| Index: third_party/scrypt/lib/scryptenc/scryptenc.c
|
| ===================================================================
|
| --- third_party/scrypt/lib/scryptenc/scryptenc.c (revision 175254)
|
| +++ third_party/scrypt/lib/scryptenc/scryptenc.c (working copy)
|
| @@ -1,606 +0,0 @@
|
| -/*-
|
| - * Copyright 2009 Colin Percival
|
| - * All rights reserved.
|
| - *
|
| - * Redistribution and use in source and binary forms, with or without
|
| - * modification, are permitted provided that the following conditions
|
| - * are met:
|
| - * 1. Redistributions of source code must retain the above copyright
|
| - * notice, this list of conditions and the following disclaimer.
|
| - * 2. Redistributions in binary form must reproduce the above copyright
|
| - * notice, this list of conditions and the following disclaimer in the
|
| - * documentation and/or other materials provided with the distribution.
|
| - *
|
| - * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
| - * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
| - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
| - * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
| - * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
| - * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
| - * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
| - * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
| - * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
| - * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
| - * SUCH DAMAGE.
|
| - *
|
| - * This file was originally written by Colin Percival as part of the Tarsnap
|
| - * online backup system.
|
| - */
|
| -#include "scrypt_platform.h"
|
| -
|
| -#include <errno.h>
|
| -#include <fcntl.h>
|
| -#include <stdint.h>
|
| -#include <stdio.h>
|
| -#include <string.h>
|
| -#include <unistd.h>
|
| -
|
| -#include <openssl/aes.h>
|
| -
|
| -#include "crypto_aesctr.h"
|
| -#include "crypto_scrypt.h"
|
| -#include "memlimit.h"
|
| -#include "scryptenc_cpuperf.h"
|
| -#include "sha256.h"
|
| -#include "sysendian.h"
|
| -
|
| -#include "scryptenc.h"
|
| -
|
| -#define ENCBLOCK 65536
|
| -
|
| -static int pickparams(size_t, double, double,
|
| - int *, uint32_t *, uint32_t *);
|
| -static int checkparams(size_t, double, double, int, uint32_t, uint32_t);
|
| -static int getsalt(uint8_t[32]);
|
| -
|
| -static int
|
| -pickparams(size_t maxmem, double maxmemfrac, double maxtime,
|
| - int * logN, uint32_t * r, uint32_t * p)
|
| -{
|
| - size_t memlimit;
|
| - double opps;
|
| - double opslimit;
|
| - double maxN, maxrp;
|
| - int rc;
|
| -
|
| - /* Figure out how much memory to use. */
|
| - if (memtouse(maxmem, maxmemfrac, &memlimit))
|
| - return (1);
|
| -
|
| - /* Figure out how fast the CPU is. */
|
| - if ((rc = scryptenc_cpuperf(&opps)) != 0)
|
| - return (rc);
|
| - opslimit = opps * maxtime;
|
| -
|
| - /* Allow a minimum of 2^15 salsa20/8 cores. */
|
| - if (opslimit < 32768)
|
| - opslimit = 32768;
|
| -
|
| - /* Fix r = 8 for now. */
|
| - *r = 8;
|
| -
|
| - /*
|
| - * The memory limit requires that 128Nr <= memlimit, while the CPU
|
| - * limit requires that 4Nrp <= opslimit. If opslimit < memlimit/32,
|
| - * opslimit imposes the stronger limit on N.
