OLD | NEW |
| (Empty) |
1 /*- | |
2 * Copyright 2005,2007,2009 Colin Percival | |
3 * All rights reserved. | |
4 * | |
5 * Redistribution and use in source and binary forms, with or without | |
6 * modification, are permitted provided that the following conditions | |
7 * are met: | |
8 * 1. Redistributions of source code must retain the above copyright | |
9 * notice, this list of conditions and the following disclaimer. | |
10 * 2. Redistributions in binary form must reproduce the above copyright | |
11 * notice, this list of conditions and the following disclaimer in the | |
12 * documentation and/or other materials provided with the distribution. | |
13 * | |
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND | |
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | |
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
24 * SUCH DAMAGE. | |
25 */ | |
26 #include "scrypt_platform.h" | |
27 | |
28 #include <sys/types.h> | |
29 | |
30 #include <stdint.h> | |
31 #include <string.h> | |
32 | |
33 #include "sysendian.h" | |
34 | |
35 #include "sha256.h" | |
36 | |
37 /* | |
38 * Encode a length len/4 vector of (uint32_t) into a length len vector of | |
39 * (unsigned char) in big-endian form. Assumes len is a multiple of 4. | |
40 */ | |
41 static void | |
42 be32enc_vect(unsigned char *dst, const uint32_t *src, size_t len) | |
43 { | |
44 size_t i; | |
45 | |
46 for (i = 0; i < len / 4; i++) | |
47 be32enc(dst + i * 4, src[i]); | |
48 } | |
49 | |
50 /* | |
51 * Decode a big-endian length len vector of (unsigned char) into a length | |
52 * len/4 vector of (uint32_t). Assumes len is a multiple of 4. | |
53 */ | |
54 static void | |
55 be32dec_vect(uint32_t *dst, const unsigned char *src, size_t len) | |
56 { | |
57 size_t i; | |
58 | |
59 for (i = 0; i < len / 4; i++) | |
60 dst[i] = be32dec(src + i * 4); | |
61 } | |
62 | |
63 /* Elementary functions used by SHA256 */ | |
64 #define Ch(x, y, z) ((x & (y ^ z)) ^ z) | |
65 #define Maj(x, y, z) ((x & (y | z)) | (y & z)) | |
66 #define SHR(x, n) (x >> n) | |
67 #define ROTR(x, n) ((x >> n) | (x << (32 - n))) | |
68 #define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22)) | |
69 #define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25)) | |
70 #define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3)) | |
71 #define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10)) | |
72 | |
73 /* SHA256 round function */ | |
74 #define RND(a, b, c, d, e, f, g, h, k) \ | |
75 t0 = h + S1(e) + Ch(e, f, g) + k; \ | |
76 t1 = S0(a) + Maj(a, b, c); \ | |
77 d += t0; \ | |
78 h = t0 + t1; | |
79 | |
80 /* Adjusted round function for rotating state */ | |
81 #define RNDr(S, W, i, k) \ | |
82 RND(S[(64 - i) % 8], S[(65 - i) % 8], \ | |
83 S[(66 - i) % 8], S[(67 - i) % 8], \ | |
84 S[(68 - i) % 8], S[(69 - i) % 8], \ | |
85 S[(70 - i) % 8], S[(71 - i) % 8], \ | |
86 W[i] + k) | |
87 | |
88 /* | |
89 * SHA256 block compression function. The 256-bit state is transformed via | |
90 * the 512-bit input block to produce a new state. | |
91 */ | |
92 static void | |
93 SHA256_Transform(uint32_t * state, const unsigned char block[64]) | |
94 { | |
95 uint32_t W[64]; | |
96 uint32_t S[8]; | |
97 uint32_t t0, t1; | |
98 int i; | |
99 | |
100 /* 1. Prepare message schedule W. */ | |
101 be32dec_vect(W, block, 64); | |
