Index: include/core/SkScalar.h |
diff --git a/include/core/SkScalar.h b/include/core/SkScalar.h |
index cc1cf99ac80ad16c2832c7e2406b899e1215a51d..23e28cdc141f4653128cbfe80b8238be29e7632e 100644 |
--- a/include/core/SkScalar.h |
+++ b/include/core/SkScalar.h |
@@ -1,4 +1,3 @@ |
- |
/* |
* Copyright 2006 The Android Open Source Project |
* |
@@ -6,260 +5,167 @@ |
* found in the LICENSE file. |
*/ |
- |
#ifndef SkScalar_DEFINED |
#define SkScalar_DEFINED |
#include "SkFixed.h" |
#include "SkFloatingPoint.h" |
-/** \file SkScalar.h |
+typedef float SkScalar; |
- Types and macros for the data type SkScalar. This is the fractional numeric type |
- that, depending on the compile-time flag SK_SCALAR_IS_FLOAT, may be implemented |
- either as an IEEE float, or as a 16.16 SkFixed. The macros in this file are written |
- to allow the calling code to manipulate SkScalar values without knowing which representation |
- is in effect. |
+/** SK_Scalar1 is defined to be 1.0 represented as an SkScalar |
*/ |
+#define SK_Scalar1 (1.0f) |
+/** SK_Scalar1 is defined to be 1/2 represented as an SkScalar |
+*/ |
+#define SK_ScalarHalf (0.5f) |
+/** SK_ScalarInfinity is defined to be infinity as an SkScalar |
+*/ |
+#define SK_ScalarInfinity SK_FloatInfinity |
+/** SK_ScalarNegativeInfinity is defined to be negative infinity as an SkScalar |
+*/ |
+#define SK_ScalarNegativeInfinity SK_FloatNegativeInfinity |
+/** SK_ScalarMax is defined to be the largest value representable as an SkScalar |
+*/ |
+#define SK_ScalarMax (3.402823466e+38f) |
+/** SK_ScalarMin is defined to be the smallest value representable as an SkScalar |
+*/ |
+#define SK_ScalarMin (-SK_ScalarMax) |
+/** SK_ScalarNaN is defined to be 'Not a Number' as an SkScalar |
+*/ |
+#define SK_ScalarNaN SK_FloatNaN |
+/** SkScalarIsNaN(n) returns true if argument is not a number |
+*/ |
+static inline bool SkScalarIsNaN(float x) { return x != x; } |
+ |
+/** Returns true if x is not NaN and not infinite */ |
+static inline bool SkScalarIsFinite(float x) { |
+ // We rely on the following behavior of infinities and nans |
+ // 0 * finite --> 0 |
+ // 0 * infinity --> NaN |
+ // 0 * NaN --> NaN |
+ float prod = x * 0; |
+ // At this point, prod will either be NaN or 0 |
+ // Therefore we can return (prod == prod) or (0 == prod). |
+ return prod == prod; |
+} |
-#ifdef SK_SCALAR_IS_FLOAT |
- |
- /** SkScalar is our type for fractional values and coordinates. Depending on |
- compile configurations, it is either represented as an IEEE float, or |
- as a 16.16 fixed point integer. |
- */ |
- typedef float SkScalar; |
- |
- /** SK_Scalar1 is defined to be 1.0 represented as an SkScalar |
- */ |
- #define SK_Scalar1 (1.0f) |
- /** SK_Scalar1 is defined to be 1/2 represented as an SkScalar |
- */ |
- #define SK_ScalarHalf (0.5f) |
- /** SK_ScalarInfinity is defined to be infinity as an SkScalar |
- */ |
- #define SK_ScalarInfinity SK_FloatInfinity |
- /** SK_ScalarNegativeInfinity is defined to be negative infinity as an SkScalar |
- */ |
- #define SK_ScalarNegativeInfinity SK_FloatNegativeInfinity |
- /** SK_ScalarMax is defined to be the largest value representable as an SkScalar |
- */ |
- #define SK_ScalarMax (3.402823466e+38f) |
- /** SK_ScalarMin is defined to be the smallest value representable as an SkScalar |
- */ |
- #define SK_ScalarMin (-SK_ScalarMax) |
- /** SK_ScalarNaN is defined to be 'Not a Number' as an SkScalar |
