OLD | NEW |
| (Empty) |
1 /*- | |
2 * Copyright 2009 Colin Percival | |
3 * All rights reserved. | |
4 * | |
5 * Redistribution and use in source and binary forms, with or without | |
6 * modification, are permitted provided that the following conditions | |
7 * are met: | |
8 * 1. Redistributions of source code must retain the above copyright | |
9 * notice, this list of conditions and the following disclaimer. | |
10 * 2. Redistributions in binary form must reproduce the above copyright | |
11 * notice, this list of conditions and the following disclaimer in the | |
12 * documentation and/or other materials provided with the distribution. | |
13 * | |
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND | |
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | |
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
24 * SUCH DAMAGE. | |
25 * | |
26 * This file was originally written by Colin Percival as part of the Tarsnap | |
27 * online backup system. | |
28 */ | |
29 #include "scrypt_platform.h" | |
30 | |
31 #include <sys/types.h> | |
32 //#include <sys/mman.h> // GOOGLE (not available on all platforms) | |
33 | |
34 #include <errno.h> | |
35 #include <stdint.h> | |
36 #include <stdlib.h> | |
37 #include <string.h> | |
38 | |
39 #include "sha256.h" | |
40 #include "sysendian.h" | |
41 | |
42 #include "crypto_scrypt.h" | |
43 | |
44 static void blkcpy(void *, void *, size_t); | |
45 static void blkxor(void *, void *, size_t); | |
46 static void salsa20_8(uint32_t[16]); | |
47 static void blockmix_salsa8(uint32_t *, uint32_t *, uint32_t *, size_t); | |
48 static uint64_t integerify(void *, size_t); | |
49 static void smix(uint8_t *, size_t, uint64_t, uint32_t *, uint32_t *); | |
50 | |
51 static void | |
52 blkcpy(void * dest, void * src, size_t len) | |
53 { | |
54 size_t * D = dest; | |
55 size_t * S = src; | |
56 size_t L = len / sizeof(size_t); | |
57 size_t i; | |
58 | |
59 for (i = 0; i < L; i++) | |
60 D[i] = S[i]; | |
61 } | |
62 | |
63 static void | |
64 blkxor(void * dest, void * src, size_t len) | |
65 { | |
66 size_t * D = dest; | |
67 size_t * S = src; | |
68 size_t L = len / sizeof(size_t); | |
69 size_t i; | |
70 | |
71 for (i = 0; i < L; i++) | |
72 D[i] ^= S[i]; | |
73 } | |
74 | |
75 /** | |
76 * salsa20_8(B): | |
77 * Apply the salsa20/8 core to the provided block. | |
78 */ | |
79 static void | |
80 salsa20_8(uint32_t B[16]) | |
81 { | |
82 uint32_t x[16]; | |
83 size_t i; | |
84 | |
85 blkcpy(x, B, 64); | |
86 for (i = 0; i < 8; i += 2) { | |
87 #define R(a,b) (((a) << (b)) | ((a) >> (32 - (b)))) | |
88 /* Operate on columns. */ | |
89 x[ 4] ^= R(x[ 0]+x[12], 7); x[ 8] ^= R(x[ 4]+x[ 0], 9); | |
90 x[12] ^= R(x[ 8]+x[ 4],13); x[ 0] ^= R(x[12]+x[ 8],18); | |
91 | |
92 x[ 9] ^= R(x[ 5]+x[ 1], 7); x[13] ^= R(x[ 9]+x[ 5], 9); | |
93 x[ 1] ^= R(x[13]+x[ 9],13); x[ 5] ^= R(x[ 1]+x[13],18); | |
94 | |
95 x[14] ^= R(x[10]+x[ 6], 7); x[ 2] ^= R(x[14]+x[10], 9); | |
96 x[ 6] ^= R(x[ 2]+x[14],13); x[10] ^= R(x[ 6]+x[ 2],18); | |
97 | |
98 x[ 3] ^= R(x[15]+x[11], 7); x[ 7] ^= R(x[ 3]+x[15], 9); | |
99 x[11] ^= R(x[ 7]+x[ 3],13); x[15] ^= R(x[11]+x[ 7],18); | |
100 | |
101 /* Operate on rows. */ | |
102 x[ 1] ^= R(x[ 0]+x[ 3], 7); x[ 2] ^= R(x[ 1]+x[ 0], 9); | |
103 x[ 3] ^= R(x[ 2]+x[ 1],13); x[ 0] ^= R(x[ 3]+x[ 2],18); | |
104 | |
105 x[ 6] ^= R(x[ 5]+x[ 4], 7); x[ 7] ^= R(x[ 6]+x[ 5], 9); | |
106 x[ 4] ^= R(x[ 7]+x[ 6],13); x[ 5] ^= R(x[ 4]+x[ 7],18); | |
107 | |
108 x[11] ^= R(x[10]+x[ 9], 7); x[ 8] ^= R(x[11]+x[10], 9); | |