102 for (i = 16; i < 64; i++) | |
103 W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16]; | |
104 | |
105 /* 2. Initialize working variables. */ | |
106 memcpy(S, state, 32); | |
107 | |
108 /* 3. Mix. */ | |
109 RNDr(S, W, 0, 0x428a2f98); | |
110 RNDr(S, W, 1, 0x71374491); | |
111 RNDr(S, W, 2, 0xb5c0fbcf); | |
112 RNDr(S, W, 3, 0xe9b5dba5); | |
113 RNDr(S, W, 4, 0x3956c25b); | |
114 RNDr(S, W, 5, 0x59f111f1); | |
115 RNDr(S, W, 6, 0x923f82a4); | |
116 RNDr(S, W, 7, 0xab1c5ed5); | |
117 RNDr(S, W, 8, 0xd807aa98); | |
118 RNDr(S, W, 9, 0x12835b01); | |
119 RNDr(S, W, 10, 0x243185be); | |
120 RNDr(S, W, 11, 0x550c7dc3); | |
121 RNDr(S, W, 12, 0x72be5d74); | |
122 RNDr(S, W, 13, 0x80deb1fe); | |
123 RNDr(S, W, 14, 0x9bdc06a7); | |
124 RNDr(S, W, 15, 0xc19bf174); | |
125 RNDr(S, W, 16, 0xe49b69c1); | |
126 RNDr(S, W, 17, 0xefbe4786); | |
127 RNDr(S, W, 18, 0x0fc19dc6); | |
128 RNDr(S, W, 19, 0x240ca1cc); | |
129 RNDr(S, W, 20, 0x2de92c6f); | |
130 RNDr(S, W, 21, 0x4a7484aa); | |
131 RNDr(S, W, 22, 0x5cb0a9dc); | |
132 RNDr(S, W, 23, 0x76f988da); | |
133 RNDr(S, W, 24, 0x983e5152); | |
134 RNDr(S, W, 25, 0xa831c66d); | |
135 RNDr(S, W, 26, 0xb00327c8); | |
136 RNDr(S, W, 27, 0xbf597fc7); | |
137 RNDr(S, W, 28, 0xc6e00bf3); | |
138 RNDr(S, W, 29, 0xd5a79147); | |
139 RNDr(S, W, 30, 0x06ca6351); | |
140 RNDr(S, W, 31, 0x14292967); | |
141 RNDr(S, W, 32, 0x27b70a85); | |
142 RNDr(S, W, 33, 0x2e1b2138); | |
143 RNDr(S, W, 34, 0x4d2c6dfc); | |
144 RNDr(S, W, 35, 0x53380d13); | |
145 RNDr(S, W, 36, 0x650a7354); | |
146 RNDr(S, W, 37, 0x766a0abb); | |
147 RNDr(S, W, 38, 0x81c2c92e); | |
148 RNDr(S, W, 39, 0x92722c85); | |
149 RNDr(S, W, 40, 0xa2bfe8a1); | |
150 RNDr(S, W, 41, 0xa81a664b); | |
151 RNDr(S, W, 42, 0xc24b8b70); | |
152 RNDr(S, W, 43, 0xc76c51a3); | |
153 RNDr(S, W, 44, 0xd192e819); | |
154 RNDr(S, W, 45, 0xd6990624); | |
155 RNDr(S, W, 46, 0xf40e3585); | |
156 RNDr(S, W, 47, 0x106aa070); | |
157 RNDr(S, W, 48, 0x19a4c116); | |
158 RNDr(S, W, 49, 0x1e376c08); | |
159 RNDr(S, W, 50, 0x2748774c); | |
160 RNDr(S, W, 51, 0x34b0bcb5); | |
161 RNDr(S, W, 52, 0x391c0cb3); | |
162 RNDr(S, W, 53, 0x4ed8aa4a); | |
163 RNDr(S, W, 54, 0x5b9cca4f); | |
164 RNDr(S, W, 55, 0x682e6ff3); | |
165 RNDr(S, W, 56, 0x748f82ee); | |
166 RNDr(S, W, 57, 0x78a5636f); | |
167 RNDr(S, W, 58, 0x84c87814); | |
168 RNDr(S, W, 59, 0x8cc70208); | |
169 RNDr(S, W, 60, 0x90befffa); | |
170 RNDr(S, W, 61, 0xa4506ceb); | |
171 RNDr(S, W, 62, 0xbef9a3f7); | |
172 RNDr(S, W, 63, 0xc67178f2); | |
173 | |
174 /* 4. Mix local working variables into global state */ | |
175 for (i = 0; i < 8; i++) | |
176 state[i] += S[i]; | |
177 | |
178 /* Clean the stack. */ | |
179 memset(W, 0, 256); | |
180 memset(S, 0, 32); | |
181 t0 = t1 = 0; | |
182 } | |
183 | |
184 static unsigned char PAD[64] = { | |
185 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
186 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
187 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
188 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 | |
189 }; | |
190 | |
191 /* Add padding and terminating bit-count. */ | |
192 static void | |
193 SHA256_Pad(SHA256_CTX * ctx) | |
194 { | |
195 unsigned char len[8]; | |
196 uint32_t r, plen; | |
197 | |
198 /* | |
199 * Convert length to a vector of bytes -- we do this now rather | |
