 839 const VP8LMultipliers* const m) { |
| 840 return 0xff000000u | |
| 841 ((uint32_t)(m->red_to_blue_) << 16) | |
| 842 ((uint32_t)(m->green_to_blue_) << 8) | |
| 843 m->green_to_red_; |
| 844 } |
| 845 |
| 846 void VP8LTransformColor_C(const VP8LMultipliers* const m, uint32_t* data, |
| 847 int num_pixels) { |
| 848 int i; |
| 849 for (i = 0; i < num_pixels; ++i) { |
| 850 const uint32_t argb = data[i]; |
| 851 const uint32_t green = argb >> 8; |
| 852 const uint32_t red = argb >> 16; |
| 853 uint32_t new_red = red; |
| 854 uint32_t new_blue = argb; |
| 855 new_red -= ColorTransformDelta(m->green_to_red_, green); |
| 856 new_red &= 0xff; |
| 857 new_blue -= ColorTransformDelta(m->green_to_blue_, green); |
| 858 new_blue -= ColorTransformDelta(m->red_to_blue_, red); |
| 859 new_blue &= 0xff; |
| 860 data[i] = (argb & 0xff00ff00u) | (new_red << 16) | (new_blue); |
| 861 } |
| 862 } |
| 863 |
| 864 void VP8LTransformColorInverse_C(const VP8LMultipliers* const m, uint32_t* data, |
| 865 int num_pixels) { |
| 866 int i; |
| 867 for (i = 0; i < num_pixels; ++i) { |
| 868 const uint32_t argb = data[i]; |
| 869 const uint32_t green = argb >> 8; |
| 870 const uint32_t red = argb >> 16; |
| 871 uint32_t new_red = red; |
| 872 uint32_t new_blue = argb; |
| 873 new_red += ColorTransformDelta(m->green_to_red_, green); |
| 874 new_red &= 0xff; |
| 875 new_blue += ColorTransformDelta(m->green_to_blue_, green); |
| 876 new_blue += ColorTransformDelta(m->red_to_blue_, new_red); |
| 877 new_blue &= 0xff; |
| 878 data[i] = (argb & 0xff00ff00u) | (new_red << 16) | (new_blue); |
| 879 } |
| 880 } |
| 881 |
| 882 static WEBP_INLINE uint8_t TransformColorRed(uint8_t green_to_red, |
| 883 uint32_t argb) { |
| 884 const uint32_t green = argb >> 8; |
| 885 uint32_t new_red = argb >> 16; |
| 886 new_red -= ColorTransformDelta(green_to_red, green); |
| 887 return (new_red & 0xff); |
| 888 } |
| 889 |
| 890 static WEBP_INLINE uint8_t TransformColorBlue(uint8_t green_to_blue, |
| 891 uint8_t red_to_blue, |
| 892 uint32_t argb) { |
| 893 const uint32_t green = argb >> 8; |
| 894 const uint32_t red = argb >> 16; |
| 895 uint8_t new_blue = argb; |
| 896 new_blue -= ColorTransformDelta(green_to_blue, green); |
| 897 new_blue -= ColorTransformDelta(red_to_blue, red); |
| 898 return (new_blue & 0xff); |
| 899 } |
| 900 |
| 901 static float PredictionCostCrossColor(const int accumulated[256], |
| 902 const int counts[256]) { |
| 903 // Favor low entropy, locally and globally. |
| 904 // Favor small absolute values for PredictionCostSpatial |
| 905 static const double kExpValue = 2.4; |
| 906 return CombinedShannonEntropy(counts, accumulated) + |
| 907 PredictionCostSpatial(counts, 3, kExpValue); |
| 908 } |
| 909 |
| 910 static float GetPredictionCostCrossColorRed( |
| 911 int tile_x_offset, int tile_y_offset, int all_x_max, int all_y_max, |
| 912 int xsize, VP8LMultipliers prev_x, VP8LMultipliers prev_y, int green_to_red, |
| 913 const int accumulated_red_histo[256], const uint32_t* const argb) { |
| 914 int all_y; |
| 915 int histo[256] = { 0 }; |
| 916 float cur_diff; |
| 917 for (all_y = tile_y_offset; all_y < all_y_max; ++all_y) { |
| 918 int ix = all_y * xsize + tile_x_offset; |
| 919 int all_x; |
| 920 for (all_x = tile_x_offset; all_x < all_x_max; ++all_x, ++ix) { |
| 921 ++histo[TransformColorRed(green_to_red, argb[ix])]; // red. |
| 922 } |
| 923 } |
| 924 cur_diff = PredictionCostCrossColor(accumulated_red_histo, histo); |
| 925 if ((uint8_t)green_to_red == prev_x.green_to_red_) { |
| 926 cur_diff -= 3; // favor keeping the areas locally similar |
| 927 } |
| 928 if ((uint8_t)green_to_red == prev_y.green_to_red_) { |
| 929 cur_diff -= 3; // favor keeping the areas locally similar |
| 930 } |
| 931 if (green_to_red == 0) { |
| 932 cur_diff -= 3; |
| 933 } |
| 934 return cur_diff; |
| 935 } |
| 936 |
| 937 static void GetBestGreenToRed( |
