OLD | NEW |
(Empty) | |
| 1 // Copyright 2010 Google Inc. All Rights Reserved. |
| 2 // |
| 3 // Use of this source code is governed by a BSD-style license |
| 4 // that can be found in the COPYING file in the root of the source |
| 5 // tree. An additional intellectual property rights grant can be found |
| 6 // in the file PATENTS. All contributing project authors may |
| 7 // be found in the AUTHORS file in the root of the source tree. |
| 8 // ----------------------------------------------------------------------------- |
| 9 // |
| 10 // Frame-reconstruction function. Memory allocation. |
| 11 // |
| 12 // Author: Skal (pascal.massimino@gmail.com) |
| 13 |
| 14 #include <stdlib.h> |
| 15 #include "./vp8i.h" |
| 16 #include "../utils/utils.h" |
| 17 |
| 18 #define ALIGN_MASK (32 - 1) |
| 19 |
| 20 static void ReconstructRow(const VP8Decoder* const dec, |
| 21 const VP8ThreadContext* ctx); // TODO(skal): remove |
| 22 |
| 23 //------------------------------------------------------------------------------ |
| 24 // Filtering |
| 25 |
| 26 // kFilterExtraRows[] = How many extra lines are needed on the MB boundary |
| 27 // for caching, given a filtering level. |
| 28 // Simple filter: up to 2 luma samples are read and 1 is written. |
| 29 // Complex filter: up to 4 luma samples are read and 3 are written. Same for |
| 30 // U/V, so it's 8 samples total (because of the 2x upsampling). |
| 31 static const uint8_t kFilterExtraRows[3] = { 0, 2, 8 }; |
| 32 |
| 33 static void DoFilter(const VP8Decoder* const dec, int mb_x, int mb_y) { |
| 34 const VP8ThreadContext* const ctx = &dec->thread_ctx_; |
| 35 const int cache_id = ctx->id_; |
| 36 const int y_bps = dec->cache_y_stride_; |
| 37 const VP8FInfo* const f_info = ctx->f_info_ + mb_x; |
| 38 uint8_t* const y_dst = dec->cache_y_ + cache_id * 16 * y_bps + mb_x * 16; |
| 39 const int ilevel = f_info->f_ilevel_; |
| 40 const int limit = f_info->f_limit_; |
| 41 if (limit == 0) { |
| 42 return; |
| 43 } |
| 44 assert(limit >= 3); |
| 45 if (dec->filter_type_ == 1) { // simple |
| 46 if (mb_x > 0) { |
| 47 VP8SimpleHFilter16(y_dst, y_bps, limit + 4); |
| 48 } |
| 49 if (f_info->f_inner_) { |
| 50 VP8SimpleHFilter16i(y_dst, y_bps, limit); |
| 51 } |
| 52 if (mb_y > 0) { |
| 53 VP8SimpleVFilter16(y_dst, y_bps, limit + 4); |
| 54 } |
| 55 if (f_info->f_inner_) { |
| 56 VP8SimpleVFilter16i(y_dst, y_bps, limit); |
| 57 } |
| 58 } else { // complex |
| 59 const int uv_bps = dec->cache_uv_stride_; |
| 60 uint8_t* const u_dst = dec->cache_u_ + cache_id * 8 * uv_bps + mb_x * 8; |
| 61 uint8_t* const v_dst = dec->cache_v_ + cache_id * 8 * uv_bps + mb_x * 8; |
| 62 const int hev_thresh = f_info->hev_thresh_; |
| 63 if (mb_x > 0) { |
| 64 VP8HFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh); |
| 65 VP8HFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh); |
| 66 } |
| 67 if (f_info->f_inner_) { |
| 68 VP8HFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh); |
| 69 VP8HFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh); |
| 70 } |
| 71 if (mb_y > 0) { |
| 72 VP8VFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh); |
| 73 VP8VFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh); |
| 74 } |
| 75 if (f_info->f_inner_) { |
| 76 VP8VFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh); |
| 77 VP8VFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh); |
| 78 } |
| 79 } |
| 80 } |
| 81 |
| 82 // Filter the decoded macroblock row (if needed) |
| 83 static void FilterRow(const VP8Decoder* const dec) { |
| 84 int mb_x; |
| 85 const int mb_y = dec->thread_ctx_.mb_y_; |
| 86 assert(dec->thread_ctx_.filter_row_); |
| 87 for (mb_x = dec->tl_mb_x_; mb_x < dec->br_mb_x_; ++mb_x) { |
| 88 DoFilter(dec, mb_x, mb_y); |
| 89 } |
| 90 } |
| 91 |
| 92 //------------------------------------------------------------------------------ |
| 93 // Precompute the filtering strength for each segment and each i4x4/i16x16 mode. |
| 94 |
| 95 static void PrecomputeFilterStrengths(VP8Decoder* const dec) { |
| 96 if (dec->filter_type_ > 0) { |
