| OLD | NEW |
| 1 | 1 |
| 2 /* | 2 /* |
| 3 * Copyright 2006 The Android Open Source Project | 3 * Copyright 2006 The Android Open Source Project |
| 4 * | 4 * |
| 5 * Use of this source code is governed by a BSD-style license that can be | 5 * Use of this source code is governed by a BSD-style license that can be |
| 6 * found in the LICENSE file. | 6 * found in the LICENSE file. |
| 7 */ | 7 */ |
| 8 | 8 |
| 9 | 9 |
| 10 #include "SkCoreBlitters.h" | 10 #include "SkCoreBlitters.h" |
| 11 #include "SkColorPriv.h" | 11 #include "SkColorPriv.h" |
| 12 #include "SkShader.h" | 12 #include "SkShader.h" |
| 13 #include "SkXfermode.h" | 13 #include "SkXfermode.h" |
| 14 | 14 |
| 15 SkA8_Blitter::SkA8_Blitter(const SkPixmap& device, const SkPaint& paint) : INHER
ITED(device) { | 15 SkA8_Blitter::SkA8_Blitter(const SkBitmap& device, const SkPaint& paint) |
| 16 : INHERITED(device) { |
| 16 fSrcA = paint.getAlpha(); | 17 fSrcA = paint.getAlpha(); |
| 17 } | 18 } |
| 18 | 19 |
| 19 const SkPixmap* SkA8_Blitter::justAnOpaqueColor(uint32_t* value) { | 20 const SkBitmap* SkA8_Blitter::justAnOpaqueColor(uint32_t* value) { |
| 20 if (255 == fSrcA) { | 21 if (255 == fSrcA) { |
| 21 *value = 255; | 22 *value = 255; |
| 22 return &fDevice; | 23 return &fDevice; |
| 23 } | 24 } |
| 24 return NULL; | 25 return NULL; |
| 25 } | 26 } |
| 26 | 27 |
| 27 void SkA8_Blitter::blitH(int x, int y, int width) { | 28 void SkA8_Blitter::blitH(int x, int y, int width) { |
| 28 SkASSERT(x >= 0 && y >= 0 && | 29 SkASSERT(x >= 0 && y >= 0 && |
| 29 (unsigned)(x + width) <= (unsigned)fDevice.width()); | 30 (unsigned)(x + width) <= (unsigned)fDevice.width()); |
| 30 | 31 |
| 31 if (fSrcA == 0) { | 32 if (fSrcA == 0) { |
| 32 return; | 33 return; |
| 33 } | 34 } |
| 34 | 35 |
| 35 uint8_t* device = fDevice.writable_addr8(x, y); | 36 uint8_t* device = fDevice.getAddr8(x, y); |
| 36 | 37 |
| 37 if (fSrcA == 255) { | 38 if (fSrcA == 255) { |
| 38 memset(device, 0xFF, width); | 39 memset(device, 0xFF, width); |
| 39 } else { | 40 } else { |
| 40 unsigned scale = 256 - SkAlpha255To256(fSrcA); | 41 unsigned scale = 256 - SkAlpha255To256(fSrcA); |
| 41 unsigned srcA = fSrcA; | 42 unsigned srcA = fSrcA; |
| 42 | 43 |
| 43 for (int i = 0; i < width; i++) { | 44 for (int i = 0; i < width; i++) { |
| 44 device[i] = SkToU8(srcA + SkAlphaMul(device[i], scale)); | 45 device[i] = SkToU8(srcA + SkAlphaMul(device[i], scale)); |
| 45 } | 46 } |
| 46 } | 47 } |
| 47 } | 48 } |
| 48 | 49 |
| 49 void SkA8_Blitter::blitAntiH(int x, int y, const SkAlpha antialias[], | 50 void SkA8_Blitter::blitAntiH(int x, int y, const SkAlpha antialias[], |
| 50 const int16_t runs[]) { | 51 const int16_t runs[]) { |
| 51 if (fSrcA == 0) { | 52 if (fSrcA == 0) { |
| 52 return; | 53 return; |
| 53 } | 54 } |
| 54 | 55 |
