OLD | NEW |
(Empty) | |
| 1 // Copyright 2011 Google Inc. All Rights Reserved. |
| 2 // |
| 3 // Use of this source code is governed by a BSD-style license |
| 4 // that can be found in the COPYING file in the root of the source |
| 5 // tree. An additional intellectual property rights grant can be found |
| 6 // in the file PATENTS. All contributing project authors may |
| 7 // be found in the AUTHORS file in the root of the source tree. |
| 8 // ----------------------------------------------------------------------------- |
| 9 // |
| 10 // SSE2 version of speed-critical encoding functions. |
| 11 // |
| 12 // Author: Christian Duvivier (cduvivier@google.com) |
| 13 |
| 14 #include "./dsp.h" |
| 15 |
| 16 #if defined(WEBP_USE_SSE2) |
| 17 #include <stdlib.h> // for abs() |
| 18 #include <emmintrin.h> |
| 19 |
| 20 #include "../enc/cost.h" |
| 21 #include "../enc/vp8enci.h" |
| 22 #include "../utils/utils.h" |
| 23 |
| 24 //------------------------------------------------------------------------------ |
| 25 // Quite useful macro for debugging. Left here for convenience. |
| 26 |
| 27 #if 0 |
| 28 #include <stdio.h> |
| 29 static void PrintReg(const __m128i r, const char* const name, int size) { |
| 30 int n; |
| 31 union { |
| 32 __m128i r; |
| 33 uint8_t i8[16]; |
| 34 uint16_t i16[8]; |
| 35 uint32_t i32[4]; |
| 36 uint64_t i64[2]; |
| 37 } tmp; |
| 38 tmp.r = r; |
| 39 printf("%s\t: ", name); |
| 40 if (size == 8) { |
| 41 for (n = 0; n < 16; ++n) printf("%.2x ", tmp.i8[n]); |
| 42 } else if (size == 16) { |
| 43 for (n = 0; n < 8; ++n) printf("%.4x ", tmp.i16[n]); |
| 44 } else if (size == 32) { |
| 45 for (n = 0; n < 4; ++n) printf("%.8x ", tmp.i32[n]); |
| 46 } else { |
| 47 for (n = 0; n < 2; ++n) printf("%.16lx ", tmp.i64[n]); |
| 48 } |
| 49 printf("\n"); |
| 50 } |
| 51 #endif |
| 52 |
| 53 //------------------------------------------------------------------------------ |
| 54 // Compute susceptibility based on DCT-coeff histograms: |
| 55 // the higher, the "easier" the macroblock is to compress. |
| 56 |
| 57 static void CollectHistogram(const uint8_t* ref, const uint8_t* pred, |
| 58 int start_block, int end_block, |
| 59 VP8Histogram* const histo) { |
| 60 const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH); |
| 61 int j; |
| 62 for (j = start_block; j < end_block; ++j) { |
| 63 int16_t out[16]; |
| 64 int k; |
| 65 |
| 66 VP8FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out); |
| 67 |
| 68 // Convert coefficients to bin (within out[]). |
| 69 { |
| 70 // Load. |
| 71 const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]); |
| 72 const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]); |
| 73 // sign(out) = out >> 15 (0x0000 if positive, 0xffff if negative) |
| 74 const __m128i sign0 = _mm_srai_epi16(out0, 15); |
| 75 const __m128i sign1 = _mm_srai_epi16(out1, 15); |
| 76 // abs(out) = (out ^ sign) - sign |
| 77 const __m128i xor0 = _mm_xor_si128(out0, sign0); |
| 78 const __m128i xor1 = _mm_xor_si128(out1, sign1); |
| 79 const __m128i abs0 = _mm_sub_epi16(xor0, sign0); |
| 80 const __m128i abs1 = _mm_sub_epi16(xor1, sign1); |
| 81 // v = abs(out) >> 3 |
| 82 const __m128i v0 = _mm_srai_epi16(abs0, 3); |
| 83 const __m128i v1 = _mm_srai_epi16(abs1, 3); |
| 84 // bin = min(v, MAX_COEFF_THRESH) |
| 85 const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh); |
| 86 const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh); |
| 87 // Store. |
| 88 _mm_storeu_si128((__m128i*)&out[0], bin0); |
| 89 _mm_storeu_si128((__m128i*)&out[8], bin1); |
| 90 } |
| 91 |
| 92 // Convert coefficients to bin. |
| 93 for (k = 0; k < 16; ++k) { |
| 94 histo->distribution[out[k]]++; |
| 95 } |
| 96 } |
| 97 } |
| 98 |
| 99 //------------------------------------------------------------------------------ |
| 100 // Transforms (Paragraph 14.4) |
| 101 |
| 102 // Does one or two inverse transforms. |
| 103 static void ITransform(const uint8_t* ref, const int16_t* in, uint8_t* dst, |
| 104 int do_two) { |
| 105 // This implementation makes use of 16-bit fixed point versions of two |
| 106 // multiply constants: |
| 107 // K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16 |
| 108 // K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16 |
| 109 // |
| 110 // To be able to use signed 16-bit integers, we use the following trick to |
| 111 // have constants within range: |
| 112 // - Associated constants are obtained by subtracting the 16-bit fixed point |
| 113 // version of one: |
| 114 // k = K - (1 << 16) => K = k + (1 << 16) |
| 115 // K1 = 85267 => k1 = 20091 |
| 116 // K2 = 35468 => k2 = -30068 |
| 117 // - The multiplication of a variable by a constant become the sum of the |
| 118 // variable and the multiplication of that variable by the associated |
| 119 // constant: |
| 120 // (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x |
| 121 const __m128i k1 = _mm_set1_epi16(20091); |
| 122 const __m128i k2 = _mm_set1_epi16(-30068); |
| 123 __m128i T0, T1, T2, T3; |
| 124 |
| 125 // Load and concatenate the transform coefficients (we'll do two inverse |
| 126 // transforms in parallel). In the case of only one inverse transform, the |
| 127 // second half of the vectors will just contain random value we'll never |
| 128 // use nor store. |
| 129 __m128i in0, in1, in2, in3; |
| 130 { |
| 131 in0 = _mm_loadl_epi64((__m128i*)&in[0]); |
| 132 in1 = _mm_loadl_epi64((__m128i*)&in[4]); |
| 133 in2 = _mm_loadl_epi64((__m128i*)&in[8]); |
| 134 in3 = _mm_loadl_epi64((__m128i*)&in[12]); |
| 135 // a00 a10 a20 a30 x x x x |
| 136 // a01 a11 a21 a31 x x x x |
| 137 // a02 a12 a22 a32 x x x x |