| 97 int s; |
| 98 const VP8FilterHeader* const hdr = &dec->filter_hdr_; |
| 99 for (s = 0; s < NUM_MB_SEGMENTS; ++s) { |
| 100 int i4x4; |
| 101 // First, compute the initial level |
| 102 int base_level; |
| 103 if (dec->segment_hdr_.use_segment_) { |
| 104 base_level = dec->segment_hdr_.filter_strength_[s]; |
| 105 if (!dec->segment_hdr_.absolute_delta_) { |
| 106 base_level += hdr->level_; |
| 107 } |
| 108 } else { |
| 109 base_level = hdr->level_; |
| 110 } |
| 111 for (i4x4 = 0; i4x4 <= 1; ++i4x4) { |
| 112 VP8FInfo* const info = &dec->fstrengths_[s][i4x4]; |
| 113 int level = base_level; |
| 114 if (hdr->use_lf_delta_) { |
| 115 // TODO(skal): only CURRENT is handled for now. |
| 116 level += hdr->ref_lf_delta_[0]; |
| 117 if (i4x4) { |
| 118 level += hdr->mode_lf_delta_[0]; |
| 119 } |
| 120 } |
| 121 level = (level < 0) ? 0 : (level > 63) ? 63 : level; |
| 122 if (level > 0) { |
| 123 int ilevel = level; |
| 124 if (hdr->sharpness_ > 0) { |
| 125 if (hdr->sharpness_ > 4) { |
| 126 ilevel >>= 2; |
| 127 } else { |
| 128 ilevel >>= 1; |
| 129 } |
| 130 if (ilevel > 9 - hdr->sharpness_) { |
| 131 ilevel = 9 - hdr->sharpness_; |
| 132 } |
| 133 } |
| 134 if (ilevel < 1) ilevel = 1; |
| 135 info->f_ilevel_ = ilevel; |
| 136 info->f_limit_ = 2 * level + ilevel; |
| 137 info->hev_thresh_ = (level >= 40) ? 2 : (level >= 15) ? 1 : 0; |
| 138 } else { |
| 139 info->f_limit_ = 0; // no filtering |
| 140 } |
| 141 info->f_inner_ = i4x4; |
| 142 } |
| 143 } |
| 144 } |
| 145 } |
| 146 |
| 147 //------------------------------------------------------------------------------ |
| 148 // Dithering |
| 149 |
| 150 #define DITHER_AMP_TAB_SIZE 12 |
| 151 static const int kQuantToDitherAmp[DITHER_AMP_TAB_SIZE] = { |
| 152 // roughly, it's dqm->uv_mat_[1] |
| 153 8, 7, 6, 4, 4, 2, 2, 2, 1, 1, 1, 1 |
| 154 }; |
| 155 |
| 156 void VP8InitDithering(const WebPDecoderOptions* const options, |
| 157 VP8Decoder* const dec) { |
| 158 assert(dec != NULL); |
| 159 if (options != NULL) { |
| 160 const int d = options->dithering_strength; |
| 161 const int max_amp = (1 << VP8_RANDOM_DITHER_FIX) - 1; |
| 162 const int f = (d < 0) ? 0 : (d > 100) ? max_amp : (d * max_amp / 100); |
| 163 if (f > 0) { |
| 164 int s; |
| 165 int all_amp = 0; |
| 166 for (s = 0; s < NUM_MB_SEGMENTS; ++s) { |
| 167 VP8QuantMatrix* const dqm = &dec->dqm_[s]; |
| 168 if (dqm->uv_quant_ < DITHER_AMP_TAB_SIZE) { |
| 169 // TODO(skal): should we specially dither more for uv_quant_ < 0? |
| 170 const int idx = (dqm->uv_quant_ < 0) ? 0 : dqm->uv_quant_; |
| 171 dqm->dither_ = (f * kQuantToDitherAmp[idx]) >> 3; |
| 172 } |
| 173 all_amp |= dqm->dither_; |
| 174 } |
| 175 if (all_amp != 0) { |
| 176 VP8InitRandom(&dec->dithering_rg_, 1.0f); |
| 177 dec->dither_ = 1; |
| 178 } |
| 179 } |
| 180 #if WEBP_DECODER_ABI_VERSION > 0x0204 |
| 181 // potentially allow alpha dithering |
| 182 dec->alpha_dithering_ = options->alpha_dithering_strength; |
| 183 if (dec->alpha_dithering_ > 100) { |
| 184 dec->alpha_dithering_ = 100; |
| 185 } else if (dec->alpha_dithering_ < 0) { |
| 186 dec->alpha_dithering_ = 0; |
| 187 } |
| 188 #endif |
| 189 } |
| 190 } |
| 191 |
| 192 // minimal amp that will provide a non-zero dithering effect |
| 193 #define MIN_DITHER_AMP 4 |
| 194 #define DITHER_DESCALE 4 |
| 195 #define DITHER_DESCALE_ROUNDER (1 << (DITHER_DESCALE - 1)) |
| 196 #define DITHER_AMP_BITS 8 |
| 197 #define DITHER_AMP_CENTER (1 << DITHER_AMP_BITS) |
| 198 |
| 199 static void Dither8x8(VP8Random* const rg, uint8_t* dst, int bps, int amp) { |
| 200 int i, j; |
| 201 for (j = 0; j < 8; ++j) { |
| 202 for (i = 0; i < 8; ++i) { |
| 203 // TODO: could be made faster with SSE2 |
| 204 const int bits = |
| 205 VP8RandomBits2(rg, DITHER_AMP_BITS + 1, amp) - DITHER_AMP_CENTER; |
| 206 // Convert to range: [-2,2] for dither=50, [-4,4] for dither=100 |
| 207 const int delta = (bits + DITHER_DESCALE_ROUNDER) >> DITHER_DESCALE; |
| 208 const int v = (int)dst[i] + delta; |
| 209 dst[i] = (v < 0) ? 0 : (v > 255) ? 255u : (uint8_t)v; |
| 210 } |
| 211 dst += bps; |
