| Index: include/core/SkScalar.h
|
| diff --git a/include/core/SkScalar.h b/include/core/SkScalar.h
|
| index cc1cf99ac80ad16c2832c7e2406b899e1215a51d..23e28cdc141f4653128cbfe80b8238be29e7632e 100644
|
| --- a/include/core/SkScalar.h
|
| +++ b/include/core/SkScalar.h
|
| @@ -1,4 +1,3 @@
|
| -
|
| /*
|
| * Copyright 2006 The Android Open Source Project
|
| *
|
| @@ -6,260 +5,167 @@
|
| * found in the LICENSE file.
|
| */
|
|
|
| -
|
| #ifndef SkScalar_DEFINED
|
| #define SkScalar_DEFINED
|
|
|
| #include "SkFixed.h"
|
| #include "SkFloatingPoint.h"
|
|
|
| -/** \file SkScalar.h
|
| +typedef float SkScalar;
|
|
|
| - Types and macros for the data type SkScalar. This is the fractional numeric type
|
| - that, depending on the compile-time flag SK_SCALAR_IS_FLOAT, may be implemented
|
| - either as an IEEE float, or as a 16.16 SkFixed. The macros in this file are written
|
| - to allow the calling code to manipulate SkScalar values without knowing which representation
|
| - is in effect.
|
| +/** SK_Scalar1 is defined to be 1.0 represented as an SkScalar
|
| */
|
| +#define SK_Scalar1 (1.0f)
|
| +/** SK_Scalar1 is defined to be 1/2 represented as an SkScalar
|
| +*/
|
| +#define SK_ScalarHalf (0.5f)
|
| +/** SK_ScalarInfinity is defined to be infinity as an SkScalar
|
| +*/
|
| +#define SK_ScalarInfinity SK_FloatInfinity
|
| +/** SK_ScalarNegativeInfinity is defined to be negative infinity as an SkScalar
|
| +*/
|
| +#define SK_ScalarNegativeInfinity SK_FloatNegativeInfinity
|
| +/** SK_ScalarMax is defined to be the largest value representable as an SkScalar
|
| +*/
|
| +#define SK_ScalarMax (3.402823466e+38f)
|
| +/** SK_ScalarMin is defined to be the smallest value representable as an SkScalar
|
| +*/
|
| +#define SK_ScalarMin (-SK_ScalarMax)
|
| +/** SK_ScalarNaN is defined to be 'Not a Number' as an SkScalar
|
| +*/
|
| +#define SK_ScalarNaN SK_FloatNaN
|
| +/** SkScalarIsNaN(n) returns true if argument is not a number
|
| +*/
|
| +static inline bool SkScalarIsNaN(float x) { return x != x; }
|
| +
|
| +/** Returns true if x is not NaN and not infinite */
|
| +static inline bool SkScalarIsFinite(float x) {
|
| + // We rely on the following behavior of infinities and nans
|
| + // 0 * finite --> 0
|
| + // 0 * infinity --> NaN
|
| + // 0 * NaN --> NaN
|
| + float prod = x * 0;
|
| + // At this point, prod will either be NaN or 0
|
| + // Therefore we can return (prod == prod) or (0 == prod).
|
| + return prod == prod;
|
| +}
|
|
|
| -#ifdef SK_SCALAR_IS_FLOAT
|
| -
|
| - /** SkScalar is our type for fractional values and coordinates. Depending on
|
| - compile configurations, it is either represented as an IEEE float, or
|
| - as a 16.16 fixed point integer.