| 55 uint8_t* device = fDevice.writable_addr8(x, y); | 56 uint8_t* device = fDevice.getAddr8(x, y); |
| 56 unsigned srcA = fSrcA; | 57 unsigned srcA = fSrcA; |
| 57 | 58 |
| 58 for (;;) { | 59 for (;;) { |
| 59 int count = runs[0]; | 60 int count = runs[0]; |
| 60 SkASSERT(count >= 0); | 61 SkASSERT(count >= 0); |
| 61 if (count == 0) { | 62 if (count == 0) { |
| 62 return; | 63 return; |
| 63 } | 64 } |
| 64 unsigned aa = antialias[0]; | 65 unsigned aa = antialias[0]; |
| 65 | 66 |
| (...skipping 23 matching lines...) Expand all Loading... |
| 89 if (mask & 0x10) dst[3] = 0xFF; \ | 90 if (mask & 0x10) dst[3] = 0xFF; \ |
| 90 if (mask & 0x08) dst[4] = 0xFF; \ | 91 if (mask & 0x08) dst[4] = 0xFF; \ |
| 91 if (mask & 0x04) dst[5] = 0xFF; \ | 92 if (mask & 0x04) dst[5] = 0xFF; \ |
| 92 if (mask & 0x02) dst[6] = 0xFF; \ | 93 if (mask & 0x02) dst[6] = 0xFF; \ |
| 93 if (mask & 0x01) dst[7] = 0xFF; \ | 94 if (mask & 0x01) dst[7] = 0xFF; \ |
| 94 } while (0) | 95 } while (0) |
| 95 | 96 |
| 96 #define SK_BLITBWMASK_NAME SkA8_BlitBW | 97 #define SK_BLITBWMASK_NAME SkA8_BlitBW |
| 97 #define SK_BLITBWMASK_ARGS | 98 #define SK_BLITBWMASK_ARGS |
| 98 #define SK_BLITBWMASK_BLIT8(mask, dst) solid_8_pixels(mask, dst) | 99 #define SK_BLITBWMASK_BLIT8(mask, dst) solid_8_pixels(mask, dst) |
| 99 #define SK_BLITBWMASK_GETADDR writable_addr8 | 100 #define SK_BLITBWMASK_GETADDR getAddr8 |
| 100 #define SK_BLITBWMASK_DEVTYPE uint8_t | 101 #define SK_BLITBWMASK_DEVTYPE uint8_t |
| 101 #include "SkBlitBWMaskTemplate.h" | 102 #include "SkBlitBWMaskTemplate.h" |
| 102 | 103 |
| 103 static inline void blend_8_pixels(U8CPU bw, uint8_t dst[], U8CPU sa, | 104 static inline void blend_8_pixels(U8CPU bw, uint8_t dst[], U8CPU sa, |
| 104 unsigned dst_scale) { | 105 unsigned dst_scale) { |
| 105 if (bw & 0x80) dst[0] = SkToU8(sa + SkAlphaMul(dst[0], dst_scale)); | 106 if (bw & 0x80) dst[0] = SkToU8(sa + SkAlphaMul(dst[0], dst_scale)); |
| 106 if (bw & 0x40) dst[1] = SkToU8(sa + SkAlphaMul(dst[1], dst_scale)); | 107 if (bw & 0x40) dst[1] = SkToU8(sa + SkAlphaMul(dst[1], dst_scale)); |
| 107 if (bw & 0x20) dst[2] = SkToU8(sa + SkAlphaMul(dst[2], dst_scale)); | 108 if (bw & 0x20) dst[2] = SkToU8(sa + SkAlphaMul(dst[2], dst_scale)); |
| 108 if (bw & 0x10) dst[3] = SkToU8(sa + SkAlphaMul(dst[3], dst_scale)); | 109 if (bw & 0x10) dst[3] = SkToU8(sa + SkAlphaMul(dst[3], dst_scale)); |
| 109 if (bw & 0x08) dst[4] = SkToU8(sa + SkAlphaMul(dst[4], dst_scale)); | 110 if (bw & 0x08) dst[4] = SkToU8(sa + SkAlphaMul(dst[4], dst_scale)); |
| 110 if (bw & 0x04) dst[5] = SkToU8(sa + SkAlphaMul(dst[5], dst_scale)); | 111 if (bw & 0x04) dst[5] = SkToU8(sa + SkAlphaMul(dst[5], dst_scale)); |
| 111 if (bw & 0x02) dst[6] = SkToU8(sa + SkAlphaMul(dst[6], dst_scale)); | 112 if (bw & 0x02) dst[6] = SkToU8(sa + SkAlphaMul(dst[6], dst_scale)); |