|
| - */
|
| -#ifdef DEBUG
|
| - fprintf(stderr, "Requiring 128Nr <= %zu, 4Nrp <= %f\n",
|
| - memlimit, opslimit);
|
| -#endif
|
| - if (opslimit < memlimit/32) {
|
| - /* Set p = 1 and choose N based on the CPU limit. */
|
| - *p = 1;
|
| - maxN = opslimit / (*r * 4);
|
| - for (*logN = 1; *logN < 63; *logN += 1) {
|
| - if ((uint64_t)(1) << *logN > maxN / 2)
|
| - break;
|
| - }
|
| - } else {
|
| - /* Set N based on the memory limit. */
|
| - maxN = memlimit / (*r * 128);
|
| - for (*logN = 1; *logN < 63; *logN += 1) {
|
| - if ((uint64_t)(1) << *logN > maxN / 2)
|
| - break;
|
| - }
|
| -
|
| - /* Choose p based on the CPU limit. */
|
| - maxrp = (opslimit / 4) / ((uint64_t)(1) << *logN);
|
| - if (maxrp > 0x3fffffff)
|
| - maxrp = 0x3fffffff;
|
| - *p = (uint32_t)(maxrp) / *r;
|
| - }
|
| -
|
| -#ifdef DEBUG
|
| - fprintf(stderr, "N = %zu r = %d p = %d\n",
|
| - (size_t)(1) << *logN, (int)(*r), (int)(*p));
|
| -#endif
|
| -
|
| - /* Success! */
|
| - return (0);
|
| -}
|
| -
|
| -static int
|
| -checkparams(size_t maxmem, double maxmemfrac, double maxtime,
|
| - int logN, uint32_t r, uint32_t p)
|
| -{
|
| - size_t memlimit;
|
| - double opps;
|
| - double opslimit;
|
| - uint64_t N;
|
| - int rc;
|
| -
|
| - /* Figure out the maximum amount of memory we can use. */
|
| - if (memtouse(maxmem, maxmemfrac, &memlimit))
|
| - return (1);
|
| -
|
| - /* Figure out how fast the CPU is. */
|
| - if ((rc = scryptenc_cpuperf(&opps)) != 0)
|
| - return (rc);
|
| - opslimit = opps * maxtime;
|
| -
|
| - /* Sanity-check values. */
|
| - if ((logN < 1) || (logN > 63))
|
| - return (7);
|
| - if ((uint64_t)(r) * (uint64_t)(p) >= 0x40000000)
|
| - return (7);
|
| -
|
| - /* Check limits. */
|
| - N = (uint64_t)(1) << logN;
|
| - if ((memlimit / N) / r < 128)
|
| - return (9);
|
| - if ((opslimit / N) / (r * p) < 4)
|
| - return (10);
|
| -
|
| - /* Success! */
|
| - return (0);
|
| -}
|
| -
|
| -static int
|
| -getsalt(uint8_t salt[32])
|
| -{
|
| - int fd;
|
| - ssize_t lenread;
|
| - uint8_t * buf = salt;
|
| - size_t buflen = 32;
|
| -
|
| - /* Open /dev/urandom. */
|
| - if ((fd = open("/dev/urandom", O_RDONLY)) == -1)
|
| - goto err0;
|
| -
|
| - /* Read bytes until we have filled the buffer. */
|
| - while (buflen > 0) {
|
| - if ((lenread = read(fd, buf, buflen)) == -1)
|
| - goto err1;
|
| -
|
| - /* The random device should never EOF. */
|
| - if (lenread == 0)
|
| - goto err1;
|
| -
|
| - /* We're partly done. */
|
| - buf += lenread;
|
| - buflen -= lenread;
|
| - }
|
| -
|
| - /* Close the device. */
|
| - while (close(fd) == -1) {
|
| - if (errno != EINTR)
|
| - goto err0;
|
| - }
|
| -
|
| - /* Success! */
|
| - return (0);
|
| -
|
| -err1:
|
| - close(fd);
|
| -err0:
|
| - /* Failure! */
|
| - return (4);
|
| -}
|
| -
|
| -static int
|
| -scryptenc_setup(uint8_t header[96], uint8_t dk[64],
|
| - const uint8_t * passwd, size_t passwdlen,
|
| - size_t maxmem, double maxmemfrac, double maxtime)
|
| -{
|
| - uint8_t salt[32];
|
| - uint8_t hbuf[32];
|