| 138 // a03 a13 a23 a33 x x x x |
| 139 if (do_two) { |
| 140 const __m128i inB0 = _mm_loadl_epi64((__m128i*)&in[16]); |
| 141 const __m128i inB1 = _mm_loadl_epi64((__m128i*)&in[20]); |
| 142 const __m128i inB2 = _mm_loadl_epi64((__m128i*)&in[24]); |
| 143 const __m128i inB3 = _mm_loadl_epi64((__m128i*)&in[28]); |
| 144 in0 = _mm_unpacklo_epi64(in0, inB0); |
| 145 in1 = _mm_unpacklo_epi64(in1, inB1); |
| 146 in2 = _mm_unpacklo_epi64(in2, inB2); |
| 147 in3 = _mm_unpacklo_epi64(in3, inB3); |
| 148 // a00 a10 a20 a30 b00 b10 b20 b30 |
| 149 // a01 a11 a21 a31 b01 b11 b21 b31 |
| 150 // a02 a12 a22 a32 b02 b12 b22 b32 |
| 151 // a03 a13 a23 a33 b03 b13 b23 b33 |
| 152 } |
| 153 } |
| 154 |
| 155 // Vertical pass and subsequent transpose. |
| 156 { |
| 157 // First pass, c and d calculations are longer because of the "trick" |
| 158 // multiplications. |
| 159 const __m128i a = _mm_add_epi16(in0, in2); |
| 160 const __m128i b = _mm_sub_epi16(in0, in2); |
| 161 // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3 |
| 162 const __m128i c1 = _mm_mulhi_epi16(in1, k2); |
| 163 const __m128i c2 = _mm_mulhi_epi16(in3, k1); |
| 164 const __m128i c3 = _mm_sub_epi16(in1, in3); |
| 165 const __m128i c4 = _mm_sub_epi16(c1, c2); |
| 166 const __m128i c = _mm_add_epi16(c3, c4); |
| 167 // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3 |
| 168 const __m128i d1 = _mm_mulhi_epi16(in1, k1); |
| 169 const __m128i d2 = _mm_mulhi_epi16(in3, k2); |
| 170 const __m128i d3 = _mm_add_epi16(in1, in3); |
| 171 const __m128i d4 = _mm_add_epi16(d1, d2); |
| 172 const __m128i d = _mm_add_epi16(d3, d4); |
| 173 |
| 174 // Second pass. |
| 175 const __m128i tmp0 = _mm_add_epi16(a, d); |
| 176 const __m128i tmp1 = _mm_add_epi16(b, c); |
| 177 const __m128i tmp2 = _mm_sub_epi16(b, c); |
| 178 const __m128i tmp3 = _mm_sub_epi16(a, d); |
| 179 |
| 180 // Transpose the two 4x4. |
| 181 // a00 a01 a02 a03 b00 b01 b02 b03 |
| 182 // a10 a11 a12 a13 b10 b11 b12 b13 |
| 183 // a20 a21 a22 a23 b20 b21 b22 b23 |
| 184 // a30 a31 a32 a33 b30 b31 b32 b33 |
| 185 const __m128i transpose0_0 = _mm_unpacklo_epi16(tmp0, tmp1); |
| 186 const __m128i transpose0_1 = _mm_unpacklo_epi16(tmp2, tmp3); |
| 187 const __m128i transpose0_2 = _mm_unpackhi_epi16(tmp0, tmp1); |
| 188 const __m128i transpose0_3 = _mm_unpackhi_epi16(tmp2, tmp3); |
| 189 // a00 a10 a01 a11 a02 a12 a03 a13 |
| 190 // a20 a30 a21 a31 a22 a32 a23 a33 |
| 191 // b00 b10 b01 b11 b02 b12 b03 b13 |
| 192 // b20 b30 b21 b31 b22 b32 b23 b33 |
| 193 const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1); |
| 194 const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3); |
| 195 const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1); |
| 196 const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3); |
| 197 // a00 a10 a20 a30 a01 a11 a21 a31 |
| 198 // b00 b10 b20 b30 b01 b11 b21 b31 |
| 199 // a02 a12 a22 a32 a03 a13 a23 a33 |
| 200 // b02 b12 a22 b32 b03 b13 b23 b33 |
| 201 T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1); |
| 202 T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1); |
| 203 T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3); |
| 204 T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3); |
| 205 // a00 a10 a20 a30 b00 b10 b20 b30 |
| 206 // a01 a11 a21 a31 b01 b11 b21 b31 |
| 207 // a02 a12 a22 a32 b02 b12 b22 b32 |
| 208 // a03 a13 a23 a33 b03 b13 b23 b33 |
| 209 } |
| 210 |
| 211 // Horizontal pass and subsequent transpose. |
| 212 { |
| 213 // First pass, c and d calculations are longer because of the "trick" |
| 214 // multiplications. |
| 215 const __m128i four = _mm_set1_epi16(4); |
| 216 const __m128i dc = _mm_add_epi16(T0, four); |
| 217 const __m128i a = _mm_add_epi16(dc, T2); |
| 218 const __m128i b = _mm_sub_epi16(dc, T2); |
| 219 // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3 |
| 220 const __m128i c1 = _mm_mulhi_epi16(T1, k2); |
| 221 const __m128i c2 = _mm_mulhi_epi16(T3, k1); |
| 222 const __m128i c3 = _mm_sub_epi16(T1, T3); |
| 223 const __m128i c4 = _mm_sub_epi16(c1, c2); |
| 224 const __m128i c = _mm_add_epi16(c3, c4); |
| 225 // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3 |
| 226 const __m128i d1 = _mm_mulhi_epi16(T1, k1); |
| 227 const __m128i d2 = _mm_mulhi_epi16(T3, k2); |
| 228 const __m128i d3 = _mm_add_epi16(T1, T3); |
| 229 const __m128i d4 = _mm_add_epi16(d1, d2); |
| 230 const __m128i d = _mm_add_epi16(d3, d4); |
| 231 |
| 232 // Second pass. |
| 233 const __m128i tmp0 = _mm_add_epi16(a, d); |
| 234 const __m128i tmp1 = _mm_add_epi16(b, c); |
| 235 const __m128i tmp2 = _mm_sub_epi16(b, c); |
| 236 const __m128i tmp3 = _mm_sub_epi16(a, d); |
| 237 const __m128i shifted0 = _mm_srai_epi16(tmp0, 3); |
| 238 const __m128i shifted1 = _mm_srai_epi16(tmp1, 3); |
| 239 const __m128i shifted2 = _mm_srai_epi16(tmp2, 3); |
| 240 const __m128i shifted3 = _mm_srai_epi16(tmp3, 3); |
| 241 |
| 242 // Transpose the two 4x4. |
| 243 // a00 a01 a02 a03 b00 b01 b02 b03 |
| 244 // a10 a11 a12 a13 b10 b11 b12 b13 |
| 245 // a20 a21 a22 a23 b20 b21 b22 b23 |
| 246 // a30 a31 a32 a33 b30 b31 b32 b33 |
| 247 const __m128i transpose0_0 = _mm_unpacklo_epi16(shifted0, shifted1); |
| 248 const __m128i transpose0_1 = _mm_unpacklo_epi16(shifted2, shifted3); |
| 249 const __m128i transpose0_2 = _mm_unpackhi_epi16(shifted0, shifted1); |
| 250 const __m128i transpose0_3 = _mm_unpackhi_epi16(shifted2, shifted3); |
| 251 // a00 a10 a01 a11 a02 a12 a03 a13 |
| 252 // a20 a30 a21 a31 a22 a32 a23 a33 |
| 253 // b00 b10 b01 b11 b02 b12 b03 b13 |
| 254 // b20 b30 b21 b31 b22 b32 b23 b33 |