| 112 if (bw & 0x01) dst[7] = SkToU8(sa + SkAlphaMul(dst[7], dst_scale)); | 113 if (bw & 0x01) dst[7] = SkToU8(sa + SkAlphaMul(dst[7], dst_scale)); |
| 113 } | 114 } |
| 114 | 115 |
| 115 #define SK_BLITBWMASK_NAME SkA8_BlendBW | 116 #define SK_BLITBWMASK_NAME SkA8_BlendBW |
| 116 #define SK_BLITBWMASK_ARGS , U8CPU sa, unsigned dst_scale | 117 #define SK_BLITBWMASK_ARGS , U8CPU sa, unsigned dst_scale |
| 117 #define SK_BLITBWMASK_BLIT8(mask, dst) blend_8_pixels(mask, dst, sa, dst_sc
ale) | 118 #define SK_BLITBWMASK_BLIT8(mask, dst) blend_8_pixels(mask, dst, sa, dst_sc
ale) |
| 118 #define SK_BLITBWMASK_GETADDR writable_addr8 | 119 #define SK_BLITBWMASK_GETADDR getAddr8 |
| 119 #define SK_BLITBWMASK_DEVTYPE uint8_t | 120 #define SK_BLITBWMASK_DEVTYPE uint8_t |
| 120 #include "SkBlitBWMaskTemplate.h" | 121 #include "SkBlitBWMaskTemplate.h" |
| 121 | 122 |
| 122 void SkA8_Blitter::blitMask(const SkMask& mask, const SkIRect& clip) { | 123 void SkA8_Blitter::blitMask(const SkMask& mask, const SkIRect& clip) { |
| 123 if (fSrcA == 0) { | 124 if (fSrcA == 0) { |
| 124 return; | 125 return; |
| 125 } | 126 } |
| 126 | 127 |
| 127 if (mask.fFormat == SkMask::kBW_Format) { | 128 if (mask.fFormat == SkMask::kBW_Format) { |
| 128 if (fSrcA == 0xFF) { | 129 if (fSrcA == 0xFF) { |
| 129 SkA8_BlitBW(fDevice, mask, clip); | 130 SkA8_BlitBW(fDevice, mask, clip); |
| 130 } else { | 131 } else { |
| 131 SkA8_BlendBW(fDevice, mask, clip, fSrcA, | 132 SkA8_BlendBW(fDevice, mask, clip, fSrcA, |
| 132 SkAlpha255To256(255 - fSrcA)); | 133 SkAlpha255To256(255 - fSrcA)); |
| 133 } | 134 } |
| 134 return; | 135 return; |
| 135 } | 136 } |
| 136 | 137 |
| 137 int x = clip.fLeft; | 138 int x = clip.fLeft; |
| 138 int y = clip.fTop; | 139 int y = clip.fTop; |
| 139 int width = clip.width(); | 140 int width = clip.width(); |
| 140 int height = clip.height(); | 141 int height = clip.height(); |
| 141 uint8_t* device = fDevice.writable_addr8(x, y); | 142 uint8_t* device = fDevice.getAddr8(x, y); |
| 142 const uint8_t* alpha = mask.getAddr8(x, y); | 143 const uint8_t* alpha = mask.getAddr8(x, y); |
| 143 unsigned srcA = fSrcA; | 144 unsigned srcA = fSrcA; |
| 144 | 145 |
| 145 while (--height >= 0) { | 146 while (--height >= 0) { |
| 146 for (int i = width - 1; i >= 0; --i) { | 147 for (int i = width - 1; i >= 0; --i) { |
| 147 unsigned sa; | 148 unsigned sa; |
| 148 // scale our src by the alpha value | 149 // scale our src by the alpha value |
| 149 { | 150 { |
| 150 int aa = alpha[i]; | 151 int aa = alpha[i]; |
| 151 if (aa == 0) { | 152 if (aa == 0) { |
| (...skipping 19 matching lines...) Expand all Loading... |
| 171 } | 172 } |
| 172 | 173 |
| 173 /////////////////////////////////////////////////////////////////////////////// | 174 /////////////////////////////////////////////////////////////////////////////// |