| 212 } |
| 213 } |
| 214 |
| 215 static void DitherRow(VP8Decoder* const dec) { |
| 216 int mb_x; |
| 217 assert(dec->dither_); |
| 218 for (mb_x = dec->tl_mb_x_; mb_x < dec->br_mb_x_; ++mb_x) { |
| 219 const VP8ThreadContext* const ctx = &dec->thread_ctx_; |
| 220 const VP8MBData* const data = ctx->mb_data_ + mb_x; |
| 221 const int cache_id = ctx->id_; |
| 222 const int uv_bps = dec->cache_uv_stride_; |
| 223 if (data->dither_ >= MIN_DITHER_AMP) { |
| 224 uint8_t* const u_dst = dec->cache_u_ + cache_id * 8 * uv_bps + mb_x * 8; |
| 225 uint8_t* const v_dst = dec->cache_v_ + cache_id * 8 * uv_bps + mb_x * 8; |
| 226 Dither8x8(&dec->dithering_rg_, u_dst, uv_bps, data->dither_); |
| 227 Dither8x8(&dec->dithering_rg_, v_dst, uv_bps, data->dither_); |
| 228 } |
| 229 } |
| 230 } |
| 231 |
| 232 //------------------------------------------------------------------------------ |
| 233 // This function is called after a row of macroblocks is finished decoding. |
| 234 // It also takes into account the following restrictions: |
| 235 // * In case of in-loop filtering, we must hold off sending some of the bottom |
| 236 // pixels as they are yet unfiltered. They will be when the next macroblock |
| 237 // row is decoded. Meanwhile, we must preserve them by rotating them in the |
| 238 // cache area. This doesn't hold for the very bottom row of the uncropped |
| 239 // picture of course. |
| 240 // * we must clip the remaining pixels against the cropping area. The VP8Io |
| 241 // struct must have the following fields set correctly before calling put(): |
| 242 |
| 243 #define MACROBLOCK_VPOS(mb_y) ((mb_y) * 16) // vertical position of a MB |
| 244 |
| 245 // Finalize and transmit a complete row. Return false in case of user-abort. |
| 246 static int FinishRow(VP8Decoder* const dec, VP8Io* const io) { |
| 247 int ok = 1; |
| 248 const VP8ThreadContext* const ctx = &dec->thread_ctx_; |
| 249 const int cache_id = ctx->id_; |
| 250 const int extra_y_rows = kFilterExtraRows[dec->filter_type_]; |
| 251 const int ysize = extra_y_rows * dec->cache_y_stride_; |
| 252 const int uvsize = (extra_y_rows / 2) * dec->cache_uv_stride_; |
| 253 const int y_offset = cache_id * 16 * dec->cache_y_stride_; |
| 254 const int uv_offset = cache_id * 8 * dec->cache_uv_stride_; |
| 255 uint8_t* const ydst = dec->cache_y_ - ysize + y_offset; |
| 256 uint8_t* const udst = dec->cache_u_ - uvsize + uv_offset; |
| 257 uint8_t* const vdst = dec->cache_v_ - uvsize + uv_offset; |
| 258 const int mb_y = ctx->mb_y_; |
| 259 const int is_first_row = (mb_y == 0); |
| 260 const int is_last_row = (mb_y >= dec->br_mb_y_ - 1); |
| 261 |
| 262 if (dec->mt_method_ == 2) { |
| 263 ReconstructRow(dec, ctx); |
| 264 } |
| 265 |
| 266 if (ctx->filter_row_) { |
| 267 FilterRow(dec); |
| 268 } |
| 269 |
| 270 if (dec->dither_) { |
| 271 DitherRow(dec); |
| 272 } |
| 273 |
| 274 if (io->put != NULL) { |
| 275 int y_start = MACROBLOCK_VPOS(mb_y); |
| 276 int y_end = MACROBLOCK_VPOS(mb_y + 1); |
| 277 if (!is_first_row) { |
| 278 y_start -= extra_y_rows; |
| 279 io->y = ydst; |
| 280 io->u = udst; |
| 281 io->v = vdst; |
| 282 } else { |
| 283 io->y = dec->cache_y_ + y_offset; |
| 284 io->u = dec->cache_u_ + uv_offset; |
| 285 io->v = dec->cache_v_ + uv_offset; |
| 286 } |
| 287 |
| 288 if (!is_last_row) { |
| 289 y_end -= extra_y_rows; |
| 290 } |
| 291 if (y_end > io->crop_bottom) { |
| 292 y_end = io->crop_bottom; // make sure we don't overflow on last row. |
| 293 } |
| 294 io->a = NULL; |
| 295 if (dec->alpha_data_ != NULL && y_start < y_end) { |
| 296 // TODO(skal): testing presence of alpha with dec->alpha_data_ is not a |
| 297 // good idea. |
| 298 io->a = VP8DecompressAlphaRows(dec, y_start, y_end - y_start); |
| 299 if (io->a == NULL) { |
| 300 return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR, |
| 301 "Could not decode alpha data."); |
| 302 } |
| 303 } |
| 304 if (y_start < io->crop_top) { |
| 305 const int delta_y = io->crop_top - y_start; |
| 306 y_start = io->crop_top; |
| 307 assert(!(delta_y & 1)); |