| 938 int tile_x_offset, int tile_y_offset, int all_x_max, int all_y_max, |
| 939 int xsize, VP8LMultipliers prev_x, VP8LMultipliers prev_y, |
| 940 const int accumulated_red_histo[256], const uint32_t* const argb, |
| 941 VP8LMultipliers* const best_tx) { |
| 942 int min_green_to_red = -64; |
| 943 int max_green_to_red = 64; |
| 944 int green_to_red = 0; |
| 945 int eval_min = 1; |
| 946 int eval_max = 1; |
| 947 float cur_diff_min = MAX_DIFF_COST; |
| 948 float cur_diff_max = MAX_DIFF_COST; |
| 949 // Do a binary search to find the optimal green_to_red color transform. |
| 950 while (max_green_to_red - min_green_to_red > 2) { |
| 951 if (eval_min) { |
| 952 cur_diff_min = GetPredictionCostCrossColorRed( |
| 953 tile_x_offset, tile_y_offset, all_x_max, all_y_max, xsize, |
| 954 prev_x, prev_y, min_green_to_red, accumulated_red_histo, argb); |
| 955 eval_min = 0; |
| 956 } |
| 957 if (eval_max) { |
| 958 cur_diff_max = GetPredictionCostCrossColorRed( |
| 959 tile_x_offset, tile_y_offset, all_x_max, all_y_max, xsize, |
| 960 prev_x, prev_y, max_green_to_red, accumulated_red_histo, argb); |
| 961 eval_max = 0; |
| 962 } |
| 963 if (cur_diff_min < cur_diff_max) { |
| 964 green_to_red = min_green_to_red; |
| 965 max_green_to_red = (max_green_to_red + min_green_to_red) / 2; |
| 966 eval_max = 1; |
| 967 } else { |
| 968 green_to_red = max_green_to_red; |
| 969 min_green_to_red = (max_green_to_red + min_green_to_red) / 2; |
| 970 eval_min = 1; |
| 971 } |
| 972 } |
| 973 best_tx->green_to_red_ = green_to_red; |
| 974 } |
| 975 |
| 976 static float GetPredictionCostCrossColorBlue( |
| 977 int tile_x_offset, int tile_y_offset, int all_x_max, int all_y_max, |
| 978 int xsize, VP8LMultipliers prev_x, VP8LMultipliers prev_y, |
| 979 int green_to_blue, int red_to_blue, const int accumulated_blue_histo[256], |
| 980 const uint32_t* const argb) { |
| 981 int all_y; |
| 982 int histo[256] = { 0 }; |
| 983 float cur_diff; |
| 984 for (all_y = tile_y_offset; all_y < all_y_max; ++all_y) { |
| 985 int all_x; |
| 986 int ix = all_y * xsize + tile_x_offset; |
| 987 for (all_x = tile_x_offset; all_x < all_x_max; ++all_x, ++ix) { |
| 988 ++histo[TransformColorBlue(green_to_blue, red_to_blue, argb[ix])]; |
| 989 } |
| 990 } |
| 991 cur_diff = PredictionCostCrossColor(accumulated_blue_histo, histo); |
| 992 if ((uint8_t)green_to_blue == prev_x.green_to_blue_) { |
| 993 cur_diff -= 3; // favor keeping the areas locally similar |
| 994 } |
| 995 if ((uint8_t)green_to_blue == prev_y.green_to_blue_) { |
| 996 cur_diff -= 3; // favor keeping the areas locally similar |
| 997 } |
| 998 if ((uint8_t)red_to_blue == prev_x.red_to_blue_) { |
| 999 cur_diff -= 3; // favor keeping the areas locally similar |
| 1000 } |
| 1001 if ((uint8_t)red_to_blue == prev_y.red_to_blue_) { |
| 1002 cur_diff -= 3; // favor keeping the areas locally similar |
| 1003 } |
| 1004 if (green_to_blue == 0) { |
| 1005 cur_diff -= 3; |
| 1006 } |
| 1007 if (red_to_blue == 0) { |
| 1008 cur_diff -= 3; |
| 1009 } |
| 1010 return cur_diff; |
| 1011 } |
| 1012 |
| 1013 static void GetBestGreenRedToBlue( |
| 1014 int tile_x_offset, int tile_y_offset, int all_x_max, int all_y_max, |
| 1015 int xsize, VP8LMultipliers prev_x, VP8LMultipliers prev_y, int quality, |
| 1016 const int accumulated_blue_histo[256], const uint32_t* const argb, |
| 1017 VP8LMultipliers* const best_tx) { |
| 1018 float best_diff = MAX_DIFF_COST; |
| 1019 float cur_diff; |
| 1020 const int step = (quality < 25) ? 32 : (quality > 50) ? 8 : 16; |
| 1021 const int min_green_to_blue = -32; |
| 1022 const int max_green_to_blue = 32; |
| 1023 const int min_red_to_blue = -32; |
| 1024 const int max_red_to_blue = 32; |
| 1025 const int num_iters = |
| 1026 (1 + (max_green_to_blue - min_green_to_blue) / step) * |
| 1027 (1 + (max_red_to_blue - min_red_to_blue) / step); |