|
| - */
|
| - typedef float SkScalar;
|
| -
|
| - /** SK_Scalar1 is defined to be 1.0 represented as an SkScalar
|
| - */
|
| - #define SK_Scalar1 (1.0f)
|
| - /** SK_Scalar1 is defined to be 1/2 represented as an SkScalar
|
| - */
|
| - #define SK_ScalarHalf (0.5f)
|
| - /** SK_ScalarInfinity is defined to be infinity as an SkScalar
|
| - */
|
| - #define SK_ScalarInfinity SK_FloatInfinity
|
| - /** SK_ScalarNegativeInfinity is defined to be negative infinity as an SkScalar
|
| - */
|
| - #define SK_ScalarNegativeInfinity SK_FloatNegativeInfinity
|
| - /** SK_ScalarMax is defined to be the largest value representable as an SkScalar
|
| - */
|
| - #define SK_ScalarMax (3.402823466e+38f)
|
| - /** SK_ScalarMin is defined to be the smallest value representable as an SkScalar
|
| - */
|
| - #define SK_ScalarMin (-SK_ScalarMax)
|
| - /** SK_ScalarNaN is defined to be 'Not a Number' as an SkScalar
|
| - */
|
| - #define SK_ScalarNaN SK_FloatNaN
|
| - /** SkScalarIsNaN(n) returns true if argument is not a number
|
| - */
|
| - static inline bool SkScalarIsNaN(float x) { return x != x; }
|
| -
|
| - /** Returns true if x is not NaN and not infinite */
|
| - static inline bool SkScalarIsFinite(float x) {
|
| - // We rely on the following behavior of infinities and nans
|
| - // 0 * finite --> 0
|
| - // 0 * infinity --> NaN
|
| - // 0 * NaN --> NaN
|
| - float prod = x * 0;
|
| - // At this point, prod will either be NaN or 0
|
| - // Therefore we can return (prod == prod) or (0 == prod).
|
| - return prod == prod;
|
| - }
|
| -
|
| - /** SkIntToScalar(n) returns its integer argument as an SkScalar
|
| - */
|
| - #define SkIntToScalar(n) ((float)(n))
|
| - /** SkFixedToScalar(n) returns its SkFixed argument as an SkScalar
|
| - */
|
| - #define SkFixedToScalar(x) SkFixedToFloat(x)
|
| - /** SkScalarToFixed(n) returns its SkScalar argument as an SkFixed
|
| - */
|
| - #define SkScalarToFixed(x) SkFloatToFixed(x)
|
| -
|
| - #define SkScalarToFloat(n) (n)
|
| -#ifndef SK_SCALAR_TO_FLOAT_EXCLUDED
|
| - #define SkFloatToScalar(n) (n)
|
| -#endif
|
| -
|
| - #define SkScalarToDouble(n) (double)(n)
|
| - #define SkDoubleToScalar(n) (float)(n)
|
| -
|
| - /** SkScalarFraction(x) returns the signed fractional part of the argument
|
| - */
|
| - #define SkScalarFraction(x) sk_float_mod(x, 1.0f)
|
| -
|
| - #define SkScalarFloorToScalar(x) sk_float_floor(x)
|
| - #define SkScalarCeilToScalar(x) sk_float_ceil(x)
|
| - #define SkScalarRoundToScalar(x) sk_float_floor((x) + 0.5f)
|
| -
|
| - #define SkScalarFloorToInt(x) sk_float_floor2int(x)
|
| - #define SkScalarCeilToInt(x) sk_float_ceil2int(x)
|
| - #define SkScalarRoundToInt(x) sk_float_round2int(x)
|
| - #define SkScalarTruncToInt(x) static_cast<int>(x)
|
| -
|
| - /** Returns the absolute value of the specified SkScalar
|
| - */
|
| - #define SkScalarAbs(x) sk_float_abs(x)
|
| - /** Return x with the sign of y
|
| - */
|
| - #define SkScalarCopySign(x, y) sk_float_copysign(x, y)
|
| - /** Returns the value pinned between 0 and max inclusive