200 * than later because the length will change after we pad. | |
201 */ | |
202 be32enc_vect(len, ctx->count, 8); | |
203 | |
204 /* Add 1--64 bytes so that the resulting length is 56 mod 64 */ | |
205 r = (ctx->count[1] >> 3) & 0x3f; | |
206 plen = (r < 56) ? (56 - r) : (120 - r); | |
207 SHA256_Update(ctx, PAD, (size_t)plen); | |
208 | |
209 /* Add the terminating bit-count */ | |
210 SHA256_Update(ctx, len, 8); | |
211 } | |
212 | |
213 /* SHA-256 initialization. Begins a SHA-256 operation. */ | |
214 void | |
215 SHA256_Init(SHA256_CTX * ctx) | |
216 { | |
217 | |
218 /* Zero bits processed so far */ | |
219 ctx->count[0] = ctx->count[1] = 0; | |
220 | |
221 /* Magic initialization constants */ | |
222 ctx->state[0] = 0x6A09E667; | |
223 ctx->state[1] = 0xBB67AE85; | |
224 ctx->state[2] = 0x3C6EF372; | |
225 ctx->state[3] = 0xA54FF53A; | |
226 ctx->state[4] = 0x510E527F; | |
227 ctx->state[5] = 0x9B05688C; | |
228 ctx->state[6] = 0x1F83D9AB; | |
229 ctx->state[7] = 0x5BE0CD19; | |
230 } | |
231 | |
232 /* Add bytes into the hash */ | |
233 void | |
234 SHA256_Update(SHA256_CTX * ctx, const void *in, size_t len) | |
235 { | |
236 uint32_t bitlen[2]; | |
237 uint32_t r; | |
238 const unsigned char *src = in; | |
239 | |
240 /* Number of bytes left in the buffer from previous updates */ | |
241 r = (ctx->count[1] >> 3) & 0x3f; | |
242 | |
243 /* Convert the length into a number of bits */ | |
244 bitlen[1] = ((uint32_t)len) << 3; | |
245 bitlen[0] = (uint32_t)(len >> 29); | |
246 | |
247 /* Update number of bits */ | |
248 if ((ctx->count[1] += bitlen[1]) < bitlen[1]) | |
249 ctx->count[0]++; | |
250 ctx->count[0] += bitlen[0]; | |
251 | |
252 /* Handle the case where we don't need to perform any transforms */ | |
253 if (len < 64 - r) { | |
254 memcpy(&ctx->buf[r], src, len); | |
255 return; | |
256 } | |
257 | |
258 /* Finish the current block */ | |
259 memcpy(&ctx->buf[r], src, 64 - r); | |
260 SHA256_Transform(ctx->state, ctx->buf); | |
261 src += 64 - r; | |
262 len -= 64 - r; | |
263 | |
264 /* Perform complete blocks */ | |
265 while (len >= 64) { | |
266 SHA256_Transform(ctx->state, src); | |
267 src += 64; | |
268 len -= 64; | |
269 } | |
270 | |
271 /* Copy left over data into buffer */ | |
272 memcpy(ctx->buf, src, len); | |
273 } | |
274 | |
275 /* | |
276 * SHA-256 finalization. Pads the input data, exports the hash value, | |
277 * and clears the context state. | |
278 */ | |
279 void | |
280 SHA256_Final(unsigned char digest[32], SHA256_CTX * ctx) | |
281 { | |
282 | |
283 /* Add padding */ | |
284 SHA256_Pad(ctx); | |
285 | |
286 /* Write the hash */ | |
287 be32enc_vect(digest, ctx->state, 32); | |
288 | |
289 /* Clear the context state */ | |
290 memset((void *)ctx, 0, sizeof(*ctx)); | |
291 } | |
292 | |
293 /* Initialize an HMAC-SHA256 operation with the given key. */ | |
294 void | |
295 HMAC_SHA256_Init(HMAC_SHA256_CTX * ctx, const void * _K, size_t Klen) | |
296 { | |
297 unsigned char pad[64]; | |
298 unsigned char khash[32]; | |
299 const unsigned char * K = _K; | |
300 size_t i; | |
301 | |
302 /* If Klen > 64, the key is really SHA256(K). */ | |
303 if (Klen > 64) { | |
304 SHA256_Init(&ctx->ictx); | |
305 SHA256_Update(&ctx->ictx, K, Klen); | |
306 SHA256_Final(khash, &ctx->ictx); | |