| 174 | 175 |
| 175 void SkA8_Blitter::blitV(int x, int y, int height, SkAlpha alpha) { | 176 void SkA8_Blitter::blitV(int x, int y, int height, SkAlpha alpha) { |
| 176 if (fSrcA == 0) { | 177 if (fSrcA == 0) { |
| 177 return; | 178 return; |
| 178 } | 179 } |
| 179 | 180 |
| 180 unsigned sa = SkAlphaMul(fSrcA, SkAlpha255To256(alpha)); | 181 unsigned sa = SkAlphaMul(fSrcA, SkAlpha255To256(alpha)); |
| 181 uint8_t* device = fDevice.writable_addr8(x, y); | 182 uint8_t* device = fDevice.getAddr8(x, y); |
| 182 size_t rowBytes = fDevice.rowBytes(); | 183 size_t rowBytes = fDevice.rowBytes(); |
| 183 | 184 |
| 184 if (sa == 0xFF) { | 185 if (sa == 0xFF) { |
| 185 for (int i = 0; i < height; i++) { | 186 for (int i = 0; i < height; i++) { |
| 186 *device = SkToU8(sa); | 187 *device = SkToU8(sa); |
| 187 device += rowBytes; | 188 device += rowBytes; |
| 188 } | 189 } |
| 189 } else { | 190 } else { |
| 190 unsigned scale = 256 - SkAlpha255To256(sa); | 191 unsigned scale = 256 - SkAlpha255To256(sa); |
| 191 | 192 |
| 192 for (int i = 0; i < height; i++) { | 193 for (int i = 0; i < height; i++) { |
| 193 *device = SkToU8(sa + SkAlphaMul(*device, scale)); | 194 *device = SkToU8(sa + SkAlphaMul(*device, scale)); |
| 194 device += rowBytes; | 195 device += rowBytes; |
| 195 } | 196 } |
| 196 } | 197 } |
| 197 } | 198 } |
| 198 | 199 |
| 199 void SkA8_Blitter::blitRect(int x, int y, int width, int height) { | 200 void SkA8_Blitter::blitRect(int x, int y, int width, int height) { |
| 200 SkASSERT(x >= 0 && y >= 0 && | 201 SkASSERT(x >= 0 && y >= 0 && |
| 201 (unsigned)(x + width) <= (unsigned)fDevice.width() && | 202 (unsigned)(x + width) <= (unsigned)fDevice.width() && |
| 202 (unsigned)(y + height) <= (unsigned)fDevice.height()); | 203 (unsigned)(y + height) <= (unsigned)fDevice.height()); |
| 203 | 204 |
| 204 if (fSrcA == 0) { | 205 if (fSrcA == 0) { |
| 205 return; | 206 return; |
| 206 } | 207 } |
| 207 | 208 |
| 208 uint8_t* device = fDevice.writable_addr8(x, y); | 209 uint8_t* device = fDevice.getAddr8(x, y); |
| 209 unsigned srcA = fSrcA; | 210 unsigned srcA = fSrcA; |
| 210 | 211 |
| 211 if (srcA == 255) { | 212 if (srcA == 255) { |
| 212 while (--height >= 0) { | 213 while (--height >= 0) { |
| 213 memset(device, 0xFF, width); | 214 memset(device, 0xFF, width); |
| 214 device += fDevice.rowBytes(); | 215 device += fDevice.rowBytes(); |
| 215 } | 216 } |
| 216 } else { | 217 } else { |
| 217 unsigned scale = 256 - SkAlpha255To256(srcA); | 218 unsigned scale = 256 - SkAlpha255To256(srcA); |
| 218 | 219 |
| 219 while (--height >= 0) { | 220 while (--height >= 0) { |
| 220 for (int i = 0; i < width; i++) { | 221 for (int i = 0; i < width; i++) { |
| 221 device[i] = SkToU8(srcA + SkAlphaMul(device[i], scale)); | 222 device[i] = SkToU8(srcA + SkAlphaMul(device[i], scale)); |