| - int logN;
|
| - uint64_t N;
|
| - uint32_t r;
|
| - uint32_t p;
|
| - SHA256_CTX ctx;
|
| - uint8_t * key_hmac = &dk[32];
|
| - HMAC_SHA256_CTX hctx;
|
| - int rc;
|
| -
|
| - /* Pick values for N, r, p. */
|
| - if ((rc = pickparams(maxmem, maxmemfrac, maxtime,
|
| - &logN, &r, &p)) != 0)
|
| - return (rc);
|
| - N = (uint64_t)(1) << logN;
|
| -
|
| - /* Get some salt. */
|
| - if ((rc = getsalt(salt)) != 0)
|
| - return (rc);
|
| -
|
| - /* Generate the derived keys. */
|
| - if (crypto_scrypt(passwd, passwdlen, salt, 32, N, r, p, dk, 64))
|
| - return (3);
|
| -
|
| - /* Construct the file header. */
|
| - memcpy(header, "scrypt", 6);
|
| - header[6] = 0;
|
| - header[7] = logN;
|
| - be32enc(&header[8], r);
|
| - be32enc(&header[12], p);
|
| - memcpy(&header[16], salt, 32);
|
| -
|
| - /* Add header checksum. */
|
| - SHA256_Init(&ctx);
|
| - SHA256_Update(&ctx, header, 48);
|
| - SHA256_Final(hbuf, &ctx);
|
| - memcpy(&header[48], hbuf, 16);
|
| -
|
| - /* Add header signature (used for verifying password). */
|
| - HMAC_SHA256_Init(&hctx, key_hmac, 32);
|
| - HMAC_SHA256_Update(&hctx, header, 64);
|
| - HMAC_SHA256_Final(hbuf, &hctx);
|
| - memcpy(&header[64], hbuf, 32);
|
| -
|
| - /* Success! */
|
| - return (0);
|
| -}
|
| -
|
| -static int
|
| -scryptdec_setup(const uint8_t header[96], uint8_t dk[64],
|
| - const uint8_t * passwd, size_t passwdlen,
|
| - size_t maxmem, double maxmemfrac, double maxtime)
|
| -{
|
| - uint8_t salt[32];
|
| - uint8_t hbuf[32];
|
| - int logN;
|
| - uint32_t r;
|
| - uint32_t p;
|
| - uint64_t N;
|
| - SHA256_CTX ctx;
|
| - uint8_t * key_hmac = &dk[32];
|
| - HMAC_SHA256_CTX hctx;
|
| - int rc;
|
| -
|
| - /* Parse N, r, p, salt. */
|
| - logN = header[7];
|
| - r = be32dec(&header[8]);
|
| - p = be32dec(&header[12]);
|
| - memcpy(salt, &header[16], 32);
|
| -
|
| - /* Verify header checksum. */
|
| - SHA256_Init(&ctx);
|
| - SHA256_Update(&ctx, header, 48);
|
| - SHA256_Final(hbuf, &ctx);
|
| - if (memcmp(&header[48], hbuf, 16))
|
| - return (7);
|
| -
|
| - /*
|
| - * Check whether the provided parameters are valid and whether the
|
| - * key derivation function can be computed within the allowed memory
|
| - * and CPU time.
|
| - */
|
| - if ((rc = checkparams(maxmem, maxmemfrac, maxtime, logN, r, p)) != 0)
|
| - return (rc);
|
| -
|
| - /* Compute the derived keys. */
|
| - N = (uint64_t)(1) << logN;
|
| - if (crypto_scrypt(passwd, passwdlen, salt, 32, N, r, p, dk, 64))
|
| - return (3);
|
| -
|
| - /* Check header signature (i.e., verify password). */
|
| - HMAC_SHA256_Init(&hctx, key_hmac, 32);
|
| - HMAC_SHA256_Update(&hctx, header, 64);
|
| - HMAC_SHA256_Final(hbuf, &hctx);
|
| - if (memcmp(hbuf, &header[64], 32))
|
| - return (11);
|
| -
|
| - /* Success! */
|
| - return (0);
|
| -}
|
| -
|
| -/**
|
| - * scryptenc_buf(inbuf, inbuflen, outbuf, passwd, passwdlen,
|
| - * maxmem, maxmemfrac, maxtime):
|
| - * Encrypt inbuflen bytes from inbuf, writing the resulting inbuflen + 128
|
| - * bytes to outbuf.