| 255 const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1); |
| 256 const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3); |
| 257 const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1); |
| 258 const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3); |
| 259 // a00 a10 a20 a30 a01 a11 a21 a31 |
| 260 // b00 b10 b20 b30 b01 b11 b21 b31 |
| 261 // a02 a12 a22 a32 a03 a13 a23 a33 |
| 262 // b02 b12 a22 b32 b03 b13 b23 b33 |
| 263 T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1); |
| 264 T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1); |
| 265 T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3); |
| 266 T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3); |
| 267 // a00 a10 a20 a30 b00 b10 b20 b30 |
| 268 // a01 a11 a21 a31 b01 b11 b21 b31 |
| 269 // a02 a12 a22 a32 b02 b12 b22 b32 |
| 270 // a03 a13 a23 a33 b03 b13 b23 b33 |
| 271 } |
| 272 |
| 273 // Add inverse transform to 'ref' and store. |
| 274 { |
| 275 const __m128i zero = _mm_setzero_si128(); |
| 276 // Load the reference(s). |
| 277 __m128i ref0, ref1, ref2, ref3; |
| 278 if (do_two) { |
| 279 // Load eight bytes/pixels per line. |
| 280 ref0 = _mm_loadl_epi64((__m128i*)&ref[0 * BPS]); |
| 281 ref1 = _mm_loadl_epi64((__m128i*)&ref[1 * BPS]); |
| 282 ref2 = _mm_loadl_epi64((__m128i*)&ref[2 * BPS]); |
| 283 ref3 = _mm_loadl_epi64((__m128i*)&ref[3 * BPS]); |
| 284 } else { |
| 285 // Load four bytes/pixels per line. |
| 286 ref0 = _mm_cvtsi32_si128(*(int*)&ref[0 * BPS]); |
| 287 ref1 = _mm_cvtsi32_si128(*(int*)&ref[1 * BPS]); |
| 288 ref2 = _mm_cvtsi32_si128(*(int*)&ref[2 * BPS]); |
| 289 ref3 = _mm_cvtsi32_si128(*(int*)&ref[3 * BPS]); |
| 290 } |
| 291 // Convert to 16b. |
| 292 ref0 = _mm_unpacklo_epi8(ref0, zero); |
| 293 ref1 = _mm_unpacklo_epi8(ref1, zero); |
| 294 ref2 = _mm_unpacklo_epi8(ref2, zero); |
| 295 ref3 = _mm_unpacklo_epi8(ref3, zero); |
| 296 // Add the inverse transform(s). |
| 297 ref0 = _mm_add_epi16(ref0, T0); |
| 298 ref1 = _mm_add_epi16(ref1, T1); |
| 299 ref2 = _mm_add_epi16(ref2, T2); |
| 300 ref3 = _mm_add_epi16(ref3, T3); |
| 301 // Unsigned saturate to 8b. |
| 302 ref0 = _mm_packus_epi16(ref0, ref0); |
| 303 ref1 = _mm_packus_epi16(ref1, ref1); |
| 304 ref2 = _mm_packus_epi16(ref2, ref2); |
| 305 ref3 = _mm_packus_epi16(ref3, ref3); |
| 306 // Store the results. |
| 307 if (do_two) { |
| 308 // Store eight bytes/pixels per line. |
| 309 _mm_storel_epi64((__m128i*)&dst[0 * BPS], ref0); |
| 310 _mm_storel_epi64((__m128i*)&dst[1 * BPS], ref1); |
| 311 _mm_storel_epi64((__m128i*)&dst[2 * BPS], ref2); |
| 312 _mm_storel_epi64((__m128i*)&dst[3 * BPS], ref3); |
| 313 } else { |
| 314 // Store four bytes/pixels per line. |
| 315 *((int32_t *)&dst[0 * BPS]) = _mm_cvtsi128_si32(ref0); |
| 316 *((int32_t *)&dst[1 * BPS]) = _mm_cvtsi128_si32(ref1); |
| 317 *((int32_t *)&dst[2 * BPS]) = _mm_cvtsi128_si32(ref2); |
| 318 *((int32_t *)&dst[3 * BPS]) = _mm_cvtsi128_si32(ref3); |
| 319 } |
| 320 } |
| 321 } |
| 322 |
| 323 static void FTransform(const uint8_t* src, const uint8_t* ref, int16_t* out) { |
| 324 const __m128i zero = _mm_setzero_si128(); |
| 325 const __m128i seven = _mm_set1_epi16(7); |
| 326 const __m128i k937 = _mm_set1_epi32(937); |
| 327 const __m128i k1812 = _mm_set1_epi32(1812); |
| 328 const __m128i k51000 = _mm_set1_epi32(51000); |
| 329 const __m128i k12000_plus_one = _mm_set1_epi32(12000 + (1 << 16)); |
| 330 const __m128i k5352_2217 = _mm_set_epi16(5352, 2217, 5352, 2217, |
| 331 5352, 2217, 5352, 2217); |
| 332 const __m128i k2217_5352 = _mm_set_epi16(2217, -5352, 2217, -5352, |
| 333 2217, -5352, 2217, -5352); |
| 334 const __m128i k88p = _mm_set_epi16(8, 8, 8, 8, 8, 8, 8, 8); |
| 335 const __m128i k88m = _mm_set_epi16(-8, 8, -8, 8, -8, 8, -8, 8); |
| 336 const __m128i k5352_2217p = _mm_set_epi16(2217, 5352, 2217, 5352, |
| 337 2217, 5352, 2217, 5352); |
| 338 const __m128i k5352_2217m = _mm_set_epi16(-5352, 2217, -5352, 2217, |
| 339 -5352, 2217, -5352, 2217); |
| 340 __m128i v01, v32; |
| 341 |
| 342 |
| 343 // Difference between src and ref and initial transpose. |
| 344 { |
| 345 // Load src and convert to 16b. |
| 346 const __m128i src0 = _mm_loadl_epi64((__m128i*)&src[0 * BPS]); |
| 347 const __m128i src1 = _mm_loadl_epi64((__m128i*)&src[1 * BPS]); |
| 348 const __m128i src2 = _mm_loadl_epi64((__m128i*)&src[2 * BPS]); |
| 349 const __m128i src3 = _mm_loadl_epi64((__m128i*)&src[3 * BPS]); |
| 350 const __m128i src_0 = _mm_unpacklo_epi8(src0, zero); |
| 351 const __m128i src_1 = _mm_unpacklo_epi8(src1, zero); |
| 352 const __m128i src_2 = _mm_unpacklo_epi8(src2, zero); |
| 353 const __m128i src_3 = _mm_unpacklo_epi8(src3, zero); |
| 354 // Load ref and convert to 16b. |
| 355 const __m128i ref0 = _mm_loadl_epi64((__m128i*)&ref[0 * BPS]); |
| 356 const __m128i ref1 = _mm_loadl_epi64((__m128i*)&ref[1 * BPS]); |
| 357 const __m128i ref2 = _mm_loadl_epi64((__m128i*)&ref[2 * BPS]); |
| 358 const __m128i ref3 = _mm_loadl_epi64((__m128i*)&ref[3 * BPS]); |
| 359 const __m128i ref_0 = _mm_unpacklo_epi8(ref0, zero); |
| 360 const __m128i ref_1 = _mm_unpacklo_epi8(ref1, zero); |
| 361 const __m128i ref_2 = _mm_unpacklo_epi8(ref2, zero); |
| 362 const __m128i ref_3 = _mm_unpacklo_epi8(ref3, zero); |
| 363 // Compute difference. -> 00 01 02 03 00 00 00 00 |
| 364 const __m128i diff0 = _mm_sub_epi16(src_0, ref_0); |
| 365 const __m128i diff1 = _mm_sub_epi16(src_1, ref_1); |
| 366 const __m128i diff2 = _mm_sub_epi16(src_2, ref_2); |
| 367 const __m128i diff3 = _mm_sub_epi16(src_3, ref_3); |
| 368 |
| 369 |
| 370 // Unpack and shuffle |
| 371 // 00 01 02 03 0 0 0 0 |
| 372 // 10 11 12 13 0 0 0 0 |