| 1028 // Number of tries to get optimal green_to_blue & red_to_blue color transforms |
| 1029 // after finding a local minima. |
| 1030 const int max_tries_after_min = 4 + (num_iters >> 2); |
| 1031 int num_tries_after_min = 0; |
| 1032 int green_to_blue; |
| 1033 for (green_to_blue = min_green_to_blue; |
| 1034 green_to_blue <= max_green_to_blue && |
| 1035 num_tries_after_min < max_tries_after_min; |
| 1036 green_to_blue += step) { |
| 1037 int red_to_blue; |
| 1038 for (red_to_blue = min_red_to_blue; |
| 1039 red_to_blue <= max_red_to_blue && |
| 1040 num_tries_after_min < max_tries_after_min; |
| 1041 red_to_blue += step) { |
| 1042 cur_diff = GetPredictionCostCrossColorBlue( |
| 1043 tile_x_offset, tile_y_offset, all_x_max, all_y_max, xsize, prev_x, |
| 1044 prev_y, green_to_blue, red_to_blue, accumulated_blue_histo, argb); |
| 1045 if (cur_diff < best_diff) { |
| 1046 best_diff = cur_diff; |
| 1047 best_tx->green_to_blue_ = green_to_blue; |
| 1048 best_tx->red_to_blue_ = red_to_blue; |
| 1049 num_tries_after_min = 0; |
| 1050 } else { |
| 1051 ++num_tries_after_min; |
| 1052 } |
| 1053 } |
| 1054 } |
| 1055 } |
| 1056 |
| 1057 static VP8LMultipliers GetBestColorTransformForTile( |
| 1058 int tile_x, int tile_y, int bits, |
| 1059 VP8LMultipliers prev_x, |
| 1060 VP8LMultipliers prev_y, |
| 1061 int quality, int xsize, int ysize, |
| 1062 const int accumulated_red_histo[256], |
| 1063 const int accumulated_blue_histo[256], |
| 1064 const uint32_t* const argb) { |
| 1065 const int max_tile_size = 1 << bits; |
| 1066 const int tile_y_offset = tile_y * max_tile_size; |
| 1067 const int tile_x_offset = tile_x * max_tile_size; |
| 1068 const int all_x_max = GetMin(tile_x_offset + max_tile_size, xsize); |
| 1069 const int all_y_max = GetMin(tile_y_offset + max_tile_size, ysize); |
| 1070 VP8LMultipliers best_tx; |
| 1071 MultipliersClear(&best_tx); |
| 1072 |
| 1073 GetBestGreenToRed(tile_x_offset, tile_y_offset, all_x_max, all_y_max, xsize, |
| 1074 prev_x, prev_y, accumulated_red_histo, argb, &best_tx); |
| 1075 GetBestGreenRedToBlue(tile_x_offset, tile_y_offset, all_x_max, all_y_max, |
| 1076 xsize, prev_x, prev_y, quality, accumulated_blue_histo, |
| 1077 argb, &best_tx); |
| 1078 return best_tx; |
| 1079 } |
| 1080 |
| 1081 static void CopyTileWithColorTransform(int xsize, int ysize, |
| 1082 int tile_x, int tile_y, |
| 1083 int max_tile_size, |
| 1084 VP8LMultipliers color_transform, |
| 1085 uint32_t* argb) { |
| 1086 const int xscan = GetMin(max_tile_size, xsize - tile_x); |
| 1087 int yscan = GetMin(max_tile_size, ysize - tile_y); |
| 1088 argb += tile_y * xsize + tile_x; |
| 1089 while (yscan-- > 0) { |
| 1090 VP8LTransformColor(&color_transform, argb, xscan); |
| 1091 argb += xsize; |
| 1092 } |
| 1093 } |
| 1094 |
| 1095 void VP8LColorSpaceTransform(int width, int height, int bits, int quality, |
| 1096 uint32_t* const argb, uint32_t* image) { |
| 1097 const int max_tile_size = 1 << bits; |
| 1098 const int tile_xsize = VP8LSubSampleSize(width, bits); |
| 1099 const int tile_ysize = VP8LSubSampleSize(height, bits); |
| 1100 int accumulated_red_histo[256] = { 0 }; |
| 1101 int accumulated_blue_histo[256] = { 0 }; |
| 1102 int tile_x, tile_y; |
| 1103 VP8LMultipliers prev_x, prev_y; |
| 1104 MultipliersClear(&prev_y); |
| 1105 MultipliersClear(&prev_x); |
| 1106 for (tile_y = 0; tile_y < tile_ysize; ++tile_y) { |
| 1107 for (tile_x = 0; tile_x < tile_xsize; ++tile_x) { |
| 1108 int y; |
| 1109 const int tile_x_offset = tile_x * max_tile_size; |
| 1110 const int tile_y_offset = tile_y * max_tile_size; |
| 1111 const int all_x_max = GetMin(tile_x_offset + max_tile_size, width); |
| 1112 const int all_y_max = GetMin(tile_y_offset + max_tile_size, height); |
| 1113 const int offset = tile_y * tile_xsize + tile_x; |
| 1114 if (tile_y != 0) { |
| 1115 ColorCodeToMultipliers(image[offset - tile_xsize], &prev_y); |
| 1116 } |