| 308 io->y += dec->cache_y_stride_ * delta_y; |
| 309 io->u += dec->cache_uv_stride_ * (delta_y >> 1); |
| 310 io->v += dec->cache_uv_stride_ * (delta_y >> 1); |
| 311 if (io->a != NULL) { |
| 312 io->a += io->width * delta_y; |
| 313 } |
| 314 } |
| 315 if (y_start < y_end) { |
| 316 io->y += io->crop_left; |
| 317 io->u += io->crop_left >> 1; |
| 318 io->v += io->crop_left >> 1; |
| 319 if (io->a != NULL) { |
| 320 io->a += io->crop_left; |
| 321 } |
| 322 io->mb_y = y_start - io->crop_top; |
| 323 io->mb_w = io->crop_right - io->crop_left; |
| 324 io->mb_h = y_end - y_start; |
| 325 ok = io->put(io); |
| 326 } |
| 327 } |
| 328 // rotate top samples if needed |
| 329 if (cache_id + 1 == dec->num_caches_) { |
| 330 if (!is_last_row) { |
| 331 memcpy(dec->cache_y_ - ysize, ydst + 16 * dec->cache_y_stride_, ysize); |
| 332 memcpy(dec->cache_u_ - uvsize, udst + 8 * dec->cache_uv_stride_, uvsize); |
| 333 memcpy(dec->cache_v_ - uvsize, vdst + 8 * dec->cache_uv_stride_, uvsize); |
| 334 } |
| 335 } |
| 336 |
| 337 return ok; |
| 338 } |
| 339 |
| 340 #undef MACROBLOCK_VPOS |
| 341 |
| 342 //------------------------------------------------------------------------------ |
| 343 |
| 344 int VP8ProcessRow(VP8Decoder* const dec, VP8Io* const io) { |
| 345 int ok = 1; |
| 346 VP8ThreadContext* const ctx = &dec->thread_ctx_; |
| 347 const int filter_row = |
| 348 (dec->filter_type_ > 0) && |
| 349 (dec->mb_y_ >= dec->tl_mb_y_) && (dec->mb_y_ <= dec->br_mb_y_); |
| 350 if (dec->mt_method_ == 0) { |
| 351 // ctx->id_ and ctx->f_info_ are already set |
| 352 ctx->mb_y_ = dec->mb_y_; |
| 353 ctx->filter_row_ = filter_row; |
| 354 ReconstructRow(dec, ctx); |
| 355 ok = FinishRow(dec, io); |
| 356 } else { |
| 357 WebPWorker* const worker = &dec->worker_; |
| 358 // Finish previous job *before* updating context |
| 359 ok &= WebPGetWorkerInterface()->Sync(worker); |
| 360 assert(worker->status_ == OK); |
| 361 if (ok) { // spawn a new deblocking/output job |
| 362 ctx->io_ = *io; |
| 363 ctx->id_ = dec->cache_id_; |
| 364 ctx->mb_y_ = dec->mb_y_; |
| 365 ctx->filter_row_ = filter_row; |
| 366 if (dec->mt_method_ == 2) { // swap macroblock data |
| 367 VP8MBData* const tmp = ctx->mb_data_; |
| 368 ctx->mb_data_ = dec->mb_data_; |
| 369 dec->mb_data_ = tmp; |
| 370 } else { |
| 371 // perform reconstruction directly in main thread |
| 372 ReconstructRow(dec, ctx); |
| 373 } |
| 374 if (filter_row) { // swap filter info |
| 375 VP8FInfo* const tmp = ctx->f_info_; |
| 376 ctx->f_info_ = dec->f_info_; |
| 377 dec->f_info_ = tmp; |
| 378 } |
| 379 // (reconstruct)+filter in parallel |
| 380 WebPGetWorkerInterface()->Launch(worker); |
| 381 if (++dec->cache_id_ == dec->num_caches_) { |
| 382 dec->cache_id_ = 0; |
| 383 } |
| 384 } |
| 385 } |
| 386 return ok; |
| 387 } |
| 388 |
| 389 //------------------------------------------------------------------------------ |
| 390 // Finish setting up the decoding parameter once user's setup() is called. |
| 391 |
| 392 VP8StatusCode VP8EnterCritical(VP8Decoder* const dec, VP8Io* const io) { |
| 393 // Call setup() first. This may trigger additional decoding features on 'io'. |
| 394 // Note: Afterward, we must call teardown() no matter what. |
| 395 if (io->setup != NULL && !io->setup(io)) { |
| 396 VP8SetError(dec, VP8_STATUS_USER_ABORT, "Frame setup failed"); |
| 397 return dec->status_; |
| 398 } |
| 399 |
| 400 // Disable filtering per user request |
| 401 if (io->bypass_filtering) { |
| 402 dec->filter_type_ = 0; |
| 403 } |
| 404 // TODO(skal): filter type / strength / sharpness forcing |
| 405 |
| 406 // Define the area where we can skip in-loop filtering, in case of cropping. |
| 407 // |
| 408 // 'Simple' filter reads two luma samples outside of the macroblock |
| 409 // and filters one. It doesn't filter the chroma samples. Hence, we can |
| 410 // avoid doing the in-loop filtering before crop_top/crop_left position. |
| 411 // For the 'Complex' filter, 3 samples are read and up to 3 are filtered. |
| 412 // Means: there's a dependency chain that goes all the way up to the |