109 x[ 9] ^= R(x[ 8]+x[11],13); x[10] ^= R(x[ 9]+x[ 8],18); | |
110 | |
111 x[12] ^= R(x[15]+x[14], 7); x[13] ^= R(x[12]+x[15], 9); | |
112 x[14] ^= R(x[13]+x[12],13); x[15] ^= R(x[14]+x[13],18); | |
113 #undef R | |
114 } | |
115 for (i = 0; i < 16; i++) | |
116 B[i] += x[i]; | |
117 } | |
118 | |
119 /** | |
120 * blockmix_salsa8(Bin, Bout, X, r): | |
121 * Compute Bout = BlockMix_{salsa20/8, r}(Bin). The input Bin must be 128r | |
122 * bytes in length; the output Bout must also be the same size. The | |
123 * temporary space X must be 64 bytes. | |
124 */ | |
125 static void | |
126 blockmix_salsa8(uint32_t * Bin, uint32_t * Bout, uint32_t * X, size_t r) | |
127 { | |
128 size_t i; | |
129 | |
130 /* 1: X <-- B_{2r - 1} */ | |
131 blkcpy(X, &Bin[(2 * r - 1) * 16], 64); | |
132 | |
133 /* 2: for i = 0 to 2r - 1 do */ | |
134 for (i = 0; i < 2 * r; i += 2) { | |
135 /* 3: X <-- H(X \xor B_i) */ | |
136 blkxor(X, &Bin[i * 16], 64); | |
137 salsa20_8(X); | |
138 | |
139 /* 4: Y_i <-- X */ | |
140 /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ | |
141 blkcpy(&Bout[i * 8], X, 64); | |
142 | |
143 /* 3: X <-- H(X \xor B_i) */ | |
144 blkxor(X, &Bin[i * 16 + 16], 64); | |
145 salsa20_8(X); | |
146 | |
147 /* 4: Y_i <-- X */ | |
148 /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ | |
149 blkcpy(&Bout[i * 8 + r * 16], X, 64); | |
150 } | |
151 } | |
152 | |
153 /** | |
154 * integerify(B, r): | |
155 * Return the result of parsing B_{2r-1} as a little-endian integer. | |
156 */ | |
157 static uint64_t | |
158 integerify(void * B, size_t r) | |
159 { | |
160 uint32_t * X = (void *)((uintptr_t)(B) + (2 * r - 1) * 64); | |
161 | |
162 return (((uint64_t)(X[1]) << 32) + X[0]); | |
163 } | |
164 | |
165 /** | |
166 * smix(B, r, N, V, XY): | |
167 * Compute B = SMix_r(B, N). The input B must be 128r bytes in length; | |
168 * the temporary storage V must be 128rN bytes in length; the temporary | |
169 * storage XY must be 256r + 64 bytes in length. The value N must be a | |
170 * power of 2 greater than 1. The arrays B, V, and XY must be aligned to a | |
171 * multiple of 64 bytes. | |
172 */ | |
173 static void | |
174 smix(uint8_t * B, size_t r, uint64_t N, uint32_t * V, uint32_t * XY) | |
175 { | |
176 uint32_t * X = XY; | |
177 uint32_t * Y = &XY[32 * r]; | |
178 uint32_t * Z = &XY[64 * r]; | |
179 uint64_t i; | |
180 uint64_t j; | |
181 size_t k; | |
182 | |
183 /* 1: X <-- B */ | |
184 for (k = 0; k < 32 * r; k++) | |
185 X[k] = le32dec(&B[4 * k]); | |
186 | |
187 /* 2: for i = 0 to N - 1 do */ | |
188 for (i = 0; i < N; i += 2) { | |
189 /* 3: V_i <-- X */ | |
190 blkcpy(&V[i * (32 * r)], X, 128 * r); | |
191 | |
192 /* 4: X <-- H(X) */ | |
193 blockmix_salsa8(X, Y, Z, r); | |
194 | |
195 /* 3: V_i <-- X */ | |
196 blkcpy(&V[(i + 1) * (32 * r)], Y, 128 * r); | |
197 | |
198 /* 4: X <-- H(X) */ | |
199 blockmix_salsa8(Y, X, Z, r); | |
200 } | |
201 | |
202 /* 6: for i = 0 to N - 1 do */ | |
203 for (i = 0; i < N; i += 2) { | |
204 /* 7: j <-- Integerify(X) mod N */ | |
205 j = integerify(X, r) & (N - 1); | |
206 | |
207 /* 8: X <-- H(X \xor V_j) */ | |
208 blkxor(X, &V[j * (32 * r)], 128 * r); | |
209 blockmix_salsa8(X, Y, Z, r); | |
210 | |
211 /* 7: j <-- Integerify(X) mod N */ | |
212 j = integerify(Y, r) & (N - 1); | |
213 | |
214 /* 8: X <-- H(X \xor V_j) */ | |
215 blkxor(Y, &V[j * (32 * r)], 128 * r); | |
216 blockmix_salsa8(Y, X, Z, r); | |
217 } | |
218 | |
219 /* 10: B' <-- X */ | |
220 for (k = 0; k < 32 * r; k++) | |
221 le32enc(&B[4 * k], X[k]); | |
222 } | |
223 | |