| 1117 prev_x = GetBestColorTransformForTile(tile_x, tile_y, bits, |
| 1118 prev_x, prev_y, |
| 1119 quality, width, height, |
| 1120 accumulated_red_histo, |
| 1121 accumulated_blue_histo, |
| 1122 argb); |
| 1123 image[offset] = MultipliersToColorCode(&prev_x); |
| 1124 CopyTileWithColorTransform(width, height, tile_x_offset, tile_y_offset, |
| 1125 max_tile_size, prev_x, argb); |
| 1126 |
| 1127 // Gather accumulated histogram data. |
| 1128 for (y = tile_y_offset; y < all_y_max; ++y) { |
| 1129 int ix = y * width + tile_x_offset; |
| 1130 const int ix_end = ix + all_x_max - tile_x_offset; |
| 1131 for (; ix < ix_end; ++ix) { |
| 1132 const uint32_t pix = argb[ix]; |
| 1133 if (ix >= 2 && |
| 1134 pix == argb[ix - 2] && |
| 1135 pix == argb[ix - 1]) { |
| 1136 continue; // repeated pixels are handled by backward references |
| 1137 } |
| 1138 if (ix >= width + 2 && |
| 1139 argb[ix - 2] == argb[ix - width - 2] && |
| 1140 argb[ix - 1] == argb[ix - width - 1] && |
| 1141 pix == argb[ix - width]) { |
| 1142 continue; // repeated pixels are handled by backward references |
| 1143 } |
| 1144 ++accumulated_red_histo[(pix >> 16) & 0xff]; |
| 1145 ++accumulated_blue_histo[(pix >> 0) & 0xff]; |
| 1146 } |
| 1147 } |
| 1148 } |
| 1149 } |
| 1150 } |
| 1151 |
| 1152 // Color space inverse transform. |
| 1153 static void ColorSpaceInverseTransform(const VP8LTransform* const transform, |
| 1154 int y_start, int y_end, uint32_t* data) { |
| 1155 const int width = transform->xsize_; |
| 1156 const int tile_width = 1 << transform->bits_; |
| 1157 const int mask = tile_width - 1; |
| 1158 const int safe_width = width & ~mask; |
| 1159 const int remaining_width = width - safe_width; |
| 1160 const int tiles_per_row = VP8LSubSampleSize(width, transform->bits_); |
| 1161 int y = y_start; |
| 1162 const uint32_t* pred_row = |
| 1163 transform->data_ + (y >> transform->bits_) * tiles_per_row; |
| 1164 |
| 1165 while (y < y_end) { |
| 1166 const uint32_t* pred = pred_row; |
| 1167 VP8LMultipliers m = { 0, 0, 0 }; |
| 1168 const uint32_t* const data_safe_end = data + safe_width; |
| 1169 const uint32_t* const data_end = data + width; |
| 1170 while (data < data_safe_end) { |
| 1171 ColorCodeToMultipliers(*pred++, &m); |
| 1172 VP8LTransformColorInverse(&m, data, tile_width); |
| 1173 data += tile_width; |
| 1174 } |
| 1175 if (data < data_end) { // Left-overs using C-version. |
| 1176 ColorCodeToMultipliers(*pred++, &m); |
| 1177 VP8LTransformColorInverse(&m, data, remaining_width); |
| 1178 data += remaining_width; |
| 1179 } |
| 1180 ++y; |
| 1181 if ((y & mask) == 0) pred_row += tiles_per_row; |
| 1182 } |
| 1183 } |
| 1184 |
| 1185 // Separate out pixels packed together using pixel-bundling. |
| 1186 // We define two methods for ARGB data (uint32_t) and alpha-only data (uint8_t). |
| 1187 #define COLOR_INDEX_INVERSE(FUNC_NAME, TYPE, GET_INDEX, GET_VALUE) \ |
| 1188 void FUNC_NAME(const VP8LTransform* const transform, \ |
| 1189 int y_start, int y_end, const TYPE* src, TYPE* dst) { \ |
| 1190 int y; \ |
| 1191 const int bits_per_pixel = 8 >> transform->bits_; \ |
| 1192 const int width = transform->xsize_; \ |
| 1193 const uint32_t* const color_map = transform->data_; \ |
| 1194 if (bits_per_pixel < 8) { \ |
| 1195 const int pixels_per_byte = 1 << transform->bits_; \ |
| 1196 const int count_mask = pixels_per_byte - 1; \ |
| 1197 const uint32_t bit_mask = (1 << bits_per_pixel) - 1; \ |
| 1198 for (y = y_start; y < y_end; ++y) { \ |
| 1199 uint32_t packed_pixels = 0; \ |
| 1200 int x; \ |
| 1201 for (x = 0; x < width; ++x) { \ |
| 1202 /* We need to load fresh 'packed_pixels' once every */ \ |
| 1203 /* 'pixels_per_byte' increments of x. Fortunately, pixels_per_byte */ \ |
| 1204 /* is a power of 2, so can just use a mask for that, instead of */ \ |
| 1205 /* decrementing a counter. */ \ |
| 1206 if ((x & count_mask) == 0) packed_pixels = GET_INDEX(*src++); \ |
