Chromium Code Reviews| Index: runtime/lib/bigint.dart |
| diff --git a/runtime/lib/bigint.dart b/runtime/lib/bigint.dart |
| index f4ff408348d367f93d1ddc4c9ad94aa1bfd87ab8..eb84b0aaa03f741c7df0cedd317d64c437ce93f2 100644 |
| --- a/runtime/lib/bigint.dart |
| +++ b/runtime/lib/bigint.dart |
| @@ -1265,15 +1265,9 @@ class _Bigint extends _IntegerImplementation implements int { |
| return other._toBigintOrDouble()._mulFromInteger(this); |
| } |
| num operator ~/(num other) { |
| - if ((other is int) && (other == 0)) { |
| - throw const IntegerDivisionByZeroException(); |
| - } |
| return other._toBigintOrDouble()._truncDivFromInteger(this); |
| } |
| num operator %(num other) { |
| - if ((other is int) && (other == 0)) { |
| - throw const IntegerDivisionByZeroException(); |
| - } |
| return other._toBigintOrDouble()._moduloFromInteger(this); |
| } |
| int operator &(int other) { |
| @@ -1368,9 +1362,15 @@ class _Bigint extends _IntegerImplementation implements int { |
| return other._toBigint()._mul(this)._toValidInt(); |
| } |
| int _truncDivFromInteger(int other) { |
| + if (_used == 0) { |
| + throw const IntegerDivisionByZeroException(); |
| + } |
| return other._toBigint()._div(this)._toValidInt(); |
| } |
| int _moduloFromInteger(int other) { |
| + if (_used == 0) { |
| + throw const IntegerDivisionByZeroException(); |
| + } |
| _Bigint result = other._toBigint()._rem(this); |
| if (result._neg) { |
| if (_neg) { |
| @@ -1382,6 +1382,9 @@ class _Bigint extends _IntegerImplementation implements int { |
| return result._toValidInt(); |
| } |
| int _remainderFromInteger(int other) { |
| + if (_used == 0) { |
| + throw const IntegerDivisionByZeroException(); |
| + } |
| return other._toBigint()._rem(this)._toValidInt(); |
| } |
| bool _greaterThanFromInteger(int other) { |
| @@ -1534,6 +1537,107 @@ class _Bigint extends _IntegerImplementation implements int { |
| assert(!is1); |
| return z._revert(r_digits, r_used)._toValidInt(); |
| } |
| + |
| + // Returns 1/this % m, with m > 0. |
| + int modInverse(int m) { |
| + if (m is! int) throw new ArgumentError(m); |
| + if (m <= 0) throw new RangeError(m); |
| + m = m._toBigint(); |
| + // TODO(regis): Implement modInverse for an even modulus. |
| + if (m.isEven) return 0; |
|
srdjan
2015/06/10 16:51:52
Maybe throw unimplemented instead of returning 0.
regis
2015/06/10 20:25:56
Done.
|
| + var t = this; |
| + if ((t._compare(m) >= 0) || t._neg) { |
| + t %= m; |
| + t = t._toBigint(); |
| + } |
| + final t_used = t._used; |
| + if (t_used == 0) { |
| + return 0; // No inverse. |
| + } |
| + final m_digits = m._digits; |
| + final m_used = m._used; |
| + final uv_len = m_used + (m_used & 1); |
| + var v_digits = _cloneDigits(t._digits, 0, t_used, uv_len); |
| + var u_digits = _cloneDigits(m_digits, 0, m_used, uv_len); |
| + |
| + // Variables b and d require one more digit for carry. |
| + final bd_used = m_used + 1; |
| + final bd_len = bd_used + (bd_used & 1); |
| + var b_digits = new Uint32List(bd_len); |
| + var d_digits = new Uint32List(bd_len); |
| + bool b_neg = false; |
| + bool d_neg = false; |
| + |
| + d_digits[0] = 1; |
| + |
| + while (true) { |
| + while ((u_digits[0] & 1) == 0) { |
| + _rsh(u_digits, m_used, 1, u_digits); |
| + if ((b_digits[0] & 1) == 1) { |
| + _absSub(m_digits, m_used, b_digits, m_used, b_digits); |
| + b_neg = !b_neg; |
| + } |
| + _rsh(b_digits, m_used, 1, b_digits); |
| + } |
| + while ((v_digits[0] & 1) == 0) { |
| + _rsh(v_digits, m_used, 1, v_digits); |
| + if ((d_digits[0] & 1) == 1) { |
| + _absSub(m_digits, m_used, d_digits, m_used, d_digits); |
| + d_neg = !d_neg; |
| + } |
| + _rsh(d_digits, m_used, 1, d_digits); |
| + } |
| + if (_compareDigits(u_digits, m_used, v_digits, m_used) >= 0) { |
| + _absSub(u_digits, m_used, v_digits, m_used, u_digits); |
| + if (b_neg == d_neg) { |
| + if (_compareDigits(b_digits, m_used, d_digits, m_used) >= 0) { |
| + _absSub(b_digits, m_used, d_digits, m_used, b_digits); |
| + } else { |
| + _absSub(d_digits, m_used, b_digits, m_used, b_digits); |
| + b_neg = !b_neg; |
| + } |
| + } else { |
| + _absAdd(b_digits, m_used, d_digits, m_used, b_digits); |
| + if ((b_digits[m_used] > 0) || |
| + (_compareDigits(b_digits, m_used, m_digits, m_used) > 0)) { |
| + _absSub(b_digits, bd_used, m_digits, m_used, b_digits); |
| + } |
| + } |
| + } else { |
| + _absSub(v_digits, m_used, u_digits, m_used, v_digits); |
| + if (b_neg == d_neg) { |
| + if (_compareDigits(d_digits, m_used, b_digits, m_used) >= 0) { |
| + _absSub(d_digits, m_used, b_digits, m_used, d_digits); |
| + } else { |
| + _absSub(b_digits, m_used, d_digits, m_used, d_digits); |
| + d_neg = !d_neg; |
| + } |
| + } else { |
| + _absAdd(d_digits, m_used, b_digits, m_used, d_digits); |
| + if ((d_digits[m_used] > 0) || |
| + (_compareDigits(d_digits, m_used, m_digits, m_used) > 0)) { |
| + _absSub(d_digits, bd_used, m_digits, m_used, d_digits); |
| + } |
| + } |
| + } |
| + // Exit loop if u == 0. |
| + var i = m_used; |
| + while ((i > 0) && (u_digits[i - 1] == 0)) { |
| + --i; |
| + } |
| + if (i == 0) break; |
| + } |
| + // No inverse if v != 1. |
| + for (var i = m_used - 1; i > 0; --i) { |
| + if (v_digits[i] != 0) return 0; // No inverse. |
| + } |
| + if (v_digits[0] != 1) return 0; // No inverse. |
| + |
| + if (d_neg) { |
| + _absSub(m_digits, m_used, d_digits, m_used, d_digits); |
| + } |
| + return new _Bigint(false, m_used, d_digits)._toValidInt(); |
| + } |
| } |
| // Interface for modular reduction. |