|
| - */
|
| -int
|
| -scryptenc_buf(const uint8_t * inbuf, size_t inbuflen, uint8_t * outbuf,
|
| - const uint8_t * passwd, size_t passwdlen,
|
| - size_t maxmem, double maxmemfrac, double maxtime)
|
| -{
|
| - uint8_t dk[64];
|
| - uint8_t hbuf[32];
|
| - uint8_t header[96];
|
| - uint8_t * key_enc = dk;
|
| - uint8_t * key_hmac = &dk[32];
|
| - int rc;
|
| - HMAC_SHA256_CTX hctx;
|
| - AES_KEY key_enc_exp;
|
| - struct crypto_aesctr * AES;
|
| -
|
| - /* Generate the header and derived key. */
|
| - if ((rc = scryptenc_setup(header, dk, passwd, passwdlen,
|
| - maxmem, maxmemfrac, maxtime)) != 0)
|
| - return (rc);
|
| -
|
| - /* Copy header into output buffer. */
|
| - memcpy(outbuf, header, 96);
|
| -
|
| - /* Encrypt data. */
|
| - if (AES_set_encrypt_key(key_enc, 256, &key_enc_exp))
|
| - return (5);
|
| - if ((AES = crypto_aesctr_init(&key_enc_exp, 0)) == NULL)
|
| - return (6);
|
| - crypto_aesctr_stream(AES, inbuf, &outbuf[96], inbuflen);
|
| - crypto_aesctr_free(AES);
|
| -
|
| - /* Add signature. */
|
| - HMAC_SHA256_Init(&hctx, key_hmac, 32);
|
| - HMAC_SHA256_Update(&hctx, outbuf, 96 + inbuflen);
|
| - HMAC_SHA256_Final(hbuf, &hctx);
|
| - memcpy(&outbuf[96 + inbuflen], hbuf, 32);
|
| -
|
| - /* Zero sensitive data. */
|
| - memset(dk, 0, 64);
|
| - memset(&key_enc_exp, 0, sizeof(AES_KEY));
|
| -
|
| - /* Success! */
|
| - return (0);
|
| -}
|
| -
|
| -/**
|
| - * scryptdec_buf(inbuf, inbuflen, outbuf, outlen, passwd, passwdlen,
|
| - * maxmem, maxmemfrac, maxtime):
|
| - * Decrypt inbuflen bytes fro inbuf, writing the result into outbuf and the
|
| - * decrypted data length to outlen. The allocated length of outbuf must
|
| - * be at least inbuflen.
|
| - */
|
| -int
|
| -scryptdec_buf(const uint8_t * inbuf, size_t inbuflen, uint8_t * outbuf,
|
| - size_t * outlen, const uint8_t * passwd, size_t passwdlen,
|
| - size_t maxmem, double maxmemfrac, double maxtime)
|
| -{
|
| - uint8_t hbuf[32];
|
| - uint8_t dk[64];
|
| - uint8_t * key_enc = dk;
|
| - uint8_t * key_hmac = &dk[32];
|
| - int rc;
|
| - HMAC_SHA256_CTX hctx;
|
| - AES_KEY key_enc_exp;
|
| - struct crypto_aesctr * AES;
|
| -
|
| - /*
|
| - * All versions of the scrypt format will start with "scrypt" and
|
| - * have at least 7 bytes of header.
|
| - */
|
| - if ((inbuflen < 7) || (memcmp(inbuf, "scrypt", 6) != 0))
|
| - return (7);
|
| -
|
| - /* Check the format. */
|
| - if (inbuf[6] != 0)
|
| - return (8);
|
| -
|
| - /* We must have at least 128 bytes. */
|
| - if (inbuflen < 128)
|
| - return (7);
|
| -
|
| - /* Parse the header and generate derived keys. */
|
| - if ((rc = scryptdec_setup(inbuf, dk, passwd, passwdlen,
|
| - maxmem, maxmemfrac, maxtime)) != 0)
|
| - return (rc);
|
| -
|
| - /* Decrypt data. */
|
| - if (AES_set_encrypt_key(key_enc, 256, &key_enc_exp))
|
| - return (5);
|
| - if ((AES = crypto_aesctr_init(&key_enc_exp, 0)) == NULL)
|
| - return (6);
|
| - crypto_aesctr_stream(AES, &inbuf[96], outbuf, inbuflen - 128);
|
| - crypto_aesctr_free(AES);
|
| - *outlen = inbuflen - 128;
|
| -
|
| - /* Verify signature. */
|
| - HMAC_SHA256_Init(&hctx, key_hmac, 32);
|
| - HMAC_SHA256_Update(&hctx, inbuf, inbuflen - 32);
|
| - HMAC_SHA256_Final(hbuf, &hctx);
|
| - if (memcmp(hbuf, &inbuf[inbuflen - 32], 32))
|
| - return (7);
|
| -
|
| - /* Zero sensitive data. */
|
| - memset(dk, 0, 64);
|
| - memset(&key_enc_exp, 0, sizeof(AES_KEY));
|
| -
|
| - /* Success! */
|
| - return (0);
|
| -}
|
| -
|
| -/**
|
| - * scryptenc_file(infile, outfile, passwd, passwdlen,
|
| - * maxmem, maxmemfrac, maxtime):
|
| - * Read a stream from infile and encrypt it, writing the resulting stream to
|
| - * outfile.