| 1207 *dst++ = GET_VALUE(color_map[packed_pixels & bit_mask]); \ |
| 1208 packed_pixels >>= bits_per_pixel; \ |
| 1209 } \ |
| 1210 } \ |
| 1211 } else { \ |
| 1212 for (y = y_start; y < y_end; ++y) { \ |
| 1213 int x; \ |
| 1214 for (x = 0; x < width; ++x) { \ |
| 1215 *dst++ = GET_VALUE(color_map[GET_INDEX(*src++)]); \ |
| 1216 } \ |
| 1217 } \ |
| 1218 } \ |
| 1219 } |
| 1220 |
| 1221 static WEBP_INLINE uint32_t GetARGBIndex(uint32_t idx) { |
| 1222 return (idx >> 8) & 0xff; |
| 1223 } |
| 1224 |
| 1225 static WEBP_INLINE uint8_t GetAlphaIndex(uint8_t idx) { |
| 1226 return idx; |
| 1227 } |
| 1228 |
| 1229 static WEBP_INLINE uint32_t GetARGBValue(uint32_t val) { |
| 1230 return val; |
| 1231 } |
| 1232 |
| 1233 static WEBP_INLINE uint8_t GetAlphaValue(uint32_t val) { |
| 1234 return (val >> 8) & 0xff; |
| 1235 } |
| 1236 |
| 1237 static COLOR_INDEX_INVERSE(ColorIndexInverseTransform, uint32_t, GetARGBIndex, |
| 1238 GetARGBValue) |
| 1239 COLOR_INDEX_INVERSE(VP8LColorIndexInverseTransformAlpha, uint8_t, GetAlphaIndex, |
| 1240 GetAlphaValue) |
| 1241 |
| 1242 #undef COLOR_INDEX_INVERSE |
| 1243 |
| 1244 void VP8LInverseTransform(const VP8LTransform* const transform, |
| 1245 int row_start, int row_end, |
| 1246 const uint32_t* const in, uint32_t* const out) { |
| 1247 const int width = transform->xsize_; |
| 1248 assert(row_start < row_end); |
| 1249 assert(row_end <= transform->ysize_); |
| 1250 switch (transform->type_) { |
| 1251 case SUBTRACT_GREEN: |
| 1252 VP8LAddGreenToBlueAndRed(out, (row_end - row_start) * width); |
| 1253 break; |
| 1254 case PREDICTOR_TRANSFORM: |
| 1255 PredictorInverseTransform(transform, row_start, row_end, out); |
| 1256 if (row_end != transform->ysize_) { |
| 1257 // The last predicted row in this iteration will be the top-pred row |
| 1258 // for the first row in next iteration. |
| 1259 memcpy(out - width, out + (row_end - row_start - 1) * width, |
| 1260 width * sizeof(*out)); |
| 1261 } |
| 1262 break; |
| 1263 case CROSS_COLOR_TRANSFORM: |
| 1264 ColorSpaceInverseTransform(transform, row_start, row_end, out); |
| 1265 break; |
| 1266 case COLOR_INDEXING_TRANSFORM: |
| 1267 if (in == out && transform->bits_ > 0) { |
| 1268 // Move packed pixels to the end of unpacked region, so that unpacking |
| 1269 // can occur seamlessly. |
| 1270 // Also, note that this is the only transform that applies on |
| 1271 // the effective width of VP8LSubSampleSize(xsize_, bits_). All other |
| 1272 // transforms work on effective width of xsize_. |
| 1273 const int out_stride = (row_end - row_start) * width; |
| 1274 const int in_stride = (row_end - row_start) * |
| 1275 VP8LSubSampleSize(transform->xsize_, transform->bits_); |
| 1276 uint32_t* const src = out + out_stride - in_stride; |
| 1277 memmove(src, out, in_stride * sizeof(*src)); |
| 1278 ColorIndexInverseTransform(transform, row_start, row_end, src, out); |
| 1279 } else { |
| 1280 ColorIndexInverseTransform(transform, row_start, row_end, in, out); |
| 1281 } |
| 1282 break; |
| 1283 } |
| 1284 } |
| 1285 |
| 1286 //------------------------------------------------------------------------------ |
| 1287 // Color space conversion. |
| 1288 |
| 1289 static int is_big_endian(void) { |
| 1290 static const union { |
| 1291 uint16_t w; |
| 1292 uint8_t b[2]; |
| 1293 } tmp = { 1 }; |
| 1294 return (tmp.b[0] != 1); |
| 1295 } |
| 1296 |
| 1297 void VP8LConvertBGRAToRGB_C(const uint32_t* src, |
| 1298 int num_pixels, uint8_t* dst) { |
| 1299 const uint32_t* const src_end = src + num_pixels; |
| 1300 while (src < src_end) { |
| 1301 const uint32_t argb = *src++; |
| 1302 *dst++ = (argb >> 16) & 0xff; |
| 1303 *dst++ = (argb >> 8) & 0xff; |
| 1304 *dst++ = (argb >> 0) & 0xff; |
| 1305 } |
| 1306 } |
| 1307 |
| 1308 void VP8LConvertBGRAToRGBA_C(const uint32_t* src, |
| 1309 int num_pixels, uint8_t* dst) { |