|
| - */
|
| - inline SkScalar SkScalarClampMax(SkScalar x, SkScalar max) {
|
| - return x < 0 ? 0 : x > max ? max : x;
|
| - }
|
| - /** Returns the value pinned between min and max inclusive
|
| - */
|
| - inline SkScalar SkScalarPin(SkScalar x, SkScalar min, SkScalar max) {
|
| - return x < min ? min : x > max ? max : x;
|
| - }
|
| - /** Returns the specified SkScalar squared (x*x)
|
| - */
|
| - inline SkScalar SkScalarSquare(SkScalar x) { return x * x; }
|
| - /** Returns the product of two SkScalars
|
| - */
|
| - #define SkScalarMul(a, b) ((float)(a) * (b))
|
| - /** Returns the product of two SkScalars plus a third SkScalar
|
| - */
|
| - #define SkScalarMulAdd(a, b, c) ((float)(a) * (b) + (c))
|
| - /** Returns the product of a SkScalar and an int rounded to the nearest integer value
|
| - */
|
| - #define SkScalarMulRound(a, b) SkScalarRound((float)(a) * (b))
|
| - /** Returns the product of a SkScalar and an int promoted to the next larger int
|
| - */
|
| - #define SkScalarMulCeil(a, b) SkScalarCeil((float)(a) * (b))
|
| - /** Returns the product of a SkScalar and an int truncated to the next smaller int
|
| - */
|
| - #define SkScalarMulFloor(a, b) SkScalarFloor((float)(a) * (b))
|
| - /** Returns the quotient of two SkScalars (a/b)
|
| - */
|
| - #define SkScalarDiv(a, b) ((float)(a) / (b))
|
| - /** Returns the mod of two SkScalars (a mod b)
|
| - */
|
| - #define SkScalarMod(x,y) sk_float_mod(x,y)
|
| - /** Returns the product of the first two arguments, divided by the third argument
|
| - */
|
| - #define SkScalarMulDiv(a, b, c) ((float)(a) * (b) / (c))
|
| - /** Returns the multiplicative inverse of the SkScalar (1/x)
|
| - */
|
| - #define SkScalarInvert(x) (SK_Scalar1 / (x))
|
| - #define SkScalarFastInvert(x) (SK_Scalar1 / (x))
|
| - /** Returns the square root of the SkScalar
|
| - */
|
| - #define SkScalarSqrt(x) sk_float_sqrt(x)
|
| - /** Returns b to the e
|
| - */
|
| - #define SkScalarPow(b, e) sk_float_pow(b, e)
|
| - /** Returns the average of two SkScalars (a+b)/2
|
| - */
|
| - #define SkScalarAve(a, b) (((a) + (b)) * 0.5f)
|
| - /** Returns the geometric mean of two SkScalars
|
| - */
|
| - #define SkScalarMean(a, b) sk_float_sqrt((float)(a) * (b))
|
| - /** Returns one half of the specified SkScalar
|
| - */
|
| - #define SkScalarHalf(a) ((a) * 0.5f)
|
| -
|
| - #define SK_ScalarSqrt2 1.41421356f
|
| - #define SK_ScalarPI 3.14159265f
|
| - #define SK_ScalarTanPIOver8 0.414213562f
|
| - #define SK_ScalarRoot2Over2 0.707106781f
|
| -
|
| - #define SkDegreesToRadians(degrees) ((degrees) * (SK_ScalarPI / 180))
|
| - float SkScalarSinCos(SkScalar radians, SkScalar* cosValue);
|
| - #define SkScalarSin(radians) (float)sk_float_sin(radians)
|
| - #define SkScalarCos(radians) (float)sk_float_cos(radians)
|
| - #define SkScalarTan(radians) (float)sk_float_tan(radians)
|
| - #define SkScalarASin(val) (float)sk_float_asin(val)
|
| - #define SkScalarACos(val) (float)sk_float_acos(val)
|
| - #define SkScalarATan2(y, x) (float)sk_float_atan2(y,x)
|