| 222 } | 223 } |
| 223 device += fDevice.rowBytes(); | 224 device += fDevice.rowBytes(); |
| 224 } | 225 } |
| 225 } | 226 } |
| 226 } | 227 } |
| 227 | 228 |
| 228 /////////////////////////////////////////////////////////////////////// | 229 /////////////////////////////////////////////////////////////////////// |
| 229 | 230 |
| 230 SkA8_Shader_Blitter::SkA8_Shader_Blitter(const SkPixmap& device, const SkPaint&
paint, | 231 SkA8_Shader_Blitter::SkA8_Shader_Blitter(const SkBitmap& device, const SkPaint&
paint, |
| 231 SkShader::Context* shaderContext) | 232 SkShader::Context* shaderContext) |
| 232 : INHERITED(device, paint, shaderContext) | 233 : INHERITED(device, paint, shaderContext) { |
| 233 { | |
| 234 if ((fXfermode = paint.getXfermode()) != NULL) { | 234 if ((fXfermode = paint.getXfermode()) != NULL) { |
| 235 fXfermode->ref(); | 235 fXfermode->ref(); |
| 236 SkASSERT(fShaderContext); | 236 SkASSERT(fShaderContext); |
| 237 } | 237 } |
| 238 | 238 |
| 239 int width = device.width(); | 239 int width = device.width(); |
| 240 fBuffer = (SkPMColor*)sk_malloc_throw(sizeof(SkPMColor) * (width + (SkAlign4
(width) >> 2))); | 240 fBuffer = (SkPMColor*)sk_malloc_throw(sizeof(SkPMColor) * (width + (SkAlign4
(width) >> 2))); |
| 241 fAAExpand = (uint8_t*)(fBuffer + width); | 241 fAAExpand = (uint8_t*)(fBuffer + width); |
| 242 } | 242 } |
| 243 | 243 |
| 244 SkA8_Shader_Blitter::~SkA8_Shader_Blitter() { | 244 SkA8_Shader_Blitter::~SkA8_Shader_Blitter() { |
| 245 if (fXfermode) SkSafeUnref(fXfermode); | 245 if (fXfermode) SkSafeUnref(fXfermode); |
| 246 sk_free(fBuffer); | 246 sk_free(fBuffer); |
| 247 } | 247 } |
| 248 | 248 |
| 249 void SkA8_Shader_Blitter::blitH(int x, int y, int width) { | 249 void SkA8_Shader_Blitter::blitH(int x, int y, int width) { |
| 250 SkASSERT(x >= 0 && y >= 0 && | 250 SkASSERT(x >= 0 && y >= 0 && |
| 251 (unsigned)(x + width) <= (unsigned)fDevice.width()); | 251 (unsigned)(x + width) <= (unsigned)fDevice.width()); |
| 252 | 252 |
| 253 uint8_t* device = fDevice.writable_addr8(x, y); | 253 uint8_t* device = fDevice.getAddr8(x, y); |
| 254 SkShader::Context* shaderContext = fShaderContext; | 254 SkShader::Context* shaderContext = fShaderContext; |
| 255 | 255 |
| 256 if ((shaderContext->getFlags() & SkShader::kOpaqueAlpha_Flag) && !fXfermode)
{ | 256 if ((shaderContext->getFlags() & SkShader::kOpaqueAlpha_Flag) && !fXfermode)
{ |
| 257 memset(device, 0xFF, width); | 257 memset(device, 0xFF, width); |
| 258 } else { | 258 } else { |
| 259 SkPMColor* span = fBuffer; | 259 SkPMColor* span = fBuffer; |
| 260 | 260 |
| 261 shaderContext->shadeSpan(x, y, span, width); | 261 shaderContext->shadeSpan(x, y, span, width); |
| 262 if (fXfermode) { | 262 if (fXfermode) { |