307 K = khash; | |
308 Klen = 32; | |
309 } | |
310 | |
311 /* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */ | |
312 SHA256_Init(&ctx->ictx); | |
313 memset(pad, 0x36, 64); | |
314 for (i = 0; i < Klen; i++) | |
315 pad[i] ^= K[i]; | |
316 SHA256_Update(&ctx->ictx, pad, 64); | |
317 | |
318 /* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */ | |
319 SHA256_Init(&ctx->octx); | |
320 memset(pad, 0x5c, 64); | |
321 for (i = 0; i < Klen; i++) | |
322 pad[i] ^= K[i]; | |
323 SHA256_Update(&ctx->octx, pad, 64); | |
324 | |
325 /* Clean the stack. */ | |
326 memset(khash, 0, 32); | |
327 } | |
328 | |
329 /* Add bytes to the HMAC-SHA256 operation. */ | |
330 void | |
331 HMAC_SHA256_Update(HMAC_SHA256_CTX * ctx, const void *in, size_t len) | |
332 { | |
333 | |
334 /* Feed data to the inner SHA256 operation. */ | |
335 SHA256_Update(&ctx->ictx, in, len); | |
336 } | |
337 | |
338 /* Finish an HMAC-SHA256 operation. */ | |
339 void | |
340 HMAC_SHA256_Final(unsigned char digest[32], HMAC_SHA256_CTX * ctx) | |
341 { | |
342 unsigned char ihash[32]; | |
343 | |
344 /* Finish the inner SHA256 operation. */ | |
345 SHA256_Final(ihash, &ctx->ictx); | |
346 | |
347 /* Feed the inner hash to the outer SHA256 operation. */ | |
348 SHA256_Update(&ctx->octx, ihash, 32); | |
349 | |
350 /* Finish the outer SHA256 operation. */ | |
351 SHA256_Final(digest, &ctx->octx); | |
352 | |
353 /* Clean the stack. */ | |
354 memset(ihash, 0, 32); | |
355 } | |
356 | |
357 /** | |
358 * PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen): | |
359 * Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and | |
360 * write the output to buf. The value dkLen must be at most 32 * (2^32 - 1). | |
361 */ | |
362 void | |
363 PBKDF2_SHA256(const uint8_t * passwd, size_t passwdlen, const uint8_t * salt, | |
364 size_t saltlen, uint64_t c, uint8_t * buf, size_t dkLen) | |
365 { | |
366 HMAC_SHA256_CTX PShctx, hctx; | |
367 size_t i; | |
368 uint8_t ivec[4]; | |
369 uint8_t U[32]; | |
370 uint8_t T[32]; | |
371 uint64_t j; | |
372 int k; | |
373 size_t clen; | |
374 | |
375 /* Compute HMAC state after processing P and S. */ | |
376 HMAC_SHA256_Init(&PShctx, passwd, passwdlen); | |
377 HMAC_SHA256_Update(&PShctx, salt, saltlen); | |
378 | |
379 /* Iterate through the blocks. */ | |
380 for (i = 0; i * 32 < dkLen; i++) { | |
381 /* Generate INT(i + 1). */ | |
382 be32enc(ivec, (uint32_t)(i + 1)); | |
383 | |
384 /* Compute U_1 = PRF(P, S || INT(i)). */ | |
385 memcpy(&hctx, &PShctx, sizeof(HMAC_SHA256_CTX)); | |
386 HMAC_SHA256_Update(&hctx, ivec, 4); | |
387 HMAC_SHA256_Final(U, &hctx); | |
388 | |
389 /* T_i = U_1 ... */ | |
390 memcpy(T, U, 32); | |
391 | |
392 for (j = 2; j <= c; j++) { | |
393 /* Compute U_j. */ | |
394 HMAC_SHA256_Init(&hctx, passwd, passwdlen); | |
395 HMAC_SHA256_Update(&hctx, U, 32); | |
396 HMAC_SHA256_Final(U, &hctx); | |
397 | |
398 /* ... xor U_j ... */ | |
399 for (k = 0; k < 32; k++) | |
400 T[k] ^= U[k]; | |
401 } | |
402 | |
403 /* Copy as many bytes as necessary into buf. */ | |
404 clen = dkLen - i * 32; | |
405 if (clen > 32) | |
406 clen = 32; | |
407 memcpy(&buf[i * 32], T, clen); | |
408 } | |
409 | |
410 /* Clean PShctx, since we never called _Final on it. */ | |
411 memset(&PShctx, 0, sizeof(HMAC_SHA256_CTX)); | |
412 } | |
OLD | NEW |