| - #define SkScalarExp(x) (float)sk_float_exp(x)
|
| - #define SkScalarLog(x) (float)sk_float_log(x)
|
| -
|
| - inline SkScalar SkMaxScalar(SkScalar a, SkScalar b) { return a > b ? a : b; }
|
| - inline SkScalar SkMinScalar(SkScalar a, SkScalar b) { return a < b ? a : b; }
|
| -
|
| - static inline bool SkScalarIsInt(SkScalar x) {
|
| - return x == (float)(int)x;
|
| - }
|
| -#else
|
| - typedef SkFixed SkScalar;
|
| -
|
| - #define SK_Scalar1 SK_Fixed1
|
| - #define SK_ScalarHalf SK_FixedHalf
|
| - #define SK_ScalarInfinity SK_FixedMax
|
| - #define SK_ScalarNegativeInfinity SK_FixedMin
|
| - #define SK_ScalarMax SK_FixedMax
|
| - #define SK_ScalarMin SK_FixedMin
|
| - #define SK_ScalarNaN SK_FixedNaN
|
| - #define SkScalarIsNaN(x) ((x) == SK_FixedNaN)
|
| - #define SkScalarIsFinite(x) ((x) != SK_FixedNaN)
|
| +/** SkIntToScalar(n) returns its integer argument as an SkScalar
|
| +*/
|
| +#define SkIntToScalar(n) ((float)(n))
|
| +/** SkFixedToScalar(n) returns its SkFixed argument as an SkScalar
|
| +*/
|
| +#define SkFixedToScalar(x) SkFixedToFloat(x)
|
| +/** SkScalarToFixed(n) returns its SkScalar argument as an SkFixed
|
| +*/
|
| +#define SkScalarToFixed(x) SkFloatToFixed(x)
|
|
|
| - #define SkIntToScalar(n) SkIntToFixed(n)
|
| - #define SkFixedToScalar(x) (x)
|
| - #define SkScalarToFixed(x) (x)
|
| - #define SkScalarToFloat(n) SkFixedToFloat(n)
|
| +#define SkScalarToFloat(n) (n)
|
| #ifndef SK_SCALAR_TO_FLOAT_EXCLUDED
|
| - #define SkFloatToScalar(n) SkFloatToFixed(n)
|
| +#define SkFloatToScalar(n) (n)
|
| #endif
|
|
|
| - #define SkScalarToDouble(n) SkFixedToDouble(n)
|
| - #define SkDoubleToScalar(n) SkDoubleToFixed(n)
|
| - #define SkScalarFraction(x) SkFixedFraction(x)
|
| -
|
| - #define SkScalarFloorToScalar(x) SkFixedFloorToFixed(x)
|
| - #define SkScalarCeilToScalar(x) SkFixedCeilToFixed(x)
|
| - #define SkScalarRoundToScalar(x) SkFixedRoundToFixed(x)
|
| -
|
| - #define SkScalarFloorToInt(x) SkFixedFloorToInt(x)
|
| - #define SkScalarCeilToInt(x) SkFixedCeilToInt(x)
|
| - #define SkScalarRoundToInt(x) SkFixedRoundToInt(x)
|
| - #define SkScalarTruncToInt(x) (((x) < 0) ? SkScalarCeilToInt(x) : SkScalarFloorToInt(x))
|
| +#define SkScalarToDouble(n) (double)(n)
|
| +#define SkDoubleToScalar(n) (float)(n)
|
|
|
| - #define SkScalarAbs(x) SkFixedAbs(x)
|
| - #define SkScalarCopySign(x, y) SkCopySign32(x, y)
|
| - #define SkScalarClampMax(x, max) SkClampMax(x, max)
|
| - #define SkScalarPin(x, min, max) SkPin32(x, min, max)
|
| - #define SkScalarSquare(x) SkFixedSquare(x)
|
| - #define SkScalarMul(a, b) SkFixedMul(a, b)
|
| - #define SkScalarMulAdd(a, b, c) SkFixedMulAdd(a, b, c)
|
| - #define SkScalarMulRound(a, b) SkFixedMulCommon(a, b, SK_FixedHalf)
|
| - #define SkScalarMulCeil(a, b) SkFixedMulCommon(a, b, SK_Fixed1 - 1)
|
| - #define SkScalarMulFloor(a, b) SkFixedMulCommon(a, b, 0)
|
| - #define SkScalarDiv(a, b) SkFixedDiv(a, b)
|
| - #define SkScalarMod(a, b) SkFixedMod(a, b)
|
| - #define SkScalarMulDiv(a, b, c) SkMulDiv(a, b, c)
|