| 1310 const uint32_t* const src_end = src + num_pixels; |
| 1311 while (src < src_end) { |
| 1312 const uint32_t argb = *src++; |
| 1313 *dst++ = (argb >> 16) & 0xff; |
| 1314 *dst++ = (argb >> 8) & 0xff; |
| 1315 *dst++ = (argb >> 0) & 0xff; |
| 1316 *dst++ = (argb >> 24) & 0xff; |
| 1317 } |
| 1318 } |
| 1319 |
| 1320 void VP8LConvertBGRAToRGBA4444_C(const uint32_t* src, |
| 1321 int num_pixels, uint8_t* dst) { |
| 1322 const uint32_t* const src_end = src + num_pixels; |
| 1323 while (src < src_end) { |
| 1324 const uint32_t argb = *src++; |
| 1325 const uint8_t rg = ((argb >> 16) & 0xf0) | ((argb >> 12) & 0xf); |
| 1326 const uint8_t ba = ((argb >> 0) & 0xf0) | ((argb >> 28) & 0xf); |
| 1327 #ifdef WEBP_SWAP_16BIT_CSP |
| 1328 *dst++ = ba; |
| 1329 *dst++ = rg; |
| 1330 #else |
| 1331 *dst++ = rg; |
| 1332 *dst++ = ba; |
| 1333 #endif |
| 1334 } |
| 1335 } |
| 1336 |
| 1337 void VP8LConvertBGRAToRGB565_C(const uint32_t* src, |
| 1338 int num_pixels, uint8_t* dst) { |
| 1339 const uint32_t* const src_end = src + num_pixels; |
| 1340 while (src < src_end) { |
| 1341 const uint32_t argb = *src++; |
| 1342 const uint8_t rg = ((argb >> 16) & 0xf8) | ((argb >> 13) & 0x7); |
| 1343 const uint8_t gb = ((argb >> 5) & 0xe0) | ((argb >> 3) & 0x1f); |
| 1344 #ifdef WEBP_SWAP_16BIT_CSP |
| 1345 *dst++ = gb; |
| 1346 *dst++ = rg; |
| 1347 #else |
| 1348 *dst++ = rg; |
| 1349 *dst++ = gb; |
| 1350 #endif |
| 1351 } |
| 1352 } |
| 1353 |
| 1354 void VP8LConvertBGRAToBGR_C(const uint32_t* src, |
| 1355 int num_pixels, uint8_t* dst) { |
| 1356 const uint32_t* const src_end = src + num_pixels; |
| 1357 while (src < src_end) { |
| 1358 const uint32_t argb = *src++; |
| 1359 *dst++ = (argb >> 0) & 0xff; |
| 1360 *dst++ = (argb >> 8) & 0xff; |
| 1361 *dst++ = (argb >> 16) & 0xff; |
| 1362 } |
| 1363 } |
| 1364 |
| 1365 static void CopyOrSwap(const uint32_t* src, int num_pixels, uint8_t* dst, |
| 1366 int swap_on_big_endian) { |
| 1367 if (is_big_endian() == swap_on_big_endian) { |
| 1368 const uint32_t* const src_end = src + num_pixels; |
| 1369 while (src < src_end) { |
| 1370 const uint32_t argb = *src++; |
| 1371 |
| 1372 #if !defined(WORDS_BIGENDIAN) |
| 1373 #if !defined(WEBP_REFERENCE_IMPLEMENTATION) |
| 1374 *(uint32_t*)dst = BSwap32(argb); |
| 1375 #else // WEBP_REFERENCE_IMPLEMENTATION |
| 1376 dst[0] = (argb >> 24) & 0xff; |
| 1377 dst[1] = (argb >> 16) & 0xff; |
| 1378 dst[2] = (argb >> 8) & 0xff; |
| 1379 dst[3] = (argb >> 0) & 0xff; |
| 1380 #endif |
| 1381 #else // WORDS_BIGENDIAN |
| 1382 dst[0] = (argb >> 0) & 0xff; |
| 1383 dst[1] = (argb >> 8) & 0xff; |
| 1384 dst[2] = (argb >> 16) & 0xff; |
| 1385 dst[3] = (argb >> 24) & 0xff; |
| 1386 #endif |
| 1387 dst += sizeof(argb); |
| 1388 } |
| 1389 } else { |
| 1390 memcpy(dst, src, num_pixels * sizeof(*src)); |
| 1391 } |
| 1392 } |
| 1393 |
| 1394 void VP8LConvertFromBGRA(const uint32_t* const in_data, int num_pixels, |
| 1395 WEBP_CSP_MODE out_colorspace, uint8_t* const rgba) { |
| 1396 switch (out_colorspace) { |
| 1397 case MODE_RGB: |
| 1398 VP8LConvertBGRAToRGB(in_data, num_pixels, rgba); |
| 1399 break; |
| 1400 case MODE_RGBA: |
| 1401 VP8LConvertBGRAToRGBA(in_data, num_pixels, rgba); |
| 1402 break; |
| 1403 case MODE_rgbA: |
| 1404 VP8LConvertBGRAToRGBA(in_data, num_pixels, rgba); |
| 1405 WebPApplyAlphaMultiply(rgba, 0, num_pixels, 1, 0); |
| 1406 break; |
| 1407 case MODE_BGR: |
| 1408 VP8LConvertBGRAToBGR(in_data, num_pixels, rgba); |
| 1409 break; |
| 1410 case MODE_BGRA: |
| 1411 CopyOrSwap(in_data, num_pixels, rgba, 1); |
| 1412 break; |
| 1413 case MODE_bgrA: |
| 1414 CopyOrSwap(in_data, num_pixels, rgba, 1); |
| 1415 WebPApplyAlphaMultiply(rgba, 0, num_pixels, 1, 0); |
| 1416 break; |
| 1417 case MODE_ARGB: |
| 1418 CopyOrSwap(in_data, num_pixels, rgba, 0); |
| 1419 break; |
| 1420 case MODE_Argb: |
| 1421 CopyOrSwap(in_data, num_pixels, rgba, 0); |