- */ |
- #define SK_ScalarNaN SK_FloatNaN |
- /** SkScalarIsNaN(n) returns true if argument is not a number |
- */ |
- static inline bool SkScalarIsNaN(float x) { return x != x; } |
- |
- /** Returns true if x is not NaN and not infinite */ |
- static inline bool SkScalarIsFinite(float x) { |
- // We rely on the following behavior of infinities and nans |
- // 0 * finite --> 0 |
- // 0 * infinity --> NaN |
- // 0 * NaN --> NaN |
- float prod = x * 0; |
- // At this point, prod will either be NaN or 0 |
- // Therefore we can return (prod == prod) or (0 == prod). |
- return prod == prod; |
- } |
- |
- /** SkIntToScalar(n) returns its integer argument as an SkScalar |
- */ |
- #define SkIntToScalar(n) ((float)(n)) |
- /** SkFixedToScalar(n) returns its SkFixed argument as an SkScalar |
- */ |
- #define SkFixedToScalar(x) SkFixedToFloat(x) |
- /** SkScalarToFixed(n) returns its SkScalar argument as an SkFixed |
- */ |
- #define SkScalarToFixed(x) SkFloatToFixed(x) |
- |
- #define SkScalarToFloat(n) (n) |
-#ifndef SK_SCALAR_TO_FLOAT_EXCLUDED |
- #define SkFloatToScalar(n) (n) |
-#endif |
- |
- #define SkScalarToDouble(n) (double)(n) |
- #define SkDoubleToScalar(n) (float)(n) |
- |
- /** SkScalarFraction(x) returns the signed fractional part of the argument |
- */ |
- #define SkScalarFraction(x) sk_float_mod(x, 1.0f) |
- |
- #define SkScalarFloorToScalar(x) sk_float_floor(x) |
- #define SkScalarCeilToScalar(x) sk_float_ceil(x) |
- #define SkScalarRoundToScalar(x) sk_float_floor((x) + 0.5f) |
- |
- #define SkScalarFloorToInt(x) sk_float_floor2int(x) |
- #define SkScalarCeilToInt(x) sk_float_ceil2int(x) |
- #define SkScalarRoundToInt(x) sk_float_round2int(x) |
- #define SkScalarTruncToInt(x) static_cast<int>(x) |
- |
- /** Returns the absolute value of the specified SkScalar |
- */ |
- #define SkScalarAbs(x) sk_float_abs(x) |
- /** Return x with the sign of y |
- */ |
- #define SkScalarCopySign(x, y) sk_float_copysign(x, y) |
- /** Returns the value pinned between 0 and max inclusive |
- */ |
- inline SkScalar SkScalarClampMax(SkScalar x, SkScalar max) { |
- return x < 0 ? 0 : x > max ? max : x; |
- } |
- /** Returns the value pinned between min and max inclusive |
- */ |
- inline SkScalar SkScalarPin(SkScalar x, SkScalar min, SkScalar max) { |
- return x < min ? min : x > max ? max : x; |
- } |
- /** Returns the specified SkScalar squared (x*x) |
- */ |
- inline SkScalar SkScalarSquare(SkScalar x) { return x * x; } |
- /** Returns the product of two SkScalars |
- */ |
- #define SkScalarMul(a, b) ((float)(a) * (b)) |
- /** Returns the product of two SkScalars plus a third SkScalar |
- */ |
- #define SkScalarMulAdd(a, b, c) ((float)(a) * (b) + (c)) |
- /** Returns the product of a SkScalar and an int rounded to the nearest integer value |
- */ |
- #define SkScalarMulRound(a, b) SkScalarRound((float)(a) * (b)) |
- /** Returns the product of a SkScalar and an int promoted to the next larger int |
- */ |
- #define SkScalarMulCeil(a, b) SkScalarCeil((float)(a) * (b)) |
- /** Returns the product of a SkScalar and an int truncated to the next smaller int |
- */ |
- #define SkScalarMulFloor(a, b) SkScalarFloor((float)(a) * (b)) |
- /** Returns the quotient of two SkScalars (a/b) |
- */ |
- #define SkScalarDiv(a, b) ((float)(a) / (b)) |
- /** Returns the mod of two SkScalars (a mod b) |
- */ |
- #define SkScalarMod(x,y) sk_float_mod(x,y) |