|
| - */
|
| -int
|
| -scryptenc_file(FILE * infile, FILE * outfile,
|
| - const uint8_t * passwd, size_t passwdlen,
|
| - size_t maxmem, double maxmemfrac, double maxtime)
|
| -{
|
| - uint8_t buf[ENCBLOCK];
|
| - uint8_t dk[64];
|
| - uint8_t hbuf[32];
|
| - uint8_t header[96];
|
| - uint8_t * key_enc = dk;
|
| - uint8_t * key_hmac = &dk[32];
|
| - size_t readlen;
|
| - HMAC_SHA256_CTX hctx;
|
| - AES_KEY key_enc_exp;
|
| - struct crypto_aesctr * AES;
|
| - int rc;
|
| -
|
| - /* Generate the header and derived key. */
|
| - if ((rc = scryptenc_setup(header, dk, passwd, passwdlen,
|
| - maxmem, maxmemfrac, maxtime)) != 0)
|
| - return (rc);
|
| -
|
| - /* Hash and write the header. */
|
| - HMAC_SHA256_Init(&hctx, key_hmac, 32);
|
| - HMAC_SHA256_Update(&hctx, header, 96);
|
| - if (fwrite(header, 96, 1, outfile) != 1)
|
| - return (12);
|
| -
|
| - /*
|
| - * Read blocks of data, encrypt them, and write them out; hash the
|
| - * data as it is produced.
|
| - */
|
| - if (AES_set_encrypt_key(key_enc, 256, &key_enc_exp))
|
| - return (5);
|
| - if ((AES = crypto_aesctr_init(&key_enc_exp, 0)) == NULL)
|
| - return (6);
|
| - do {
|
| - if ((readlen = fread(buf, 1, ENCBLOCK, infile)) == 0)
|
| - break;
|
| - crypto_aesctr_stream(AES, buf, buf, readlen);
|
| - HMAC_SHA256_Update(&hctx, buf, readlen);
|
| - if (fwrite(buf, 1, readlen, outfile) < readlen)
|
| - return (12);
|
| - } while (1);
|
| - crypto_aesctr_free(AES);
|
| -
|
| - /* Did we exit the loop due to a read error? */
|
| - if (ferror(infile))
|
| - return (13);
|
| -
|
| - /* Compute the final HMAC and output it. */
|
| - HMAC_SHA256_Final(hbuf, &hctx);
|
| - if (fwrite(hbuf, 32, 1, outfile) != 1)
|
| - return (12);
|
| -
|
| - /* Zero sensitive data. */
|
| - memset(dk, 0, 64);
|
| - memset(&key_enc_exp, 0, sizeof(AES_KEY));
|
| -
|
| - /* Success! */
|
| - return (0);
|
| -}
|
| -
|
| -/**
|
| - * scryptdec_file(infile, outfile, passwd, passwdlen,
|
| - * maxmem, maxmemfrac, maxtime):
|
| - * Read a stream from infile and decrypt it, writing the resulting stream to
|
| - * outfile.