| 1422 WebPApplyAlphaMultiply(rgba, 1, num_pixels, 1, 0); |
| 1423 break; |
| 1424 case MODE_RGBA_4444: |
| 1425 VP8LConvertBGRAToRGBA4444(in_data, num_pixels, rgba); |
| 1426 break; |
| 1427 case MODE_rgbA_4444: |
| 1428 VP8LConvertBGRAToRGBA4444(in_data, num_pixels, rgba); |
| 1429 WebPApplyAlphaMultiply4444(rgba, num_pixels, 1, 0); |
| 1430 break; |
| 1431 case MODE_RGB_565: |
| 1432 VP8LConvertBGRAToRGB565(in_data, num_pixels, rgba); |
| 1433 break; |
| 1434 default: |
| 1435 assert(0); // Code flow should not reach here. |
| 1436 } |
| 1437 } |
| 1438 |
| 1439 //------------------------------------------------------------------------------ |
| 1440 // Bundles multiple (1, 2, 4 or 8) pixels into a single pixel. |
| 1441 void VP8LBundleColorMap(const uint8_t* const row, int width, |
| 1442 int xbits, uint32_t* const dst) { |
| 1443 int x; |
| 1444 if (xbits > 0) { |
| 1445 const int bit_depth = 1 << (3 - xbits); |
| 1446 const int mask = (1 << xbits) - 1; |
| 1447 uint32_t code = 0xff000000; |
| 1448 for (x = 0; x < width; ++x) { |
| 1449 const int xsub = x & mask; |
| 1450 if (xsub == 0) { |
| 1451 code = 0xff000000; |
| 1452 } |
| 1453 code |= row[x] << (8 + bit_depth * xsub); |
| 1454 dst[x >> xbits] = code; |
| 1455 } |
| 1456 } else { |
| 1457 for (x = 0; x < width; ++x) dst[x] = 0xff000000 | (row[x] << 8); |
| 1458 } |
| 1459 } |
| 1460 |
| 1461 //------------------------------------------------------------------------------ |
| 1462 |
| 1463 static double ExtraCost(const uint32_t* population, int length) { |
| 1464 int i; |
| 1465 double cost = 0.; |
| 1466 for (i = 2; i < length - 2; ++i) cost += (i >> 1) * population[i + 2]; |
| 1467 return cost; |
| 1468 } |
| 1469 |
| 1470 static double ExtraCostCombined(const uint32_t* X, const uint32_t* Y, |
| 1471 int length) { |
| 1472 int i; |
| 1473 double cost = 0.; |
| 1474 for (i = 2; i < length - 2; ++i) { |
| 1475 const int xy = X[i + 2] + Y[i + 2]; |
| 1476 cost += (i >> 1) * xy; |
| 1477 } |
| 1478 return cost; |
| 1479 } |
| 1480 |
| 1481 // Returns the various RLE counts |
| 1482 static VP8LStreaks HuffmanCostCount(const uint32_t* population, int length) { |
| 1483 int i; |
| 1484 int streak = 0; |
| 1485 VP8LStreaks stats; |
| 1486 memset(&stats, 0, sizeof(stats)); |
| 1487 for (i = 0; i < length - 1; ++i) { |
| 1488 ++streak; |
| 1489 if (population[i] == population[i + 1]) { |
| 1490 continue; |
| 1491 } |
| 1492 stats.counts[population[i] != 0] += (streak > 3); |
| 1493 stats.streaks[population[i] != 0][(streak > 3)] += streak; |
| 1494 streak = 0; |
| 1495 } |
| 1496 ++streak; |
| 1497 stats.counts[population[i] != 0] += (streak > 3); |
| 1498 stats.streaks[population[i] != 0][(streak > 3)] += streak; |
| 1499 return stats; |
| 1500 } |
| 1501 |
| 1502 static VP8LStreaks HuffmanCostCombinedCount(const uint32_t* X, |
| 1503 const uint32_t* Y, int length) { |
| 1504 int i; |
| 1505 int streak = 0; |
| 1506 VP8LStreaks stats; |
| 1507 memset(&stats, 0, sizeof(stats)); |
| 1508 for (i = 0; i < length - 1; ++i) { |
| 1509 const int xy = X[i] + Y[i]; |
| 1510 const int xy_next = X[i + 1] + Y[i + 1]; |
| 1511 ++streak; |
| 1512 if (xy == xy_next) { |
| 1513 continue; |
| 1514 } |
| 1515 stats.counts[xy != 0] += (streak > 3); |
| 1516 stats.streaks[xy != 0][(streak > 3)] += streak; |
| 1517 streak = 0; |
| 1518 } |
| 1519 { |
| 1520 const int xy = X[i] + Y[i]; |
| 1521 ++streak; |
| 1522 stats.counts[xy != 0] += (streak > 3); |
| 1523 stats.streaks[xy != 0][(streak > 3)] += streak; |
| 1524 } |
| 1525 return stats; |
| 1526 } |
| 1527 |
| 1528 //------------------------------------------------------------------------------ |
| 1529 |
| 1530 static void HistogramAdd(const VP8LHistogram* const a, |
| 1531 const VP8LHistogram* const b, |
| 1532 VP8LHistogram* const out) { |
| 1533 int i; |
| 1534 const int literal_size = VP8LHistogramNumCodes(a->palette_code_bits_); |