| 413 // top-left corner of the picture (MB #0). We must filter all the previous |
| 414 // macroblocks. |
| 415 // TODO(skal): add an 'approximate_decoding' option, that won't produce |
| 416 // a 1:1 bit-exactness for complex filtering? |
| 417 { |
| 418 const int extra_pixels = kFilterExtraRows[dec->filter_type_]; |
| 419 if (dec->filter_type_ == 2) { |
| 420 // For complex filter, we need to preserve the dependency chain. |
| 421 dec->tl_mb_x_ = 0; |
| 422 dec->tl_mb_y_ = 0; |
| 423 } else { |
| 424 // For simple filter, we can filter only the cropped region. |
| 425 // We include 'extra_pixels' on the other side of the boundary, since |
| 426 // vertical or horizontal filtering of the previous macroblock can |
| 427 // modify some abutting pixels. |
| 428 dec->tl_mb_x_ = (io->crop_left - extra_pixels) >> 4; |
| 429 dec->tl_mb_y_ = (io->crop_top - extra_pixels) >> 4; |
| 430 if (dec->tl_mb_x_ < 0) dec->tl_mb_x_ = 0; |
| 431 if (dec->tl_mb_y_ < 0) dec->tl_mb_y_ = 0; |
| 432 } |
| 433 // We need some 'extra' pixels on the right/bottom. |
| 434 dec->br_mb_y_ = (io->crop_bottom + 15 + extra_pixels) >> 4; |
| 435 dec->br_mb_x_ = (io->crop_right + 15 + extra_pixels) >> 4; |
| 436 if (dec->br_mb_x_ > dec->mb_w_) { |
| 437 dec->br_mb_x_ = dec->mb_w_; |
| 438 } |
| 439 if (dec->br_mb_y_ > dec->mb_h_) { |
| 440 dec->br_mb_y_ = dec->mb_h_; |
| 441 } |
| 442 } |
| 443 PrecomputeFilterStrengths(dec); |
| 444 return VP8_STATUS_OK; |
| 445 } |
| 446 |
| 447 int VP8ExitCritical(VP8Decoder* const dec, VP8Io* const io) { |
| 448 int ok = 1; |
| 449 if (dec->mt_method_ > 0) { |
| 450 ok = WebPGetWorkerInterface()->Sync(&dec->worker_); |
| 451 } |
| 452 |
| 453 if (io->teardown != NULL) { |
| 454 io->teardown(io); |
| 455 } |
| 456 return ok; |
| 457 } |
| 458 |
| 459 //------------------------------------------------------------------------------ |
| 460 // For multi-threaded decoding we need to use 3 rows of 16 pixels as delay line. |
| 461 // |
| 462 // Reason is: the deblocking filter cannot deblock the bottom horizontal edges |
| 463 // immediately, and needs to wait for first few rows of the next macroblock to |
| 464 // be decoded. Hence, deblocking is lagging behind by 4 or 8 pixels (depending |
| 465 // on strength). |
| 466 // With two threads, the vertical positions of the rows being decoded are: |
| 467 // Decode: [ 0..15][16..31][32..47][48..63][64..79][... |
| 468 // Deblock: [ 0..11][12..27][28..43][44..59][... |
| 469 // If we use two threads and two caches of 16 pixels, the sequence would be: |
| 470 // Decode: [ 0..15][16..31][ 0..15!!][16..31][ 0..15][... |
| 471 // Deblock: [ 0..11][12..27!!][-4..11][12..27][... |
| 472 // The problem occurs during row [12..15!!] that both the decoding and |
| 473 // deblocking threads are writing simultaneously. |
| 474 // With 3 cache lines, one get a safe write pattern: |
| 475 // Decode: [ 0..15][16..31][32..47][ 0..15][16..31][32..47][0.. |
| 476 // Deblock: [ 0..11][12..27][28..43][-4..11][12..27][28... |
| 477 // Note that multi-threaded output _without_ deblocking can make use of two |
| 478 // cache lines of 16 pixels only, since there's no lagging behind. The decoding |
| 479 // and output process have non-concurrent writing: |
| 480 // Decode: [ 0..15][16..31][ 0..15][16..31][... |
| 481 // io->put: [ 0..15][16..31][ 0..15][... |
| 482 |
| 483 #define MT_CACHE_LINES 3 |
| 484 #define ST_CACHE_LINES 1 // 1 cache row only for single-threaded case |
| 485 |
| 486 // Initialize multi/single-thread worker |
| 487 static int InitThreadContext(VP8Decoder* const dec) { |
| 488 dec->cache_id_ = 0; |
| 489 if (dec->mt_method_ > 0) { |
| 490 WebPWorker* const worker = &dec->worker_; |
| 491 if (!WebPGetWorkerInterface()->Reset(worker)) { |
| 492 return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY, |
| 493 "thread initialization failed."); |
| 494 } |
| 495 worker->data1 = dec; |
| 496 worker->data2 = (void*)&dec->thread_ctx_.io_; |
| 497 worker->hook = (WebPWorkerHook)FinishRow; |
| 498 dec->num_caches_ = |