- /** Returns the product of the first two arguments, divided by the third argument |
- */ |
- #define SkScalarMulDiv(a, b, c) ((float)(a) * (b) / (c)) |
- /** Returns the multiplicative inverse of the SkScalar (1/x) |
- */ |
- #define SkScalarInvert(x) (SK_Scalar1 / (x)) |
- #define SkScalarFastInvert(x) (SK_Scalar1 / (x)) |
- /** Returns the square root of the SkScalar |
- */ |
- #define SkScalarSqrt(x) sk_float_sqrt(x) |
- /** Returns b to the e |
- */ |
- #define SkScalarPow(b, e) sk_float_pow(b, e) |
- /** Returns the average of two SkScalars (a+b)/2 |
- */ |
- #define SkScalarAve(a, b) (((a) + (b)) * 0.5f) |
- /** Returns the geometric mean of two SkScalars |
- */ |
- #define SkScalarMean(a, b) sk_float_sqrt((float)(a) * (b)) |
- /** Returns one half of the specified SkScalar |
- */ |
- #define SkScalarHalf(a) ((a) * 0.5f) |
- |
- #define SK_ScalarSqrt2 1.41421356f |
- #define SK_ScalarPI 3.14159265f |
- #define SK_ScalarTanPIOver8 0.414213562f |
- #define SK_ScalarRoot2Over2 0.707106781f |
- |
- #define SkDegreesToRadians(degrees) ((degrees) * (SK_ScalarPI / 180)) |
- float SkScalarSinCos(SkScalar radians, SkScalar* cosValue); |
- #define SkScalarSin(radians) (float)sk_float_sin(radians) |
- #define SkScalarCos(radians) (float)sk_float_cos(radians) |
- #define SkScalarTan(radians) (float)sk_float_tan(radians) |
- #define SkScalarASin(val) (float)sk_float_asin(val) |
- #define SkScalarACos(val) (float)sk_float_acos(val) |
- #define SkScalarATan2(y, x) (float)sk_float_atan2(y,x) |
- #define SkScalarExp(x) (float)sk_float_exp(x) |
- #define SkScalarLog(x) (float)sk_float_log(x) |
- |
- inline SkScalar SkMaxScalar(SkScalar a, SkScalar b) { return a > b ? a : b; } |
- inline SkScalar SkMinScalar(SkScalar a, SkScalar b) { return a < b ? a : b; } |
- |
- static inline bool SkScalarIsInt(SkScalar x) { |
- return x == (float)(int)x; |
- } |
-#else |
- typedef SkFixed SkScalar; |
- |
- #define SK_Scalar1 SK_Fixed1 |
- #define SK_ScalarHalf SK_FixedHalf |
- #define SK_ScalarInfinity SK_FixedMax |
- #define SK_ScalarNegativeInfinity SK_FixedMin |
- #define SK_ScalarMax SK_FixedMax |
- #define SK_ScalarMin SK_FixedMin |
- #define SK_ScalarNaN SK_FixedNaN |
- #define SkScalarIsNaN(x) ((x) == SK_FixedNaN) |
- #define SkScalarIsFinite(x) ((x) != SK_FixedNaN) |
+/** SkIntToScalar(n) returns its integer argument as an SkScalar |
+*/ |
+#define SkIntToScalar(n) ((float)(n)) |
+/** SkFixedToScalar(n) returns its SkFixed argument as an SkScalar |
+*/ |
+#define SkFixedToScalar(x) SkFixedToFloat(x) |
+/** SkScalarToFixed(n) returns its SkScalar argument as an SkFixed |
+*/ |
+#define SkScalarToFixed(x) SkFloatToFixed(x) |
- #define SkIntToScalar(n) SkIntToFixed(n) |
- #define SkFixedToScalar(x) (x) |
- #define SkScalarToFixed(x) (x) |
- #define SkScalarToFloat(n) SkFixedToFloat(n) |
+#define SkScalarToFloat(n) (n) |
#ifndef SK_SCALAR_TO_FLOAT_EXCLUDED |
- #define SkFloatToScalar(n) SkFloatToFixed(n) |
+#define SkFloatToScalar(n) (n) |
#endif |
- #define SkScalarToDouble(n) SkFixedToDouble(n) |
- #define SkDoubleToScalar(n) SkDoubleToFixed(n) |
- #define SkScalarFraction(x) SkFixedFraction(x) |
- |
- #define SkScalarFloorToScalar(x) SkFixedFloorToFixed(x) |
- #define SkScalarCeilToScalar(x) SkFixedCeilToFixed(x) |
- #define SkScalarRoundToScalar(x) SkFixedRoundToFixed(x) |
- |
- #define SkScalarFloorToInt(x) SkFixedFloorToInt(x) |