| 1535 assert(a->palette_code_bits_ == b->palette_code_bits_); |
| 1536 if (b != out) { |
| 1537 for (i = 0; i < literal_size; ++i) { |
| 1538 out->literal_[i] = a->literal_[i] + b->literal_[i]; |
| 1539 } |
| 1540 for (i = 0; i < NUM_DISTANCE_CODES; ++i) { |
| 1541 out->distance_[i] = a->distance_[i] + b->distance_[i]; |
| 1542 } |
| 1543 for (i = 0; i < NUM_LITERAL_CODES; ++i) { |
| 1544 out->red_[i] = a->red_[i] + b->red_[i]; |
| 1545 out->blue_[i] = a->blue_[i] + b->blue_[i]; |
| 1546 out->alpha_[i] = a->alpha_[i] + b->alpha_[i]; |
| 1547 } |
| 1548 } else { |
| 1549 for (i = 0; i < literal_size; ++i) { |
| 1550 out->literal_[i] += a->literal_[i]; |
| 1551 } |
| 1552 for (i = 0; i < NUM_DISTANCE_CODES; ++i) { |
| 1553 out->distance_[i] += a->distance_[i]; |
| 1554 } |
| 1555 for (i = 0; i < NUM_LITERAL_CODES; ++i) { |
| 1556 out->red_[i] += a->red_[i]; |
| 1557 out->blue_[i] += a->blue_[i]; |
| 1558 out->alpha_[i] += a->alpha_[i]; |
| 1559 } |
| 1560 } |
| 1561 } |
| 1562 |
| 1563 //------------------------------------------------------------------------------ |
| 1564 |
| 1565 VP8LProcessBlueAndRedFunc VP8LSubtractGreenFromBlueAndRed; |
| 1566 VP8LProcessBlueAndRedFunc VP8LAddGreenToBlueAndRed; |
| 1567 VP8LPredictorFunc VP8LPredictors[16]; |
| 1568 |
| 1569 VP8LTransformColorFunc VP8LTransformColor; |
| 1570 VP8LTransformColorFunc VP8LTransformColorInverse; |
| 1571 |
| 1572 VP8LConvertFunc VP8LConvertBGRAToRGB; |
| 1573 VP8LConvertFunc VP8LConvertBGRAToRGBA; |
| 1574 VP8LConvertFunc VP8LConvertBGRAToRGBA4444; |
| 1575 VP8LConvertFunc VP8LConvertBGRAToRGB565; |
| 1576 VP8LConvertFunc VP8LConvertBGRAToBGR; |
| 1577 |
| 1578 VP8LFastLog2SlowFunc VP8LFastLog2Slow; |
| 1579 VP8LFastLog2SlowFunc VP8LFastSLog2Slow; |
| 1580 |
| 1581 VP8LCostFunc VP8LExtraCost; |
| 1582 VP8LCostCombinedFunc VP8LExtraCostCombined; |
| 1583 |
| 1584 VP8LCostCountFunc VP8LHuffmanCostCount; |
| 1585 VP8LCostCombinedCountFunc VP8LHuffmanCostCombinedCount; |
| 1586 |
| 1587 VP8LHistogramAddFunc VP8LHistogramAdd; |
| 1588 |
| 1589 extern void VP8LDspInitSSE2(void); |
| 1590 extern void VP8LDspInitNEON(void); |
| 1591 extern void VP8LDspInitMIPS32(void); |
| 1592 |
| 1593 void VP8LDspInit(void) { |
| 1594 memcpy(VP8LPredictors, kPredictorsC, sizeof(VP8LPredictors)); |
| 1595 |
| 1596 VP8LSubtractGreenFromBlueAndRed = VP8LSubtractGreenFromBlueAndRed_C; |
| 1597 VP8LAddGreenToBlueAndRed = VP8LAddGreenToBlueAndRed_C; |
| 1598 |
| 1599 VP8LTransformColor = VP8LTransformColor_C; |
| 1600 VP8LTransformColorInverse = VP8LTransformColorInverse_C; |
| 1601 |
| 1602 VP8LConvertBGRAToRGB = VP8LConvertBGRAToRGB_C; |
| 1603 VP8LConvertBGRAToRGBA = VP8LConvertBGRAToRGBA_C; |
| 1604 VP8LConvertBGRAToRGBA4444 = VP8LConvertBGRAToRGBA4444_C; |
| 1605 VP8LConvertBGRAToRGB565 = VP8LConvertBGRAToRGB565_C; |
| 1606 VP8LConvertBGRAToBGR = VP8LConvertBGRAToBGR_C; |
| 1607 |
| 1608 VP8LFastLog2Slow = FastLog2Slow; |
| 1609 VP8LFastSLog2Slow = FastSLog2Slow; |
| 1610 |
| 1611 VP8LExtraCost = ExtraCost; |
| 1612 VP8LExtraCostCombined = ExtraCostCombined; |
| 1613 |
| 1614 VP8LHuffmanCostCount = HuffmanCostCount; |
| 1615 VP8LHuffmanCostCombinedCount = HuffmanCostCombinedCount; |
| 1616 |
| 1617 VP8LHistogramAdd = HistogramAdd; |
| 1618 |
| 1619 // If defined, use CPUInfo() to overwrite some pointers with faster versions. |
| 1620 if (VP8GetCPUInfo != NULL) { |
| 1621 #if defined(WEBP_USE_SSE2) |
| 1622 if (VP8GetCPUInfo(kSSE2)) { |
| 1623 VP8LDspInitSSE2(); |
| 1624 } |
| 1625 #endif |
| 1626 #if defined(WEBP_USE_NEON) |
| 1627 if (VP8GetCPUInfo(kNEON)) { |
| 1628 VP8LDspInitNEON(); |
| 1629 } |
| 1630 #endif |
| 1631 #if defined(WEBP_USE_MIPS32) |
| 1632 if (VP8GetCPUInfo(kMIPS32)) { |
| 1633 VP8LDspInitMIPS32(); |
| 1634 } |
| 1635 #endif |
| 1636 } |
| 1637 } |
| 1638 |
| 1639 //------------------------------------------------------------------------------ |
OLD | NEW |