| - #define SkScalarInvert(x) SkFixedInvert(x)
|
| - #define SkScalarFastInvert(x) SkFixedFastInvert(x)
|
| - #define SkScalarSqrt(x) SkFixedSqrt(x)
|
| - #define SkScalarAve(a, b) SkFixedAve(a, b)
|
| - #define SkScalarMean(a, b) SkFixedMean(a, b)
|
| - #define SkScalarHalf(a) ((a) >> 1)
|
| -
|
| - #define SK_ScalarSqrt2 SK_FixedSqrt2
|
| - #define SK_ScalarPI SK_FixedPI
|
| - #define SK_ScalarTanPIOver8 SK_FixedTanPIOver8
|
| - #define SK_ScalarRoot2Over2 SK_FixedRoot2Over2
|
| +/** SkScalarFraction(x) returns the signed fractional part of the argument
|
| +*/
|
| +#define SkScalarFraction(x) sk_float_mod(x, 1.0f)
|
|
|
| - #define SkDegreesToRadians(degrees) SkFractMul(degrees, SK_FractPIOver180)
|
| - #define SkScalarSinCos(radians, cosPtr) SkFixedSinCos(radians, cosPtr)
|
| - #define SkScalarSin(radians) SkFixedSin(radians)
|
| - #define SkScalarCos(radians) SkFixedCos(radians)
|
| - #define SkScalarTan(val) SkFixedTan(val)
|
| - #define SkScalarASin(val) SkFixedASin(val)
|
| - #define SkScalarACos(val) SkFixedACos(val)
|
| - #define SkScalarATan2(y, x) SkFixedATan2(y,x)
|
| - #define SkScalarExp(x) SkFixedExp(x)
|
| - #define SkScalarLog(x) SkFixedLog(x)
|
| +#define SkScalarFloorToScalar(x) sk_float_floor(x)
|
| +#define SkScalarCeilToScalar(x) sk_float_ceil(x)
|
| +#define SkScalarRoundToScalar(x) sk_float_floor((x) + 0.5f)
|
|
|
| - #define SkMaxScalar(a, b) SkMax32(a, b)
|
| - #define SkMinScalar(a, b) SkMin32(a, b)
|
| +#define SkScalarFloorToInt(x) sk_float_floor2int(x)
|
| +#define SkScalarCeilToInt(x) sk_float_ceil2int(x)
|
| +#define SkScalarRoundToInt(x) sk_float_round2int(x)
|
| +#define SkScalarTruncToInt(x) static_cast<int>(x)
|
|
|
| - static inline bool SkScalarIsInt(SkFixed x) {
|
| - return 0 == (x & 0xffff);
|
| - }
|
| -#endif
|
| +/** Returns the absolute value of the specified SkScalar
|
| +*/
|
| +#define SkScalarAbs(x) sk_float_abs(x)
|
| +/** Return x with the sign of y
|
| + */
|
| +#define SkScalarCopySign(x, y) sk_float_copysign(x, y)
|
| +/** Returns the value pinned between 0 and max inclusive
|
| +*/
|
| +inline SkScalar SkScalarClampMax(SkScalar x, SkScalar max) {
|
| + return x < 0 ? 0 : x > max ? max : x;
|
| +}
|
| +/** Returns the value pinned between min and max inclusive
|
| +*/
|
| +inline SkScalar SkScalarPin(SkScalar x, SkScalar min, SkScalar max) {
|
| + return x < min ? min : x > max ? max : x;
|
| +}
|
| +/** Returns the specified SkScalar squared (x*x)
|
| +*/
|
| +inline SkScalar SkScalarSquare(SkScalar x) { return x * x; }
|
| +/** Returns the product of two SkScalars
|
| +*/
|
| +#define SkScalarMul(a, b) ((float)(a) * (b))
|
| +/** Returns the product of two SkScalars plus a third SkScalar
|
| +*/
|
| +#define SkScalarMulAdd(a, b, c) ((float)(a) * (b) + (c))
|
| +/** Returns the product of a SkScalar and an int rounded to the nearest integer value
|
| +*/
|
| +#define SkScalarMulRound(a, b) SkScalarRound((float)(a) * (b))
|
| +/** Returns the product of a SkScalar and an int promoted to the next larger int
|
| +*/
|