| 373 // 20 21 22 23 0 0 0 0 |
| 374 // 30 31 32 33 0 0 0 0 |
| 375 const __m128i shuf01 = _mm_unpacklo_epi32(diff0, diff1); |
| 376 const __m128i shuf23 = _mm_unpacklo_epi32(diff2, diff3); |
| 377 // 00 01 10 11 02 03 12 13 |
| 378 // 20 21 30 31 22 23 32 33 |
| 379 const __m128i shuf01_p = |
| 380 _mm_shufflehi_epi16(shuf01, _MM_SHUFFLE(2, 3, 0, 1)); |
| 381 const __m128i shuf23_p = |
| 382 _mm_shufflehi_epi16(shuf23, _MM_SHUFFLE(2, 3, 0, 1)); |
| 383 // 00 01 10 11 03 02 13 12 |
| 384 // 20 21 30 31 23 22 33 32 |
| 385 const __m128i s01 = _mm_unpacklo_epi64(shuf01_p, shuf23_p); |
| 386 const __m128i s32 = _mm_unpackhi_epi64(shuf01_p, shuf23_p); |
| 387 // 00 01 10 11 20 21 30 31 |
| 388 // 03 02 13 12 23 22 33 32 |
| 389 const __m128i a01 = _mm_add_epi16(s01, s32); |
| 390 const __m128i a32 = _mm_sub_epi16(s01, s32); |
| 391 // [d0 + d3 | d1 + d2 | ...] = [a0 a1 | a0' a1' | ... ] |
| 392 // [d0 - d3 | d1 - d2 | ...] = [a3 a2 | a3' a2' | ... ] |
| 393 |
| 394 const __m128i tmp0 = _mm_madd_epi16(a01, k88p); // [ (a0 + a1) << 3, ... ] |
| 395 const __m128i tmp2 = _mm_madd_epi16(a01, k88m); // [ (a0 - a1) << 3, ... ] |
| 396 const __m128i tmp1_1 = _mm_madd_epi16(a32, k5352_2217p); |
| 397 const __m128i tmp3_1 = _mm_madd_epi16(a32, k5352_2217m); |
| 398 const __m128i tmp1_2 = _mm_add_epi32(tmp1_1, k1812); |
| 399 const __m128i tmp3_2 = _mm_add_epi32(tmp3_1, k937); |
| 400 const __m128i tmp1 = _mm_srai_epi32(tmp1_2, 9); |
| 401 const __m128i tmp3 = _mm_srai_epi32(tmp3_2, 9); |
| 402 const __m128i s03 = _mm_packs_epi32(tmp0, tmp2); |
| 403 const __m128i s12 = _mm_packs_epi32(tmp1, tmp3); |
| 404 const __m128i s_lo = _mm_unpacklo_epi16(s03, s12); // 0 1 0 1 0 1... |
| 405 const __m128i s_hi = _mm_unpackhi_epi16(s03, s12); // 2 3 2 3 2 3 |
| 406 const __m128i v23 = _mm_unpackhi_epi32(s_lo, s_hi); |
| 407 v01 = _mm_unpacklo_epi32(s_lo, s_hi); |
| 408 v32 = _mm_shuffle_epi32(v23, _MM_SHUFFLE(1, 0, 3, 2)); // 3 2 3 2 3 2.. |
| 409 } |
| 410 |
| 411 // Second pass |
| 412 { |
| 413 // Same operations are done on the (0,3) and (1,2) pairs. |
| 414 // a0 = v0 + v3 |
| 415 // a1 = v1 + v2 |
| 416 // a3 = v0 - v3 |
| 417 // a2 = v1 - v2 |
| 418 const __m128i a01 = _mm_add_epi16(v01, v32); |
| 419 const __m128i a32 = _mm_sub_epi16(v01, v32); |
| 420 const __m128i a11 = _mm_unpackhi_epi64(a01, a01); |
| 421 const __m128i a22 = _mm_unpackhi_epi64(a32, a32); |
| 422 const __m128i a01_plus_7 = _mm_add_epi16(a01, seven); |
| 423 |
| 424 // d0 = (a0 + a1 + 7) >> 4; |
| 425 // d2 = (a0 - a1 + 7) >> 4; |
| 426 const __m128i c0 = _mm_add_epi16(a01_plus_7, a11); |
| 427 const __m128i c2 = _mm_sub_epi16(a01_plus_7, a11); |
| 428 const __m128i d0 = _mm_srai_epi16(c0, 4); |
| 429 const __m128i d2 = _mm_srai_epi16(c2, 4); |
| 430 |
| 431 // f1 = ((b3 * 5352 + b2 * 2217 + 12000) >> 16) |
| 432 // f3 = ((b3 * 2217 - b2 * 5352 + 51000) >> 16) |
| 433 const __m128i b23 = _mm_unpacklo_epi16(a22, a32); |
| 434 const __m128i c1 = _mm_madd_epi16(b23, k5352_2217); |
| 435 const __m128i c3 = _mm_madd_epi16(b23, k2217_5352); |
| 436 const __m128i d1 = _mm_add_epi32(c1, k12000_plus_one); |
| 437 const __m128i d3 = _mm_add_epi32(c3, k51000); |
| 438 const __m128i e1 = _mm_srai_epi32(d1, 16); |
| 439 const __m128i e3 = _mm_srai_epi32(d3, 16); |
| 440 const __m128i f1 = _mm_packs_epi32(e1, e1); |
| 441 const __m128i f3 = _mm_packs_epi32(e3, e3); |
| 442 // f1 = f1 + (a3 != 0); |
| 443 // The compare will return (0xffff, 0) for (==0, !=0). To turn that into the |
| 444 // desired (0, 1), we add one earlier through k12000_plus_one. |
| 445 // -> f1 = f1 + 1 - (a3 == 0) |
| 446 const __m128i g1 = _mm_add_epi16(f1, _mm_cmpeq_epi16(a32, zero)); |
| 447 |
| 448 const __m128i d0_g1 = _mm_unpacklo_epi64(d0, g1); |
| 449 const __m128i d2_f3 = _mm_unpacklo_epi64(d2, f3); |
| 450 _mm_storeu_si128((__m128i*)&out[0], d0_g1); |
| 451 _mm_storeu_si128((__m128i*)&out[8], d2_f3); |
| 452 } |
| 453 } |
| 454 |
| 455 static void FTransformWHT(const int16_t* in, int16_t* out) { |
| 456 int32_t tmp[16]; |
| 457 int i; |
| 458 for (i = 0; i < 4; ++i, in += 64) { |
| 459 const int a0 = (in[0 * 16] + in[2 * 16]); |
| 460 const int a1 = (in[1 * 16] + in[3 * 16]); |
| 461 const int a2 = (in[1 * 16] - in[3 * 16]); |
| 462 const int a3 = (in[0 * 16] - in[2 * 16]); |
| 463 tmp[0 + i * 4] = a0 + a1; |
| 464 tmp[1 + i * 4] = a3 + a2; |
| 465 tmp[2 + i * 4] = a3 - a2; |
| 466 tmp[3 + i * 4] = a0 - a1; |
| 467 } |
| 468 { |
| 469 const __m128i src0 = _mm_loadu_si128((__m128i*)&tmp[0]); |
| 470 const __m128i src1 = _mm_loadu_si128((__m128i*)&tmp[4]); |
| 471 const __m128i src2 = _mm_loadu_si128((__m128i*)&tmp[8]); |
| 472 const __m128i src3 = _mm_loadu_si128((__m128i*)&tmp[12]); |
| 473 const __m128i a0 = _mm_add_epi32(src0, src2); |
| 474 const __m128i a1 = _mm_add_epi32(src1, src3); |
| 475 const __m128i a2 = _mm_sub_epi32(src1, src3); |
| 476 const __m128i a3 = _mm_sub_epi32(src0, src2); |
| 477 const __m128i b0 = _mm_srai_epi32(_mm_add_epi32(a0, a1), 1); |
| 478 const __m128i b1 = _mm_srai_epi32(_mm_add_epi32(a3, a2), 1); |
| 479 const __m128i b2 = _mm_srai_epi32(_mm_sub_epi32(a3, a2), 1); |
| 480 const __m128i b3 = _mm_srai_epi32(_mm_sub_epi32(a0, a1), 1); |
| 481 const __m128i out0 = _mm_packs_epi32(b0, b1); |
| 482 const __m128i out1 = _mm_packs_epi32(b2, b3); |
| 483 _mm_storeu_si128((__m128i*)&out[0], out0); |
| 484 _mm_storeu_si128((__m128i*)&out[8], out1); |
| 485 } |
| 486 } |
| 487 |
| 488 //------------------------------------------------------------------------------ |
| 489 // Metric |
| 490 |
| 491 static int SSE_Nx4(const uint8_t* a, const uint8_t* b, |