| 499 (dec->filter_type_ > 0) ? MT_CACHE_LINES : MT_CACHE_LINES - 1; |
| 500 } else { |
| 501 dec->num_caches_ = ST_CACHE_LINES; |
| 502 } |
| 503 return 1; |
| 504 } |
| 505 |
| 506 int VP8GetThreadMethod(const WebPDecoderOptions* const options, |
| 507 const WebPHeaderStructure* const headers, |
| 508 int width, int height) { |
| 509 if (options == NULL || options->use_threads == 0) { |
| 510 return 0; |
| 511 } |
| 512 (void)headers; |
| 513 (void)width; |
| 514 (void)height; |
| 515 assert(headers == NULL || !headers->is_lossless); |
| 516 #if defined(WEBP_USE_THREAD) |
| 517 if (width < MIN_WIDTH_FOR_THREADS) return 0; |
| 518 // TODO(skal): tune the heuristic further |
| 519 #if 0 |
| 520 if (height < 2 * width) return 2; |
| 521 #endif |
| 522 return 2; |
| 523 #else // !WEBP_USE_THREAD |
| 524 return 0; |
| 525 #endif |
| 526 } |
| 527 |
| 528 #undef MT_CACHE_LINES |
| 529 #undef ST_CACHE_LINES |
| 530 |
| 531 //------------------------------------------------------------------------------ |
| 532 // Memory setup |
| 533 |
| 534 static int AllocateMemory(VP8Decoder* const dec) { |
| 535 const int num_caches = dec->num_caches_; |
| 536 const int mb_w = dec->mb_w_; |
| 537 // Note: we use 'size_t' when there's no overflow risk, uint64_t otherwise. |
| 538 const size_t intra_pred_mode_size = 4 * mb_w * sizeof(uint8_t); |
| 539 const size_t top_size = sizeof(VP8TopSamples) * mb_w; |
| 540 const size_t mb_info_size = (mb_w + 1) * sizeof(VP8MB); |
| 541 const size_t f_info_size = |
| 542 (dec->filter_type_ > 0) ? |
| 543 mb_w * (dec->mt_method_ > 0 ? 2 : 1) * sizeof(VP8FInfo) |
| 544 : 0; |
| 545 const size_t yuv_size = YUV_SIZE * sizeof(*dec->yuv_b_); |
| 546 const size_t mb_data_size = |
| 547 (dec->mt_method_ == 2 ? 2 : 1) * mb_w * sizeof(*dec->mb_data_); |
| 548 const size_t cache_height = (16 * num_caches |
| 549 + kFilterExtraRows[dec->filter_type_]) * 3 / 2; |
| 550 const size_t cache_size = top_size * cache_height; |
| 551 // alpha_size is the only one that scales as width x height. |
| 552 const uint64_t alpha_size = (dec->alpha_data_ != NULL) ? |
| 553 (uint64_t)dec->pic_hdr_.width_ * dec->pic_hdr_.height_ : 0ULL; |
| 554 const uint64_t needed = (uint64_t)intra_pred_mode_size |
| 555 + top_size + mb_info_size + f_info_size |
| 556 + yuv_size + mb_data_size |
| 557 + cache_size + alpha_size + ALIGN_MASK; |
| 558 uint8_t* mem; |
| 559 |
| 560 if (needed != (size_t)needed) return 0; // check for overflow |
| 561 if (needed > dec->mem_size_) { |
| 562 WebPSafeFree(dec->mem_); |
| 563 dec->mem_size_ = 0; |
| 564 dec->mem_ = WebPSafeMalloc(needed, sizeof(uint8_t)); |
| 565 if (dec->mem_ == NULL) { |
| 566 return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY, |
| 567 "no memory during frame initialization."); |
| 568 } |
| 569 // down-cast is ok, thanks to WebPSafeAlloc() above. |
| 570 dec->mem_size_ = (size_t)needed; |
| 571 } |
| 572 |
| 573 mem = (uint8_t*)dec->mem_; |
| 574 dec->intra_t_ = (uint8_t*)mem; |
| 575 mem += intra_pred_mode_size; |
| 576 |
| 577 dec->yuv_t_ = (VP8TopSamples*)mem; |
| 578 mem += top_size; |
| 579 |
| 580 dec->mb_info_ = ((VP8MB*)mem) + 1; |
| 581 mem += mb_info_size; |
| 582 |
| 583 dec->f_info_ = f_info_size ? (VP8FInfo*)mem : NULL; |
| 584 mem += f_info_size; |
| 585 dec->thread_ctx_.id_ = 0; |
| 586 dec->thread_ctx_.f_info_ = dec->f_info_; |
| 587 if (dec->mt_method_ > 0) { |
| 588 // secondary cache line. The deblocking process need to make use of the |
| 589 // filtering strength from previous macroblock row, while the new ones |
| 590 // are being decoded in parallel. We'll just swap the pointers. |
| 591 dec->thread_ctx_.f_info_ += mb_w; |
| 592 } |
| 593 |
| 594 mem = (uint8_t*)((uintptr_t)(mem + ALIGN_MASK) & ~ALIGN_MASK); |
| 595 assert((yuv_size & ALIGN_MASK) == 0); |
| 596 dec->yuv_b_ = (uint8_t*)mem; |
| 597 mem += yuv_size; |
| 598 |
| 599 dec->mb_data_ = (VP8MBData*)mem; |
| 600 dec->thread_ctx_.mb_data_ = (VP8MBData*)mem; |
| 601 if (dec->mt_method_ == 2) { |
| 602 dec->thread_ctx_.mb_data_ += mb_w; |
| 603 } |
| 604 mem += mb_data_size; |