| +#define SkScalarMulCeil(a, b) SkScalarCeil((float)(a) * (b))
|
| +/** Returns the product of a SkScalar and an int truncated to the next smaller int
|
| +*/
|
| +#define SkScalarMulFloor(a, b) SkScalarFloor((float)(a) * (b))
|
| +/** Returns the quotient of two SkScalars (a/b)
|
| +*/
|
| +#define SkScalarDiv(a, b) ((float)(a) / (b))
|
| +/** Returns the mod of two SkScalars (a mod b)
|
| +*/
|
| +#define SkScalarMod(x,y) sk_float_mod(x,y)
|
| +/** Returns the product of the first two arguments, divided by the third argument
|
| +*/
|
| +#define SkScalarMulDiv(a, b, c) ((float)(a) * (b) / (c))
|
| +/** Returns the multiplicative inverse of the SkScalar (1/x)
|
| +*/
|
| +#define SkScalarInvert(x) (SK_Scalar1 / (x))
|
| +#define SkScalarFastInvert(x) (SK_Scalar1 / (x))
|
| +/** Returns the square root of the SkScalar
|
| +*/
|
| +#define SkScalarSqrt(x) sk_float_sqrt(x)
|
| +/** Returns b to the e
|
| +*/
|
| +#define SkScalarPow(b, e) sk_float_pow(b, e)
|
| +/** Returns the average of two SkScalars (a+b)/2
|
| +*/
|
| +#define SkScalarAve(a, b) (((a) + (b)) * 0.5f)
|
| +/** Returns the geometric mean of two SkScalars
|
| +*/
|
| +#define SkScalarMean(a, b) sk_float_sqrt((float)(a) * (b))
|
| +/** Returns one half of the specified SkScalar
|
| +*/
|
| +#define SkScalarHalf(a) ((a) * 0.5f)
|
| +
|
| +#define SK_ScalarSqrt2 1.41421356f
|
| +#define SK_ScalarPI 3.14159265f
|
| +#define SK_ScalarTanPIOver8 0.414213562f
|
| +#define SK_ScalarRoot2Over2 0.707106781f
|
| +
|
| +#define SkDegreesToRadians(degrees) ((degrees) * (SK_ScalarPI / 180))
|
| +float SkScalarSinCos(SkScalar radians, SkScalar* cosValue);
|
| +#define SkScalarSin(radians) (float)sk_float_sin(radians)
|
| +#define SkScalarCos(radians) (float)sk_float_cos(radians)
|
| +#define SkScalarTan(radians) (float)sk_float_tan(radians)
|
| +#define SkScalarASin(val) (float)sk_float_asin(val)
|
| +#define SkScalarACos(val) (float)sk_float_acos(val)
|
| +#define SkScalarATan2(y, x) (float)sk_float_atan2(y,x)
|
| +#define SkScalarExp(x) (float)sk_float_exp(x)
|
| +#define SkScalarLog(x) (float)sk_float_log(x)
|
| +
|
| +inline SkScalar SkMaxScalar(SkScalar a, SkScalar b) { return a > b ? a : b; }
|
| +inline SkScalar SkMinScalar(SkScalar a, SkScalar b) { return a < b ? a : b; }
|
| +
|
| +static inline bool SkScalarIsInt(SkScalar x) {
|
| + return x == (float)(int)x;
|
| +}
|
|
|
| // DEPRECATED : use ToInt or ToScalar variant
|
| #define SkScalarFloor(x) SkScalarFloorToInt(x)
|
| @@ -329,7 +235,6 @@ SkScalar SkScalarInterpFunc(SkScalar searchKey, const SkScalar keys[],
|
| * Helper to compare an array of scalars.
|
| */
|
| static inline bool SkScalarsEqual(const SkScalar a[], const SkScalar b[], int n) {
|
| -#ifdef SK_SCALAR_IS_FLOAT
|
| SkASSERT(n >= 0);
|
| for (int i = 0; i < n; ++i) {
|
| if (a[i] != b[i]) {
|
| @@ -337,9 +242,6 @@ static inline bool SkScalarsEqual(const SkScalar a[], const SkScalar b[], int n)
|
| }
|
| }
|
| return true;
|
| -#else
|
| - return 0 == memcmp(a, b, n * sizeof(SkScalar));
|
| -#endif
|
| }
|
|
|
| #endif
|
|
|