| 263 fXfermode->xferA8(device, span, width, NULL); | 263 fXfermode->xferA8(device, span, width, NULL); |
| (...skipping 17 matching lines...) Expand all Loading... |
| 281 | 281 |
| 282 return SkToU8((sa * src_scale + da * dst_scale) >> 8); | 282 return SkToU8((sa * src_scale + da * dst_scale) >> 8); |
| 283 } | 283 } |
| 284 | 284 |
| 285 void SkA8_Shader_Blitter::blitAntiH(int x, int y, const SkAlpha antialias[], | 285 void SkA8_Shader_Blitter::blitAntiH(int x, int y, const SkAlpha antialias[], |
| 286 const int16_t runs[]) { | 286 const int16_t runs[]) { |
| 287 SkShader::Context* shaderContext = fShaderContext; | 287 SkShader::Context* shaderContext = fShaderContext; |
| 288 SkXfermode* mode = fXfermode; | 288 SkXfermode* mode = fXfermode; |
| 289 uint8_t* aaExpand = fAAExpand; | 289 uint8_t* aaExpand = fAAExpand; |
| 290 SkPMColor* span = fBuffer; | 290 SkPMColor* span = fBuffer; |
| 291 uint8_t* device = fDevice.writable_addr8(x, y); | 291 uint8_t* device = fDevice.getAddr8(x, y); |
| 292 int opaque = shaderContext->getFlags() & SkShader::kOpaqueAlp
ha_Flag; | 292 int opaque = shaderContext->getFlags() & SkShader::kOpaqueAlp
ha_Flag; |
| 293 | 293 |
| 294 for (;;) { | 294 for (;;) { |
| 295 int count = *runs; | 295 int count = *runs; |
| 296 if (count == 0) { | 296 if (count == 0) { |
| 297 break; | 297 break; |
| 298 } | 298 } |
| 299 int aa = *antialias; | 299 int aa = *antialias; |
| 300 if (aa) { | 300 if (aa) { |
| 301 if (opaque && aa == 255 && mode == NULL) { | 301 if (opaque && aa == 255 && mode == NULL) { |
| (...skipping 20 matching lines...) Expand all Loading... |
| 322 void SkA8_Shader_Blitter::blitMask(const SkMask& mask, const SkIRect& clip) { | 322 void SkA8_Shader_Blitter::blitMask(const SkMask& mask, const SkIRect& clip) { |
| 323 if (mask.fFormat == SkMask::kBW_Format) { | 323 if (mask.fFormat == SkMask::kBW_Format) { |
| 324 this->INHERITED::blitMask(mask, clip); | 324 this->INHERITED::blitMask(mask, clip); |
| 325 return; | 325 return; |
| 326 } | 326 } |
| 327 | 327 |
| 328 int x = clip.fLeft; | 328 int x = clip.fLeft; |
| 329 int y = clip.fTop; | 329 int y = clip.fTop; |
| 330 int width = clip.width(); | 330 int width = clip.width(); |
| 331 int height = clip.height(); | 331 int height = clip.height(); |
| 332 uint8_t* device = fDevice.writable_addr8(x, y); | 332 uint8_t* device = fDevice.getAddr8(x, y); |
| 333 const uint8_t* alpha = mask.getAddr8(x, y); | 333 const uint8_t* alpha = mask.getAddr8(x, y); |
| 334 SkShader::Context* shaderContext = fShaderContext; | 334 SkShader::Context* shaderContext = fShaderContext; |
| 335 | 335 |
| 336 SkPMColor* span = fBuffer; | 336 SkPMColor* span = fBuffer; |
| 337 | 337 |
| 338 while (--height >= 0) { | 338 while (--height >= 0) { |
| 339 shaderContext->shadeSpan(x, y, span, width); | 339 shaderContext->shadeSpan(x, y, span, width); |