|
| - */
|
| -int
|
| -scryptdec_file(FILE * infile, FILE * outfile,
|
| - const uint8_t * passwd, size_t passwdlen,
|
| - size_t maxmem, double maxmemfrac, double maxtime)
|
| -{
|
| - uint8_t buf[ENCBLOCK + 32];
|
| - uint8_t header[96];
|
| - uint8_t hbuf[32];
|
| - uint8_t dk[64];
|
| - uint8_t * key_enc = dk;
|
| - uint8_t * key_hmac = &dk[32];
|
| - size_t buflen = 0;
|
| - size_t readlen;
|
| - HMAC_SHA256_CTX hctx;
|
| - AES_KEY key_enc_exp;
|
| - struct crypto_aesctr * AES;
|
| - int rc;
|
| -
|
| - /*
|
| - * Read the first 7 bytes of the file; all future version of scrypt
|
| - * are guaranteed to have at least 7 bytes of header.
|
| - */
|
| - if (fread(header, 7, 1, infile) < 1) {
|
| - if (ferror(infile))
|
| - return (13);
|
| - else
|
| - return (7);
|
| - }
|
| -
|
| - /* Do we have the right magic? */
|
| - if (memcmp(header, "scrypt", 6))
|
| - return (7);
|
| - if (header[6] != 0)
|
| - return (8);
|
| -
|
| - /*
|
| - * Read another 89 bytes of the file; version 0 of the srypt file
|
| - * format has a 96-byte header.
|
| - */
|
| - if (fread(&header[7], 89, 1, infile) < 1) {
|
| - if (ferror(infile))
|
| - return (13);
|
| - else
|
| - return (7);
|
| - }
|
| -
|
| - /* Parse the header and generate derived keys. */
|
| - if ((rc = scryptdec_setup(header, dk, passwd, passwdlen,
|
| - maxmem, maxmemfrac, maxtime)) != 0)
|
| - return (rc);
|
| -
|
| - /* Start hashing with the header. */
|
| - HMAC_SHA256_Init(&hctx, key_hmac, 32);
|
| - HMAC_SHA256_Update(&hctx, header, 96);
|
| -
|
| - /*
|
| - * We don't know how long the encrypted data block is (we can't know,
|
| - * since data can be streamed into 'scrypt enc') so we need to read
|
| - * data and decrypt all of it except the final 32 bytes, then check
|
| - * if that final 32 bytes is the correct signature.
|
| - */
|
| - if (AES_set_encrypt_key(key_enc, 256, &key_enc_exp))
|
| - return (5);
|
| - if ((AES = crypto_aesctr_init(&key_enc_exp, 0)) == NULL)
|
| - return (6);
|
| - do {
|
| - /* Read data until we have more than 32 bytes of it. */
|
| - if ((readlen = fread(&buf[buflen], 1,
|
| - ENCBLOCK + 32 - buflen, infile)) == 0)
|
| - break;
|
| - buflen += readlen;
|
| - if (buflen <= 32)
|
| - continue;
|
| -
|
| - /*
|
| - * Decrypt, hash, and output everything except the last 32
|
| - * bytes out of what we have in our buffer.
|
| - */
|
| - HMAC_SHA256_Update(&hctx, buf, buflen - 32);
|
| - crypto_aesctr_stream(AES, buf, buf, buflen - 32);
|
| - if (fwrite(buf, 1, buflen - 32, outfile) < buflen - 32)
|
| - return (12);
|
| -
|
| - /* Move the last 32 bytes to the start of the buffer. */
|
| - memmove(buf, &buf[buflen - 32], 32);
|
| - buflen = 32;
|
| - } while (1);
|
| - crypto_aesctr_free(AES);
|
| -
|
| - /* Did we exit the loop due to a read error? */
|
| - if (ferror(infile))
|
| - return (13);
|
| -
|
| - /* Did we read enough data that we *might* have a valid signature? */
|
| - if (buflen < 32)
|
| - return (7);
|
| -
|
| - /* Verify signature. */
|
| - HMAC_SHA256_Final(hbuf, &hctx);
|
| - if (memcmp(hbuf, buf, 32))
|
| - return (7);
|
| -
|
| - /* Zero sensitive data. */
|
| - memset(dk, 0, 64);
|
| - memset(&key_enc_exp, 0, sizeof(AES_KEY));
|
| -
|
| - return (0);
|
| -}
|
|
|