| 492 int num_quads, int do_16) { |
| 493 const __m128i zero = _mm_setzero_si128(); |
| 494 __m128i sum1 = zero; |
| 495 __m128i sum2 = zero; |
| 496 |
| 497 while (num_quads-- > 0) { |
| 498 // Note: for the !do_16 case, we read 16 pixels instead of 8 but that's ok, |
| 499 // thanks to buffer over-allocation to that effect. |
| 500 const __m128i a0 = _mm_loadu_si128((__m128i*)&a[BPS * 0]); |
| 501 const __m128i a1 = _mm_loadu_si128((__m128i*)&a[BPS * 1]); |
| 502 const __m128i a2 = _mm_loadu_si128((__m128i*)&a[BPS * 2]); |
| 503 const __m128i a3 = _mm_loadu_si128((__m128i*)&a[BPS * 3]); |
| 504 const __m128i b0 = _mm_loadu_si128((__m128i*)&b[BPS * 0]); |
| 505 const __m128i b1 = _mm_loadu_si128((__m128i*)&b[BPS * 1]); |
| 506 const __m128i b2 = _mm_loadu_si128((__m128i*)&b[BPS * 2]); |
| 507 const __m128i b3 = _mm_loadu_si128((__m128i*)&b[BPS * 3]); |
| 508 |
| 509 // compute clip0(a-b) and clip0(b-a) |
| 510 const __m128i a0p = _mm_subs_epu8(a0, b0); |
| 511 const __m128i a0m = _mm_subs_epu8(b0, a0); |
| 512 const __m128i a1p = _mm_subs_epu8(a1, b1); |
| 513 const __m128i a1m = _mm_subs_epu8(b1, a1); |
| 514 const __m128i a2p = _mm_subs_epu8(a2, b2); |
| 515 const __m128i a2m = _mm_subs_epu8(b2, a2); |
| 516 const __m128i a3p = _mm_subs_epu8(a3, b3); |
| 517 const __m128i a3m = _mm_subs_epu8(b3, a3); |
| 518 |
| 519 // compute |a-b| with 8b arithmetic as clip0(a-b) | clip0(b-a) |
| 520 const __m128i diff0 = _mm_or_si128(a0p, a0m); |
| 521 const __m128i diff1 = _mm_or_si128(a1p, a1m); |
| 522 const __m128i diff2 = _mm_or_si128(a2p, a2m); |
| 523 const __m128i diff3 = _mm_or_si128(a3p, a3m); |
| 524 |
| 525 // unpack (only four operations, instead of eight) |
| 526 const __m128i low0 = _mm_unpacklo_epi8(diff0, zero); |
| 527 const __m128i low1 = _mm_unpacklo_epi8(diff1, zero); |
| 528 const __m128i low2 = _mm_unpacklo_epi8(diff2, zero); |
| 529 const __m128i low3 = _mm_unpacklo_epi8(diff3, zero); |
| 530 |
| 531 // multiply with self |
| 532 const __m128i low_madd0 = _mm_madd_epi16(low0, low0); |
| 533 const __m128i low_madd1 = _mm_madd_epi16(low1, low1); |
| 534 const __m128i low_madd2 = _mm_madd_epi16(low2, low2); |
| 535 const __m128i low_madd3 = _mm_madd_epi16(low3, low3); |
| 536 |
| 537 // collect in a cascading way |
| 538 const __m128i low_sum0 = _mm_add_epi32(low_madd0, low_madd1); |
| 539 const __m128i low_sum1 = _mm_add_epi32(low_madd2, low_madd3); |
| 540 sum1 = _mm_add_epi32(sum1, low_sum0); |
| 541 sum2 = _mm_add_epi32(sum2, low_sum1); |
| 542 |
| 543 if (do_16) { // if necessary, process the higher 8 bytes similarly |
| 544 const __m128i hi0 = _mm_unpackhi_epi8(diff0, zero); |
| 545 const __m128i hi1 = _mm_unpackhi_epi8(diff1, zero); |
| 546 const __m128i hi2 = _mm_unpackhi_epi8(diff2, zero); |
| 547 const __m128i hi3 = _mm_unpackhi_epi8(diff3, zero); |
| 548 |
| 549 const __m128i hi_madd0 = _mm_madd_epi16(hi0, hi0); |
| 550 const __m128i hi_madd1 = _mm_madd_epi16(hi1, hi1); |
| 551 const __m128i hi_madd2 = _mm_madd_epi16(hi2, hi2); |
| 552 const __m128i hi_madd3 = _mm_madd_epi16(hi3, hi3); |
| 553 const __m128i hi_sum0 = _mm_add_epi32(hi_madd0, hi_madd1); |
| 554 const __m128i hi_sum1 = _mm_add_epi32(hi_madd2, hi_madd3); |
| 555 sum1 = _mm_add_epi32(sum1, hi_sum0); |
| 556 sum2 = _mm_add_epi32(sum2, hi_sum1); |
| 557 } |
| 558 a += 4 * BPS; |
| 559 b += 4 * BPS; |
| 560 } |
| 561 { |
| 562 int32_t tmp[4]; |
| 563 const __m128i sum = _mm_add_epi32(sum1, sum2); |
| 564 _mm_storeu_si128((__m128i*)tmp, sum); |
| 565 return (tmp[3] + tmp[2] + tmp[1] + tmp[0]); |
| 566 } |
| 567 } |
| 568 |
| 569 static int SSE16x16(const uint8_t* a, const uint8_t* b) { |
| 570 return SSE_Nx4(a, b, 4, 1); |
| 571 } |
| 572 |
| 573 static int SSE16x8(const uint8_t* a, const uint8_t* b) { |
| 574 return SSE_Nx4(a, b, 2, 1); |
| 575 } |
| 576 |
| 577 static int SSE8x8(const uint8_t* a, const uint8_t* b) { |
| 578 return SSE_Nx4(a, b, 2, 0); |
| 579 } |
| 580 |
| 581 static int SSE4x4(const uint8_t* a, const uint8_t* b) { |
| 582 const __m128i zero = _mm_setzero_si128(); |
| 583 |
| 584 // Load values. Note that we read 8 pixels instead of 4, |
| 585 // but the a/b buffers are over-allocated to that effect. |
| 586 const __m128i a0 = _mm_loadl_epi64((__m128i*)&a[BPS * 0]); |
| 587 const __m128i a1 = _mm_loadl_epi64((__m128i*)&a[BPS * 1]); |
| 588 const __m128i a2 = _mm_loadl_epi64((__m128i*)&a[BPS * 2]); |
| 589 const __m128i a3 = _mm_loadl_epi64((__m128i*)&a[BPS * 3]); |
| 590 const __m128i b0 = _mm_loadl_epi64((__m128i*)&b[BPS * 0]); |
| 591 const __m128i b1 = _mm_loadl_epi64((__m128i*)&b[BPS * 1]); |
| 592 const __m128i b2 = _mm_loadl_epi64((__m128i*)&b[BPS * 2]); |
| 593 const __m128i b3 = _mm_loadl_epi64((__m128i*)&b[BPS * 3]); |
| 594 |
| 595 // Combine pair of lines and convert to 16b. |
| 596 const __m128i a01 = _mm_unpacklo_epi32(a0, a1); |
| 597 const __m128i a23 = _mm_unpacklo_epi32(a2, a3); |
| 598 const __m128i b01 = _mm_unpacklo_epi32(b0, b1); |
| 599 const __m128i b23 = _mm_unpacklo_epi32(b2, b3); |
| 600 const __m128i a01s = _mm_unpacklo_epi8(a01, zero); |
| 601 const __m128i a23s = _mm_unpacklo_epi8(a23, zero); |
| 602 const __m128i b01s = _mm_unpacklo_epi8(b01, zero); |
| 603 const __m128i b23s = _mm_unpacklo_epi8(b23, zero); |
| 604 |
| 605 // Compute differences; (a-b)^2 = (abs(a-b))^2 = (sat8(a-b) + sat8(b-a))^2 |
| 606 // TODO(cduvivier): Dissassemble and figure out why this is fastest. We don't |
| 607 // need absolute values, there is no need to do calculation |
| 608 // in 8bit as we are already in 16bit, ... Yet this is what |
| 609 // benchmarks the fastest! |
| 610 const __m128i d0 = _mm_subs_epu8(a01s, b01s); |