| 605 |
| 606 dec->cache_y_stride_ = 16 * mb_w; |
| 607 dec->cache_uv_stride_ = 8 * mb_w; |
| 608 { |
| 609 const int extra_rows = kFilterExtraRows[dec->filter_type_]; |
| 610 const int extra_y = extra_rows * dec->cache_y_stride_; |
| 611 const int extra_uv = (extra_rows / 2) * dec->cache_uv_stride_; |
| 612 dec->cache_y_ = ((uint8_t*)mem) + extra_y; |
| 613 dec->cache_u_ = dec->cache_y_ |
| 614 + 16 * num_caches * dec->cache_y_stride_ + extra_uv; |
| 615 dec->cache_v_ = dec->cache_u_ |
| 616 + 8 * num_caches * dec->cache_uv_stride_ + extra_uv; |
| 617 dec->cache_id_ = 0; |
| 618 } |
| 619 mem += cache_size; |
| 620 |
| 621 // alpha plane |
| 622 dec->alpha_plane_ = alpha_size ? (uint8_t*)mem : NULL; |
| 623 mem += alpha_size; |
| 624 assert(mem <= (uint8_t*)dec->mem_ + dec->mem_size_); |
| 625 |
| 626 // note: left/top-info is initialized once for all. |
| 627 memset(dec->mb_info_ - 1, 0, mb_info_size); |
| 628 VP8InitScanline(dec); // initialize left too. |
| 629 |
| 630 // initialize top |
| 631 memset(dec->intra_t_, B_DC_PRED, intra_pred_mode_size); |
| 632 |
| 633 return 1; |
| 634 } |
| 635 |
| 636 static void InitIo(VP8Decoder* const dec, VP8Io* io) { |
| 637 // prepare 'io' |
| 638 io->mb_y = 0; |
| 639 io->y = dec->cache_y_; |
| 640 io->u = dec->cache_u_; |
| 641 io->v = dec->cache_v_; |
| 642 io->y_stride = dec->cache_y_stride_; |
| 643 io->uv_stride = dec->cache_uv_stride_; |
| 644 io->a = NULL; |
| 645 } |
| 646 |
| 647 int VP8InitFrame(VP8Decoder* const dec, VP8Io* io) { |
| 648 if (!InitThreadContext(dec)) return 0; // call first. Sets dec->num_caches_. |
| 649 if (!AllocateMemory(dec)) return 0; |
| 650 InitIo(dec, io); |
| 651 VP8DspInit(); // Init critical function pointers and look-up tables. |
| 652 return 1; |
| 653 } |
| 654 |
| 655 //------------------------------------------------------------------------------ |
| 656 // Main reconstruction function. |
| 657 |
| 658 static const int kScan[16] = { |
| 659 0 + 0 * BPS, 4 + 0 * BPS, 8 + 0 * BPS, 12 + 0 * BPS, |
| 660 0 + 4 * BPS, 4 + 4 * BPS, 8 + 4 * BPS, 12 + 4 * BPS, |
| 661 0 + 8 * BPS, 4 + 8 * BPS, 8 + 8 * BPS, 12 + 8 * BPS, |
| 662 0 + 12 * BPS, 4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS |
| 663 }; |
| 664 |
| 665 static int CheckMode(int mb_x, int mb_y, int mode) { |
| 666 if (mode == B_DC_PRED) { |
| 667 if (mb_x == 0) { |
| 668 return (mb_y == 0) ? B_DC_PRED_NOTOPLEFT : B_DC_PRED_NOLEFT; |
| 669 } else { |
| 670 return (mb_y == 0) ? B_DC_PRED_NOTOP : B_DC_PRED; |
| 671 } |
| 672 } |
| 673 return mode; |
| 674 } |
| 675 |
| 676 static void Copy32b(uint8_t* dst, uint8_t* src) { |
| 677 memcpy(dst, src, 4); |
| 678 } |
| 679 |
| 680 static WEBP_INLINE void DoTransform(uint32_t bits, const int16_t* const src, |
| 681 uint8_t* const dst) { |
| 682 switch (bits >> 30) { |
| 683 case 3: |
| 684 VP8Transform(src, dst, 0); |
| 685 break; |
| 686 case 2: |
| 687 VP8TransformAC3(src, dst); |
| 688 break; |
| 689 case 1: |
| 690 VP8TransformDC(src, dst); |
| 691 break; |
| 692 default: |
| 693 break; |
| 694 } |
| 695 } |
| 696 |
| 697 static void DoUVTransform(uint32_t bits, const int16_t* const src, |
| 698 uint8_t* const dst) { |
| 699 if (bits & 0xff) { // any non-zero coeff at all? |
| 700 if (bits & 0xaa) { // any non-zero AC coefficient? |
| 701 VP8TransformUV(src, dst); // note we don't use the AC3 variant for U/V |
| 702 } else { |
| 703 VP8TransformDCUV(src, dst); |
| 704 } |
| 705 } |
| 706 } |
| 707 |
| 708 static void ReconstructRow(const VP8Decoder* const dec, |
| 709 const VP8ThreadContext* ctx) { |
| 710 int j; |
| 711 int mb_x; |
| 712 const int mb_y = ctx->mb_y_; |
| 713 const int cache_id = ctx->id_; |
| 714 uint8_t* const y_dst = dec->yuv_b_ + Y_OFF; |
| 715 uint8_t* const u_dst = dec->yuv_b_ + U_OFF; |
| 716 uint8_t* const v_dst = dec->yuv_b_ + V_OFF; |
| 717 for (mb_x = 0; mb_x < dec->mb_w_; ++mb_x) { |
| 718 const VP8MBData* const block = ctx->mb_data_ + mb_x; |
| 719 |
| 720 // Rotate in the left samples from previously decoded block. We move four |