- #define SkScalarCeilToInt(x) SkFixedCeilToInt(x) |
- #define SkScalarRoundToInt(x) SkFixedRoundToInt(x) |
- #define SkScalarTruncToInt(x) (((x) < 0) ? SkScalarCeilToInt(x) : SkScalarFloorToInt(x)) |
+#define SkScalarToDouble(n) (double)(n) |
+#define SkDoubleToScalar(n) (float)(n) |
- #define SkScalarAbs(x) SkFixedAbs(x) |
- #define SkScalarCopySign(x, y) SkCopySign32(x, y) |
- #define SkScalarClampMax(x, max) SkClampMax(x, max) |
- #define SkScalarPin(x, min, max) SkPin32(x, min, max) |
- #define SkScalarSquare(x) SkFixedSquare(x) |
- #define SkScalarMul(a, b) SkFixedMul(a, b) |
- #define SkScalarMulAdd(a, b, c) SkFixedMulAdd(a, b, c) |
- #define SkScalarMulRound(a, b) SkFixedMulCommon(a, b, SK_FixedHalf) |
- #define SkScalarMulCeil(a, b) SkFixedMulCommon(a, b, SK_Fixed1 - 1) |
- #define SkScalarMulFloor(a, b) SkFixedMulCommon(a, b, 0) |
- #define SkScalarDiv(a, b) SkFixedDiv(a, b) |
- #define SkScalarMod(a, b) SkFixedMod(a, b) |
- #define SkScalarMulDiv(a, b, c) SkMulDiv(a, b, c) |
- #define SkScalarInvert(x) SkFixedInvert(x) |
- #define SkScalarFastInvert(x) SkFixedFastInvert(x) |
- #define SkScalarSqrt(x) SkFixedSqrt(x) |
- #define SkScalarAve(a, b) SkFixedAve(a, b) |
- #define SkScalarMean(a, b) SkFixedMean(a, b) |
- #define SkScalarHalf(a) ((a) >> 1) |
- |
- #define SK_ScalarSqrt2 SK_FixedSqrt2 |
- #define SK_ScalarPI SK_FixedPI |
- #define SK_ScalarTanPIOver8 SK_FixedTanPIOver8 |
- #define SK_ScalarRoot2Over2 SK_FixedRoot2Over2 |
+/** SkScalarFraction(x) returns the signed fractional part of the argument |
+*/ |
+#define SkScalarFraction(x) sk_float_mod(x, 1.0f) |
- #define SkDegreesToRadians(degrees) SkFractMul(degrees, SK_FractPIOver180) |
- #define SkScalarSinCos(radians, cosPtr) SkFixedSinCos(radians, cosPtr) |
- #define SkScalarSin(radians) SkFixedSin(radians) |
- #define SkScalarCos(radians) SkFixedCos(radians) |
- #define SkScalarTan(val) SkFixedTan(val) |
- #define SkScalarASin(val) SkFixedASin(val) |
- #define SkScalarACos(val) SkFixedACos(val) |
- #define SkScalarATan2(y, x) SkFixedATan2(y,x) |
- #define SkScalarExp(x) SkFixedExp(x) |
- #define SkScalarLog(x) SkFixedLog(x) |
+#define SkScalarFloorToScalar(x) sk_float_floor(x) |
+#define SkScalarCeilToScalar(x) sk_float_ceil(x) |
+#define SkScalarRoundToScalar(x) sk_float_floor((x) + 0.5f) |
- #define SkMaxScalar(a, b) SkMax32(a, b) |
- #define SkMinScalar(a, b) SkMin32(a, b) |
+#define SkScalarFloorToInt(x) sk_float_floor2int(x) |
+#define SkScalarCeilToInt(x) sk_float_ceil2int(x) |
+#define SkScalarRoundToInt(x) sk_float_round2int(x) |
+#define SkScalarTruncToInt(x) static_cast<int>(x) |
- static inline bool SkScalarIsInt(SkFixed x) { |
- return 0 == (x & 0xffff); |
- } |
-#endif |
+/** Returns the absolute value of the specified SkScalar |
+*/ |
+#define SkScalarAbs(x) sk_float_abs(x) |
+/** Return x with the sign of y |
+ */ |
+#define SkScalarCopySign(x, y) sk_float_copysign(x, y) |
+/** Returns the value pinned between 0 and max inclusive |
+*/ |
+inline SkScalar SkScalarClampMax(SkScalar x, SkScalar max) { |
+ return x < 0 ? 0 : x > max ? max : x; |
+} |
+/** Returns the value pinned between min and max inclusive |
+*/ |
+inline SkScalar SkScalarPin(SkScalar x, SkScalar min, SkScalar max) { |
+ return x < min ? min : x > max ? max : x; |
+} |
+/** Returns the specified SkScalar squared (x*x) |
+*/ |
+inline SkScalar SkScalarSquare(SkScalar x) { return x * x; } |