| 611 const __m128i d1 = _mm_subs_epu8(b01s, a01s); |
| 612 const __m128i d2 = _mm_subs_epu8(a23s, b23s); |
| 613 const __m128i d3 = _mm_subs_epu8(b23s, a23s); |
| 614 |
| 615 // Square and add them all together. |
| 616 const __m128i madd0 = _mm_madd_epi16(d0, d0); |
| 617 const __m128i madd1 = _mm_madd_epi16(d1, d1); |
| 618 const __m128i madd2 = _mm_madd_epi16(d2, d2); |
| 619 const __m128i madd3 = _mm_madd_epi16(d3, d3); |
| 620 const __m128i sum0 = _mm_add_epi32(madd0, madd1); |
| 621 const __m128i sum1 = _mm_add_epi32(madd2, madd3); |
| 622 const __m128i sum2 = _mm_add_epi32(sum0, sum1); |
| 623 |
| 624 int32_t tmp[4]; |
| 625 _mm_storeu_si128((__m128i*)tmp, sum2); |
| 626 return (tmp[3] + tmp[2] + tmp[1] + tmp[0]); |
| 627 } |
| 628 |
| 629 //------------------------------------------------------------------------------ |
| 630 // Texture distortion |
| 631 // |
| 632 // We try to match the spectral content (weighted) between source and |
| 633 // reconstructed samples. |
| 634 |
| 635 // Hadamard transform |
| 636 // Returns the difference between the weighted sum of the absolute value of |
| 637 // transformed coefficients. |
| 638 static int TTransform(const uint8_t* inA, const uint8_t* inB, |
| 639 const uint16_t* const w) { |
| 640 int32_t sum[4]; |
| 641 __m128i tmp_0, tmp_1, tmp_2, tmp_3; |
| 642 const __m128i zero = _mm_setzero_si128(); |
| 643 |
| 644 // Load, combine and transpose inputs. |
| 645 { |
| 646 const __m128i inA_0 = _mm_loadl_epi64((__m128i*)&inA[BPS * 0]); |
| 647 const __m128i inA_1 = _mm_loadl_epi64((__m128i*)&inA[BPS * 1]); |
| 648 const __m128i inA_2 = _mm_loadl_epi64((__m128i*)&inA[BPS * 2]); |
| 649 const __m128i inA_3 = _mm_loadl_epi64((__m128i*)&inA[BPS * 3]); |
| 650 const __m128i inB_0 = _mm_loadl_epi64((__m128i*)&inB[BPS * 0]); |
| 651 const __m128i inB_1 = _mm_loadl_epi64((__m128i*)&inB[BPS * 1]); |
| 652 const __m128i inB_2 = _mm_loadl_epi64((__m128i*)&inB[BPS * 2]); |
| 653 const __m128i inB_3 = _mm_loadl_epi64((__m128i*)&inB[BPS * 3]); |
| 654 |
| 655 // Combine inA and inB (we'll do two transforms in parallel). |
| 656 const __m128i inAB_0 = _mm_unpacklo_epi8(inA_0, inB_0); |
| 657 const __m128i inAB_1 = _mm_unpacklo_epi8(inA_1, inB_1); |
| 658 const __m128i inAB_2 = _mm_unpacklo_epi8(inA_2, inB_2); |
| 659 const __m128i inAB_3 = _mm_unpacklo_epi8(inA_3, inB_3); |
| 660 // a00 b00 a01 b01 a02 b03 a03 b03 0 0 0 0 0 0 0 0 |
| 661 // a10 b10 a11 b11 a12 b12 a13 b13 0 0 0 0 0 0 0 0 |
| 662 // a20 b20 a21 b21 a22 b22 a23 b23 0 0 0 0 0 0 0 0 |
| 663 // a30 b30 a31 b31 a32 b32 a33 b33 0 0 0 0 0 0 0 0 |
| 664 |
| 665 // Transpose the two 4x4, discarding the filling zeroes. |
| 666 const __m128i transpose0_0 = _mm_unpacklo_epi8(inAB_0, inAB_2); |
| 667 const __m128i transpose0_1 = _mm_unpacklo_epi8(inAB_1, inAB_3); |
| 668 // a00 a20 b00 b20 a01 a21 b01 b21 a02 a22 b02 b22 a03 a23 b03 b23 |
| 669 // a10 a30 b10 b30 a11 a31 b11 b31 a12 a32 b12 b32 a13 a33 b13 b33 |
| 670 const __m128i transpose1_0 = _mm_unpacklo_epi8(transpose0_0, transpose0_1); |
| 671 const __m128i transpose1_1 = _mm_unpackhi_epi8(transpose0_0, transpose0_1); |
| 672 // a00 a10 a20 a30 b00 b10 b20 b30 a01 a11 a21 a31 b01 b11 b21 b31 |
| 673 // a02 a12 a22 a32 b02 b12 b22 b32 a03 a13 a23 a33 b03 b13 b23 b33 |
| 674 |
| 675 // Convert to 16b. |
| 676 tmp_0 = _mm_unpacklo_epi8(transpose1_0, zero); |
| 677 tmp_1 = _mm_unpackhi_epi8(transpose1_0, zero); |
| 678 tmp_2 = _mm_unpacklo_epi8(transpose1_1, zero); |
| 679 tmp_3 = _mm_unpackhi_epi8(transpose1_1, zero); |
| 680 // a00 a10 a20 a30 b00 b10 b20 b30 |
| 681 // a01 a11 a21 a31 b01 b11 b21 b31 |
| 682 // a02 a12 a22 a32 b02 b12 b22 b32 |
| 683 // a03 a13 a23 a33 b03 b13 b23 b33 |
| 684 } |
| 685 |
| 686 // Horizontal pass and subsequent transpose. |
| 687 { |
| 688 // Calculate a and b (two 4x4 at once). |
| 689 const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2); |
| 690 const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3); |
| 691 const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3); |
| 692 const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2); |
| 693 const __m128i b0 = _mm_add_epi16(a0, a1); |
| 694 const __m128i b1 = _mm_add_epi16(a3, a2); |
| 695 const __m128i b2 = _mm_sub_epi16(a3, a2); |
| 696 const __m128i b3 = _mm_sub_epi16(a0, a1); |
| 697 // a00 a01 a02 a03 b00 b01 b02 b03 |
| 698 // a10 a11 a12 a13 b10 b11 b12 b13 |
| 699 // a20 a21 a22 a23 b20 b21 b22 b23 |
| 700 // a30 a31 a32 a33 b30 b31 b32 b33 |
| 701 |
| 702 // Transpose the two 4x4. |
| 703 const __m128i transpose0_0 = _mm_unpacklo_epi16(b0, b1); |
| 704 const __m128i transpose0_1 = _mm_unpacklo_epi16(b2, b3); |
| 705 const __m128i transpose0_2 = _mm_unpackhi_epi16(b0, b1); |
| 706 const __m128i transpose0_3 = _mm_unpackhi_epi16(b2, b3); |
| 707 // a00 a10 a01 a11 a02 a12 a03 a13 |
| 708 // a20 a30 a21 a31 a22 a32 a23 a33 |
| 709 // b00 b10 b01 b11 b02 b12 b03 b13 |
| 710 // b20 b30 b21 b31 b22 b32 b23 b33 |
| 711 const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1); |
| 712 const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3); |
| 713 const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1); |
| 714 const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3); |
| 715 // a00 a10 a20 a30 a01 a11 a21 a31 |
| 716 // b00 b10 b20 b30 b01 b11 b21 b31 |
| 717 // a02 a12 a22 a32 a03 a13 a23 a33 |
| 718 // b02 b12 a22 b32 b03 b13 b23 b33 |
| 719 tmp_0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1); |
| 720 tmp_1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1); |
| 721 tmp_2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3); |