| 721 // pixels at a time for alignment reason, and because of in-loop filter. |
| 722 if (mb_x > 0) { |
| 723 for (j = -1; j < 16; ++j) { |
| 724 Copy32b(&y_dst[j * BPS - 4], &y_dst[j * BPS + 12]); |
| 725 } |
| 726 for (j = -1; j < 8; ++j) { |
| 727 Copy32b(&u_dst[j * BPS - 4], &u_dst[j * BPS + 4]); |
| 728 Copy32b(&v_dst[j * BPS - 4], &v_dst[j * BPS + 4]); |
| 729 } |
| 730 } else { |
| 731 for (j = 0; j < 16; ++j) { |
| 732 y_dst[j * BPS - 1] = 129; |
| 733 } |
| 734 for (j = 0; j < 8; ++j) { |
| 735 u_dst[j * BPS - 1] = 129; |
| 736 v_dst[j * BPS - 1] = 129; |
| 737 } |
| 738 // Init top-left sample on left column too |
| 739 if (mb_y > 0) { |
| 740 y_dst[-1 - BPS] = u_dst[-1 - BPS] = v_dst[-1 - BPS] = 129; |
| 741 } |
| 742 } |
| 743 { |
| 744 // bring top samples into the cache |
| 745 VP8TopSamples* const top_yuv = dec->yuv_t_ + mb_x; |
| 746 const int16_t* const coeffs = block->coeffs_; |
| 747 uint32_t bits = block->non_zero_y_; |
| 748 int n; |
| 749 |
| 750 if (mb_y > 0) { |
| 751 memcpy(y_dst - BPS, top_yuv[0].y, 16); |
| 752 memcpy(u_dst - BPS, top_yuv[0].u, 8); |
| 753 memcpy(v_dst - BPS, top_yuv[0].v, 8); |
| 754 } else if (mb_x == 0) { |
| 755 // we only need to do this init once at block (0,0). |
| 756 // Afterward, it remains valid for the whole topmost row. |
| 757 memset(y_dst - BPS - 1, 127, 16 + 4 + 1); |
| 758 memset(u_dst - BPS - 1, 127, 8 + 1); |
| 759 memset(v_dst - BPS - 1, 127, 8 + 1); |
| 760 } |
| 761 |
| 762 // predict and add residuals |
| 763 if (block->is_i4x4_) { // 4x4 |
| 764 uint32_t* const top_right = (uint32_t*)(y_dst - BPS + 16); |
| 765 |
| 766 if (mb_y > 0) { |
| 767 if (mb_x >= dec->mb_w_ - 1) { // on rightmost border |
| 768 memset(top_right, top_yuv[0].y[15], sizeof(*top_right)); |
| 769 } else { |
| 770 memcpy(top_right, top_yuv[1].y, sizeof(*top_right)); |
| 771 } |
| 772 } |
| 773 // replicate the top-right pixels below |
| 774 top_right[BPS] = top_right[2 * BPS] = top_right[3 * BPS] = top_right[0]; |
| 775 |
| 776 // predict and add residuals for all 4x4 blocks in turn. |
| 777 for (n = 0; n < 16; ++n, bits <<= 2) { |
| 778 uint8_t* const dst = y_dst + kScan[n]; |
| 779 VP8PredLuma4[block->imodes_[n]](dst); |
| 780 DoTransform(bits, coeffs + n * 16, dst); |
| 781 } |
| 782 } else { // 16x16 |
| 783 const int pred_func = CheckMode(mb_x, mb_y, |
| 784 block->imodes_[0]); |
| 785 VP8PredLuma16[pred_func](y_dst); |
| 786 if (bits != 0) { |
| 787 for (n = 0; n < 16; ++n, bits <<= 2) { |
| 788 DoTransform(bits, coeffs + n * 16, y_dst + kScan[n]); |
| 789 } |
| 790 } |
| 791 } |
| 792 { |
| 793 // Chroma |
| 794 const uint32_t bits_uv = block->non_zero_uv_; |
| 795 const int pred_func = CheckMode(mb_x, mb_y, block->uvmode_); |
| 796 VP8PredChroma8[pred_func](u_dst); |
| 797 VP8PredChroma8[pred_func](v_dst); |
| 798 DoUVTransform(bits_uv >> 0, coeffs + 16 * 16, u_dst); |
| 799 DoUVTransform(bits_uv >> 8, coeffs + 20 * 16, v_dst); |
| 800 } |
| 801 |
| 802 // stash away top samples for next block |
| 803 if (mb_y < dec->mb_h_ - 1) { |
| 804 memcpy(top_yuv[0].y, y_dst + 15 * BPS, 16); |
| 805 memcpy(top_yuv[0].u, u_dst + 7 * BPS, 8); |
| 806 memcpy(top_yuv[0].v, v_dst + 7 * BPS, 8); |
| 807 } |
| 808 } |
| 809 // Transfer reconstructed samples from yuv_b_ cache to final destination. |
| 810 { |
| 811 const int y_offset = cache_id * 16 * dec->cache_y_stride_; |
| 812 const int uv_offset = cache_id * 8 * dec->cache_uv_stride_; |
| 813 uint8_t* const y_out = dec->cache_y_ + mb_x * 16 + y_offset; |
| 814 uint8_t* const u_out = dec->cache_u_ + mb_x * 8 + uv_offset; |
| 815 uint8_t* const v_out = dec->cache_v_ + mb_x * 8 + uv_offset; |
| 816 for (j = 0; j < 16; ++j) { |
| 817 memcpy(y_out + j * dec->cache_y_stride_, y_dst + j * BPS, 16); |
| 818 } |
| 819 for (j = 0; j < 8; ++j) { |
| 820 memcpy(u_out + j * dec->cache_uv_stride_, u_dst + j * BPS, 8); |
| 821 memcpy(v_out + j * dec->cache_uv_stride_, v_dst + j * BPS, 8); |
| 822 } |
| 823 } |
| 824 } |
| 825 } |
| 826 |
| 827 //------------------------------------------------------------------------------ |
| 828 |
OLD | NEW |