+/** Returns the product of two SkScalars |
+*/ |
+#define SkScalarMul(a, b) ((float)(a) * (b)) |
+/** Returns the product of two SkScalars plus a third SkScalar |
+*/ |
+#define SkScalarMulAdd(a, b, c) ((float)(a) * (b) + (c)) |
+/** Returns the product of a SkScalar and an int rounded to the nearest integer value |
+*/ |
+#define SkScalarMulRound(a, b) SkScalarRound((float)(a) * (b)) |
+/** Returns the product of a SkScalar and an int promoted to the next larger int |
+*/ |
+#define SkScalarMulCeil(a, b) SkScalarCeil((float)(a) * (b)) |
+/** Returns the product of a SkScalar and an int truncated to the next smaller int |
+*/ |
+#define SkScalarMulFloor(a, b) SkScalarFloor((float)(a) * (b)) |
+/** Returns the quotient of two SkScalars (a/b) |
+*/ |
+#define SkScalarDiv(a, b) ((float)(a) / (b)) |
+/** Returns the mod of two SkScalars (a mod b) |
+*/ |
+#define SkScalarMod(x,y) sk_float_mod(x,y) |
+/** Returns the product of the first two arguments, divided by the third argument |
+*/ |
+#define SkScalarMulDiv(a, b, c) ((float)(a) * (b) / (c)) |
+/** Returns the multiplicative inverse of the SkScalar (1/x) |
+*/ |
+#define SkScalarInvert(x) (SK_Scalar1 / (x)) |
+#define SkScalarFastInvert(x) (SK_Scalar1 / (x)) |
+/** Returns the square root of the SkScalar |
+*/ |
+#define SkScalarSqrt(x) sk_float_sqrt(x) |
+/** Returns b to the e |
+*/ |
+#define SkScalarPow(b, e) sk_float_pow(b, e) |
+/** Returns the average of two SkScalars (a+b)/2 |
+*/ |
+#define SkScalarAve(a, b) (((a) + (b)) * 0.5f) |
+/** Returns the geometric mean of two SkScalars |
+*/ |
+#define SkScalarMean(a, b) sk_float_sqrt((float)(a) * (b)) |
+/** Returns one half of the specified SkScalar |
+*/ |
+#define SkScalarHalf(a) ((a) * 0.5f) |
+ |
+#define SK_ScalarSqrt2 1.41421356f |
+#define SK_ScalarPI 3.14159265f |
+#define SK_ScalarTanPIOver8 0.414213562f |
+#define SK_ScalarRoot2Over2 0.707106781f |
+ |
+#define SkDegreesToRadians(degrees) ((degrees) * (SK_ScalarPI / 180)) |
+float SkScalarSinCos(SkScalar radians, SkScalar* cosValue); |
+#define SkScalarSin(radians) (float)sk_float_sin(radians) |
+#define SkScalarCos(radians) (float)sk_float_cos(radians) |
+#define SkScalarTan(radians) (float)sk_float_tan(radians) |
+#define SkScalarASin(val) (float)sk_float_asin(val) |
+#define SkScalarACos(val) (float)sk_float_acos(val) |
+#define SkScalarATan2(y, x) (float)sk_float_atan2(y,x) |
+#define SkScalarExp(x) (float)sk_float_exp(x) |
+#define SkScalarLog(x) (float)sk_float_log(x) |
+ |
+inline SkScalar SkMaxScalar(SkScalar a, SkScalar b) { return a > b ? a : b; } |
+inline SkScalar SkMinScalar(SkScalar a, SkScalar b) { return a < b ? a : b; } |
+ |
+static inline bool SkScalarIsInt(SkScalar x) { |
+ return x == (float)(int)x; |
+} |
// DEPRECATED : use ToInt or ToScalar variant |
#define SkScalarFloor(x) SkScalarFloorToInt(x) |
@@ -329,7 +235,6 @@ SkScalar SkScalarInterpFunc(SkScalar searchKey, const SkScalar keys[], |
* Helper to compare an array of scalars. |
*/ |
static inline bool SkScalarsEqual(const SkScalar a[], const SkScalar b[], int n) { |
-#ifdef SK_SCALAR_IS_FLOAT |
SkASSERT(n >= 0); |
for (int i = 0; i < n; ++i) { |
if (a[i] != b[i]) { |
@@ -337,9 +242,6 @@ static inline bool SkScalarsEqual(const SkScalar a[], const SkScalar b[], int n) |
} |
} |
return true; |
-#else |
- return 0 == memcmp(a, b, n * sizeof(SkScalar)); |
-#endif |
} |
#endif |