| 722 tmp_3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3); |
| 723 // a00 a10 a20 a30 b00 b10 b20 b30 |
| 724 // a01 a11 a21 a31 b01 b11 b21 b31 |
| 725 // a02 a12 a22 a32 b02 b12 b22 b32 |
| 726 // a03 a13 a23 a33 b03 b13 b23 b33 |
| 727 } |
| 728 |
| 729 // Vertical pass and difference of weighted sums. |
| 730 { |
| 731 // Load all inputs. |
| 732 // TODO(cduvivier): Make variable declarations and allocations aligned so |
| 733 // we can use _mm_load_si128 instead of _mm_loadu_si128. |
| 734 const __m128i w_0 = _mm_loadu_si128((__m128i*)&w[0]); |
| 735 const __m128i w_8 = _mm_loadu_si128((__m128i*)&w[8]); |
| 736 |
| 737 // Calculate a and b (two 4x4 at once). |
| 738 const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2); |
| 739 const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3); |
| 740 const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3); |
| 741 const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2); |
| 742 const __m128i b0 = _mm_add_epi16(a0, a1); |
| 743 const __m128i b1 = _mm_add_epi16(a3, a2); |
| 744 const __m128i b2 = _mm_sub_epi16(a3, a2); |
| 745 const __m128i b3 = _mm_sub_epi16(a0, a1); |
| 746 |
| 747 // Separate the transforms of inA and inB. |
| 748 __m128i A_b0 = _mm_unpacklo_epi64(b0, b1); |
| 749 __m128i A_b2 = _mm_unpacklo_epi64(b2, b3); |
| 750 __m128i B_b0 = _mm_unpackhi_epi64(b0, b1); |
| 751 __m128i B_b2 = _mm_unpackhi_epi64(b2, b3); |
| 752 |
| 753 { |
| 754 // sign(b) = b >> 15 (0x0000 if positive, 0xffff if negative) |
| 755 const __m128i sign_A_b0 = _mm_srai_epi16(A_b0, 15); |
| 756 const __m128i sign_A_b2 = _mm_srai_epi16(A_b2, 15); |
| 757 const __m128i sign_B_b0 = _mm_srai_epi16(B_b0, 15); |
| 758 const __m128i sign_B_b2 = _mm_srai_epi16(B_b2, 15); |
| 759 |
| 760 // b = abs(b) = (b ^ sign) - sign |
| 761 A_b0 = _mm_xor_si128(A_b0, sign_A_b0); |
| 762 A_b2 = _mm_xor_si128(A_b2, sign_A_b2); |
| 763 B_b0 = _mm_xor_si128(B_b0, sign_B_b0); |
| 764 B_b2 = _mm_xor_si128(B_b2, sign_B_b2); |
| 765 A_b0 = _mm_sub_epi16(A_b0, sign_A_b0); |
| 766 A_b2 = _mm_sub_epi16(A_b2, sign_A_b2); |
| 767 B_b0 = _mm_sub_epi16(B_b0, sign_B_b0); |
| 768 B_b2 = _mm_sub_epi16(B_b2, sign_B_b2); |
| 769 } |
| 770 |
| 771 // weighted sums |
| 772 A_b0 = _mm_madd_epi16(A_b0, w_0); |
| 773 A_b2 = _mm_madd_epi16(A_b2, w_8); |
| 774 B_b0 = _mm_madd_epi16(B_b0, w_0); |
| 775 B_b2 = _mm_madd_epi16(B_b2, w_8); |
| 776 A_b0 = _mm_add_epi32(A_b0, A_b2); |
| 777 B_b0 = _mm_add_epi32(B_b0, B_b2); |
| 778 |
| 779 // difference of weighted sums |
| 780 A_b0 = _mm_sub_epi32(A_b0, B_b0); |
| 781 _mm_storeu_si128((__m128i*)&sum[0], A_b0); |
| 782 } |
| 783 return sum[0] + sum[1] + sum[2] + sum[3]; |
| 784 } |
| 785 |
| 786 static int Disto4x4(const uint8_t* const a, const uint8_t* const b, |
| 787 const uint16_t* const w) { |
| 788 const int diff_sum = TTransform(a, b, w); |
| 789 return abs(diff_sum) >> 5; |
| 790 } |
| 791 |
| 792 static int Disto16x16(const uint8_t* const a, const uint8_t* const b, |
| 793 const uint16_t* const w) { |
| 794 int D = 0; |
| 795 int x, y; |
| 796 for (y = 0; y < 16 * BPS; y += 4 * BPS) { |
| 797 for (x = 0; x < 16; x += 4) { |
| 798 D += Disto4x4(a + x + y, b + x + y, w); |
| 799 } |
| 800 } |
| 801 return D; |
| 802 } |
| 803 |
| 804 //------------------------------------------------------------------------------ |
| 805 // Quantization |
| 806 // |
| 807 |
| 808 static WEBP_INLINE int DoQuantizeBlock(int16_t in[16], int16_t out[16], |
| 809 const uint16_t* const sharpen, |
| 810 const VP8Matrix* const mtx) { |
| 811 const __m128i max_coeff_2047 = _mm_set1_epi16(MAX_LEVEL); |
| 812 const __m128i zero = _mm_setzero_si128(); |
| 813 __m128i coeff0, coeff8; |
| 814 __m128i out0, out8; |
| 815 __m128i packed_out; |
| 816 |
| 817 // Load all inputs. |
| 818 // TODO(cduvivier): Make variable declarations and allocations aligned so that |
| 819 // we can use _mm_load_si128 instead of _mm_loadu_si128. |
| 820 __m128i in0 = _mm_loadu_si128((__m128i*)&in[0]); |
| 821 __m128i in8 = _mm_loadu_si128((__m128i*)&in[8]); |
| 822 const __m128i iq0 = _mm_loadu_si128((__m128i*)&mtx->iq_[0]); |
| 823 const __m128i iq8 = _mm_loadu_si128((__m128i*)&mtx->iq_[8]); |
| 824 const __m128i q0 = _mm_loadu_si128((__m128i*)&mtx->q_[0]); |
| 825 const __m128i q8 = _mm_loadu_si128((__m128i*)&mtx->q_[8]); |
| 826 |
| 827 // extract sign(in) (0x0000 if positive, 0xffff if negative) |
| 828 const __m128i sign0 = _mm_cmpgt_epi16(zero, in0); |
| 829 const __m128i sign8 = _mm_cmpgt_epi16(zero, in8); |
| 830 |
| 831 // coeff = abs(in) = (in ^ sign) - sign |
| 832 coeff0 = _mm_xor_si128(in0, sign0); |
| 833 coeff8 = _mm_xor_si128(in8, sign8); |
| 834 coeff0 = _mm_sub_epi16(coeff0, sign0); |
| 835 coeff8 = _mm_sub_epi16(coeff8, sign8); |
| 836 |
| 837 // coeff = abs(in) + sharpen |
| 838 if (sharpen != NULL) { |
| 839 const __m128i sharpen0 = _mm_loadu_si128((__m128i*)&sharpen[0]); |
| 840 const __m128i sharpen8 = _mm_loadu_si128((__m128i*)&sharpen[8]); |
| 841 coeff0 = _mm_add_epi16(coeff0, sharpen0); |
| 842 coeff8 = _mm_add_epi16(coeff8, sharpen8); |
| 843 } |
| 844 |
| 845 // out = (coeff * iQ + B) >> QFIX |
| 846 { |
| 847 // doing calculations with 32b precision (QFIX=17) |
| 848 // out = (coeff * iQ) |
| 849 const __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0); |
| 850 const __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0); |
| 851 const __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8); |
| 852 const __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8); |
| 853 __m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H); |