224 /** | |
225 * crypto_scrypt(passwd, passwdlen, salt, saltlen, N, r, p, buf, buflen): | |
226 * Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r, | |
227 * p, buflen) and write the result into buf. The parameters r, p, and buflen | |
228 * must satisfy r * p < 2^30 and buflen <= (2^32 - 1) * 32. The parameter N | |
229 * must be a power of 2 greater than 1. | |
230 * | |
231 * Return 0 on success; or -1 on error. | |
232 */ | |
233 int | |
234 crypto_scrypt(const uint8_t * passwd, size_t passwdlen, | |
235 const uint8_t * salt, size_t saltlen, uint64_t N, uint32_t r, uint32_t p, | |
236 uint8_t * buf, size_t buflen) | |
237 { | |
238 void * B0, * V0, * XY0; | |
239 uint8_t * B; | |
240 uint32_t * V; | |
241 uint32_t * XY; | |
242 uint32_t i; | |
243 | |
244 /* Sanity-check parameters. */ | |
245 #if SIZE_MAX > UINT32_MAX | |
246 if (buflen > (((uint64_t)(1) << 32) - 1) * 32) { | |
247 errno = EFBIG; | |
248 goto err0; | |
249 } | |
250 #endif | |
251 if ((uint64_t)(r) * (uint64_t)(p) >= (1 << 30)) { | |
252 errno = EFBIG; | |
253 goto err0; | |
254 } | |
255 if (((N & (N - 1)) != 0) || (N == 0)) { | |
256 errno = EINVAL; | |
257 goto err0; | |
258 } | |
259 if ((r > SIZE_MAX / 128 / p) || | |
260 #if SIZE_MAX / 256 <= UINT32_MAX | |
261 (r > SIZE_MAX / 256) || | |
262 #endif | |
263 (N > SIZE_MAX / 128 / r)) { | |
264 errno = ENOMEM; | |
265 goto err0; | |
266 } | |
267 | |
268 /* Allocate memory. */ | |
269 #ifdef HAVE_POSIX_MEMALIGN | |
270 if ((errno = posix_memalign(&B0, 64, 128 * r * p)) != 0) | |
271 goto err0; | |
272 B = (uint8_t *)(B0); | |
273 if ((errno = posix_memalign(&XY0, 64, 256 * r + 64)) != 0) | |
274 goto err1; | |
275 XY = (uint32_t *)(XY0); | |
276 #ifndef MAP_ANON | |
277 if ((errno = posix_memalign(&V0, 64, 128 * r * N)) != 0) | |
278 goto err2; | |
279 V = (uint32_t *)(V0); | |
280 #endif | |
281 #else | |
282 if ((B0 = malloc(128 * r * p + 63)) == NULL) | |
283 goto err0; | |
284 B = (uint8_t *)(((uintptr_t)(B0) + 63) & ~ (uintptr_t)(63)); | |
285 if ((XY0 = malloc(256 * r + 64 + 63)) == NULL) | |
286 goto err1; | |
287 XY = (uint32_t *)(((uintptr_t)(XY0) + 63) & ~ (uintptr_t)(63)); | |
288 #ifndef MAP_ANON | |
289 if ((V0 = malloc(128 * r * N + 63)) == NULL) | |
290 goto err2; | |
291 V = (uint32_t *)(((uintptr_t)(V0) + 63) & ~ (uintptr_t)(63)); | |
292 #endif | |
293 #endif | |
294 #ifdef MAP_ANON | |
295 if ((V0 = mmap(NULL, 128 * r * N, PROT_READ | PROT_WRITE, | |
296 #ifdef MAP_NOCORE | |
297 MAP_ANON | MAP_PRIVATE | MAP_NOCORE, | |
298 #else | |
299 MAP_ANON | MAP_PRIVATE, | |
300 #endif | |
301 -1, 0)) == MAP_FAILED) | |
302 goto err2; | |
303 V = (uint32_t *)(V0); | |
304 #endif | |
305 | |
306 /* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */ | |
307 PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, 1, B, p * 128 * r); | |
308 | |
309 /* 2: for i = 0 to p - 1 do */ | |
310 for (i = 0; i < p; i++) { | |
311 /* 3: B_i <-- MF(B_i, N) */ | |
312 smix(&B[i * 128 * r], r, N, V, XY); | |
313 } | |
314 | |
315 /* 5: DK <-- PBKDF2(P, B, 1, dkLen) */ | |
316 PBKDF2_SHA256(passwd, passwdlen, B, p * 128 * r, 1, buf, buflen); | |
317 | |
318 /* Free memory. */ | |
319 #ifdef MAP_ANON | |
320 if (munmap(V0, 128 * r * N)) | |
321 goto err2; | |
322 #else | |
323 free(V0); | |
324 #endif | |
325 free(XY0); | |
326 free(B0); | |
327 | |
328 /* Success! */ | |
329 return (0); | |
330 | |
331 err2: | |
332 free(XY0); | |
333 err1: | |
334 free(B0); | |
335 err0: | |
336 /* Failure! */ | |
337 return (-1); | |
338 } | |
OLD | NEW |