| 340 if (fXfermode) { | 340 if (fXfermode) { |
| 341 fXfermode->xferA8(device, span, width, alpha); | 341 fXfermode->xferA8(device, span, width, alpha); |
| 342 } else { | 342 } else { |
| 343 for (int i = width - 1; i >= 0; --i) { | 343 for (int i = width - 1; i >= 0; --i) { |
| 344 device[i] = aa_blend8(span[i], device[i], alpha[i]); | 344 device[i] = aa_blend8(span[i], device[i], alpha[i]); |
| 345 } | 345 } |
| 346 } | 346 } |
| 347 | 347 |
| 348 y += 1; | 348 y += 1; |
| 349 device += fDevice.rowBytes(); | 349 device += fDevice.rowBytes(); |
| 350 alpha += mask.fRowBytes; | 350 alpha += mask.fRowBytes; |
| 351 } | 351 } |
| 352 } | 352 } |
| 353 | 353 |
| 354 /////////////////////////////////////////////////////////////////////////////// | 354 /////////////////////////////////////////////////////////////////////////////// |
| 355 | 355 |
| 356 SkA8_Coverage_Blitter::SkA8_Coverage_Blitter(const SkPixmap& device, | 356 SkA8_Coverage_Blitter::SkA8_Coverage_Blitter(const SkBitmap& device, |
| 357 const SkPaint& paint) : SkRasterBlitter(device) { | 357 const SkPaint& paint) : SkRasterBlitter(device) { |
| 358 SkASSERT(NULL == paint.getShader()); | 358 SkASSERT(NULL == paint.getShader()); |
| 359 SkASSERT(NULL == paint.getXfermode()); | 359 SkASSERT(NULL == paint.getXfermode()); |
| 360 SkASSERT(NULL == paint.getColorFilter()); | 360 SkASSERT(NULL == paint.getColorFilter()); |
| 361 } | 361 } |
| 362 | 362 |
| 363 void SkA8_Coverage_Blitter::blitAntiH(int x, int y, const SkAlpha antialias[], | 363 void SkA8_Coverage_Blitter::blitAntiH(int x, int y, const SkAlpha antialias[], |
| 364 const int16_t runs[]) { | 364 const int16_t runs[]) { |
| 365 uint8_t* device = fDevice.writable_addr8(x, y); | 365 uint8_t* device = fDevice.getAddr8(x, y); |
| 366 SkDEBUGCODE(int totalCount = 0;) | 366 SkDEBUGCODE(int totalCount = 0;) |
| 367 | 367 |
| 368 for (;;) { | 368 for (;;) { |
| 369 int count = runs[0]; | 369 int count = runs[0]; |
| 370 SkASSERT(count >= 0); | 370 SkASSERT(count >= 0); |
| 371 if (count == 0) { | 371 if (count == 0) { |
| 372 return; | 372 return; |
| 373 } | 373 } |
| 374 if (antialias[0]) { | 374 if (antialias[0]) { |
| 375 memset(device, antialias[0], count); | 375 memset(device, antialias[0], count); |
| 376 } | 376 } |
| 377 runs += count; | 377 runs += count; |
| 378 antialias += count; | 378 antialias += count; |
| 379 device += count; | 379 device += count; |
| 380 | 380 |
| 381 SkDEBUGCODE(totalCount += count;) | 381 SkDEBUGCODE(totalCount += count;) |
| 382 } | 382 } |
| 383 SkASSERT(fDevice.width() == totalCount); | 383 SkASSERT(fDevice.width() == totalCount); |
| 384 } | 384 } |
| 385 | 385 |
| 386 void SkA8_Coverage_Blitter::blitH(int x, int y, int width) { | 386 void SkA8_Coverage_Blitter::blitH(int x, int y, int width) { |