| 854 __m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H); |
| 855 __m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H); |
| 856 __m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H); |
| 857 // out = (coeff * iQ + B) |
| 858 const __m128i bias_00 = _mm_loadu_si128((__m128i*)&mtx->bias_[0]); |
| 859 const __m128i bias_04 = _mm_loadu_si128((__m128i*)&mtx->bias_[4]); |
| 860 const __m128i bias_08 = _mm_loadu_si128((__m128i*)&mtx->bias_[8]); |
| 861 const __m128i bias_12 = _mm_loadu_si128((__m128i*)&mtx->bias_[12]); |
| 862 out_00 = _mm_add_epi32(out_00, bias_00); |
| 863 out_04 = _mm_add_epi32(out_04, bias_04); |
| 864 out_08 = _mm_add_epi32(out_08, bias_08); |
| 865 out_12 = _mm_add_epi32(out_12, bias_12); |
| 866 // out = QUANTDIV(coeff, iQ, B, QFIX) |
| 867 out_00 = _mm_srai_epi32(out_00, QFIX); |
| 868 out_04 = _mm_srai_epi32(out_04, QFIX); |
| 869 out_08 = _mm_srai_epi32(out_08, QFIX); |
| 870 out_12 = _mm_srai_epi32(out_12, QFIX); |
| 871 |
| 872 // pack result as 16b |
| 873 out0 = _mm_packs_epi32(out_00, out_04); |
| 874 out8 = _mm_packs_epi32(out_08, out_12); |
| 875 |
| 876 // if (coeff > 2047) coeff = 2047 |
| 877 out0 = _mm_min_epi16(out0, max_coeff_2047); |
| 878 out8 = _mm_min_epi16(out8, max_coeff_2047); |
| 879 } |
| 880 |
| 881 // get sign back (if (sign[j]) out_n = -out_n) |
| 882 out0 = _mm_xor_si128(out0, sign0); |
| 883 out8 = _mm_xor_si128(out8, sign8); |
| 884 out0 = _mm_sub_epi16(out0, sign0); |
| 885 out8 = _mm_sub_epi16(out8, sign8); |
| 886 |
| 887 // in = out * Q |
| 888 in0 = _mm_mullo_epi16(out0, q0); |
| 889 in8 = _mm_mullo_epi16(out8, q8); |
| 890 |
| 891 _mm_storeu_si128((__m128i*)&in[0], in0); |
| 892 _mm_storeu_si128((__m128i*)&in[8], in8); |
| 893 |
| 894 // zigzag the output before storing it. |
| 895 // |
| 896 // The zigzag pattern can almost be reproduced with a small sequence of |
| 897 // shuffles. After it, we only need to swap the 7th (ending up in third |
| 898 // position instead of twelfth) and 8th values. |
| 899 { |
| 900 __m128i outZ0, outZ8; |
| 901 outZ0 = _mm_shufflehi_epi16(out0, _MM_SHUFFLE(2, 1, 3, 0)); |
| 902 outZ0 = _mm_shuffle_epi32 (outZ0, _MM_SHUFFLE(3, 1, 2, 0)); |
| 903 outZ0 = _mm_shufflehi_epi16(outZ0, _MM_SHUFFLE(3, 1, 0, 2)); |
| 904 outZ8 = _mm_shufflelo_epi16(out8, _MM_SHUFFLE(3, 0, 2, 1)); |
| 905 outZ8 = _mm_shuffle_epi32 (outZ8, _MM_SHUFFLE(3, 1, 2, 0)); |
| 906 outZ8 = _mm_shufflelo_epi16(outZ8, _MM_SHUFFLE(1, 3, 2, 0)); |
| 907 _mm_storeu_si128((__m128i*)&out[0], outZ0); |
| 908 _mm_storeu_si128((__m128i*)&out[8], outZ8); |
| 909 packed_out = _mm_packs_epi16(outZ0, outZ8); |
| 910 } |
| 911 { |
| 912 const int16_t outZ_12 = out[12]; |
| 913 const int16_t outZ_3 = out[3]; |
| 914 out[3] = outZ_12; |
| 915 out[12] = outZ_3; |
| 916 } |
| 917 |
| 918 // detect if all 'out' values are zeroes or not |
| 919 return (_mm_movemask_epi8(_mm_cmpeq_epi8(packed_out, zero)) != 0xffff); |
| 920 } |
| 921 |
| 922 static int QuantizeBlock(int16_t in[16], int16_t out[16], |
| 923 const VP8Matrix* const mtx) { |
| 924 return DoQuantizeBlock(in, out, &mtx->sharpen_[0], mtx); |
| 925 } |
| 926 |
| 927 static int QuantizeBlockWHT(int16_t in[16], int16_t out[16], |
| 928 const VP8Matrix* const mtx) { |
| 929 return DoQuantizeBlock(in, out, NULL, mtx); |
| 930 } |
| 931 |
| 932 // Forward declaration. |
| 933 void VP8SetResidualCoeffsSSE2(const int16_t* const coeffs, |
| 934 VP8Residual* const res); |
| 935 |
| 936 void VP8SetResidualCoeffsSSE2(const int16_t* const coeffs, |
| 937 VP8Residual* const res) { |
| 938 const __m128i c0 = _mm_loadu_si128((const __m128i*)coeffs); |
| 939 const __m128i c1 = _mm_loadu_si128((const __m128i*)(coeffs + 8)); |
| 940 // Use SSE to compare 8 values with a single instruction. |
| 941 const __m128i zero = _mm_setzero_si128(); |
| 942 const __m128i m0 = _mm_cmpeq_epi16(c0, zero); |
| 943 const __m128i m1 = _mm_cmpeq_epi16(c1, zero); |
| 944 // Get the comparison results as a bitmask, consisting of two times 16 bits: |
| 945 // two identical bits for each result. Concatenate both bitmasks to get a |
| 946 // single 32 bit value. Negate the mask to get the position of entries that |
| 947 // are not equal to zero. We don't need to mask out least significant bits |
| 948 // according to res->first, since coeffs[0] is 0 if res->first > 0 |
| 949 const uint32_t mask = |
| 950 ~(((uint32_t)_mm_movemask_epi8(m1) << 16) | _mm_movemask_epi8(m0)); |
| 951 // The position of the most significant non-zero bit indicates the position of |
| 952 // the last non-zero value. Divide the result by two because __movemask_epi8 |
| 953 // operates on 8 bit values instead of 16 bit values. |
| 954 assert(res->first == 0 || coeffs[0] == 0); |
| 955 res->last = mask ? (BitsLog2Floor(mask) >> 1) : -1; |
| 956 res->coeffs = coeffs; |
| 957 } |
| 958 |
| 959 #endif // WEBP_USE_SSE2 |
| 960 |
| 961 //------------------------------------------------------------------------------ |
| 962 // Entry point |
| 963 |
| 964 extern void VP8EncDspInitSSE2(void); |
| 965 |
| 966 void VP8EncDspInitSSE2(void) { |
| 967 #if defined(WEBP_USE_SSE2) |
| 968 VP8CollectHistogram = CollectHistogram; |
| 969 VP8EncQuantizeBlock = QuantizeBlock; |
| 970 VP8EncQuantizeBlockWHT = QuantizeBlockWHT; |
| 971 VP8ITransform = ITransform; |
| 972 VP8FTransform = FTransform; |
| 973 VP8FTransformWHT = FTransformWHT; |
| 974 VP8SSE16x16 = SSE16x16; |
| 975 VP8SSE16x8 = SSE16x8; |
| 976 VP8SSE8x8 = SSE8x8; |
| 977 VP8SSE4x4 = SSE4x4; |
| 978 VP8TDisto4x4 = Disto4x4; |
| 979 VP8TDisto16x16 = Disto16x16; |
| 980 #endif // WEBP_USE_SSE2 |
| 981 } |
| 982 |
OLD | NEW |