| 387 memset(fDevice.writable_addr8(x, y), 0xFF, width); | 387 memset(fDevice.getAddr8(x, y), 0xFF, width); |
| 388 } | 388 } |
| 389 | 389 |
| 390 void SkA8_Coverage_Blitter::blitV(int x, int y, int height, SkAlpha alpha) { | 390 void SkA8_Coverage_Blitter::blitV(int x, int y, int height, SkAlpha alpha) { |
| 391 if (0 == alpha) { | 391 if (0 == alpha) { |
| 392 return; | 392 return; |
| 393 } | 393 } |
| 394 | 394 |
| 395 uint8_t* dst = fDevice.writable_addr8(x, y); | 395 uint8_t* dst = fDevice.getAddr8(x, y); |
| 396 const size_t dstRB = fDevice.rowBytes(); | 396 const size_t dstRB = fDevice.rowBytes(); |
| 397 while (--height >= 0) { | 397 while (--height >= 0) { |
| 398 *dst = alpha; | 398 *dst = alpha; |
| 399 dst += dstRB; | 399 dst += dstRB; |
| 400 } | 400 } |
| 401 } | 401 } |
| 402 | 402 |
| 403 void SkA8_Coverage_Blitter::blitRect(int x, int y, int width, int height) { | 403 void SkA8_Coverage_Blitter::blitRect(int x, int y, int width, int height) { |
| 404 uint8_t* dst = fDevice.writable_addr8(x, y); | 404 uint8_t* dst = fDevice.getAddr8(x, y); |
| 405 const size_t dstRB = fDevice.rowBytes(); | 405 const size_t dstRB = fDevice.rowBytes(); |
| 406 while (--height >= 0) { | 406 while (--height >= 0) { |
| 407 memset(dst, 0xFF, width); | 407 memset(dst, 0xFF, width); |
| 408 dst += dstRB; | 408 dst += dstRB; |
| 409 } | 409 } |
| 410 } | 410 } |
| 411 | 411 |
| 412 void SkA8_Coverage_Blitter::blitMask(const SkMask& mask, const SkIRect& clip) { | 412 void SkA8_Coverage_Blitter::blitMask(const SkMask& mask, const SkIRect& clip) { |
| 413 SkASSERT(SkMask::kA8_Format == mask.fFormat); | 413 SkASSERT(SkMask::kA8_Format == mask.fFormat); |
| 414 | 414 |
| 415 int x = clip.fLeft; | 415 int x = clip.fLeft; |
| 416 int y = clip.fTop; | 416 int y = clip.fTop; |
| 417 int width = clip.width(); | 417 int width = clip.width(); |
| 418 int height = clip.height(); | 418 int height = clip.height(); |
| 419 | 419 |
| 420 uint8_t* dst = fDevice.writable_addr8(x, y); | 420 uint8_t* dst = fDevice.getAddr8(x, y); |
| 421 const uint8_t* src = mask.getAddr8(x, y); | 421 const uint8_t* src = mask.getAddr8(x, y); |
| 422 const size_t srcRB = mask.fRowBytes; | 422 const size_t srcRB = mask.fRowBytes; |
| 423 const size_t dstRB = fDevice.rowBytes(); | 423 const size_t dstRB = fDevice.rowBytes(); |
| 424 | 424 |
| 425 while (--height >= 0) { | 425 while (--height >= 0) { |
| 426 memcpy(dst, src, width); | 426 memcpy(dst, src, width); |
| 427 dst += dstRB; | 427 dst += dstRB; |
| 428 src += srcRB; | 428 src += srcRB; |
| 429 } | 429 } |
| 430 } | 430 } |
| 431 | 431 |
| 432 const SkPixmap* SkA8_Coverage_Blitter::justAnOpaqueColor(uint32_t*) { | 432 const SkBitmap* SkA8_Coverage_Blitter::justAnOpaqueColor(uint32_t*) { |
| 433 return NULL; | 433 return NULL; |
| 434 } | 434 } |
| OLD | NEW |