| OLD | NEW |
| (Empty) |
| 1 // Copyright (c) 2015 The Chromium Authors. All rights reserved. | |
| 2 // Use of this source code is governed by a BSD-style license that can be | |
| 3 // found in the LICENSE file. | |
| 4 | |
| 5 #include "content/browser/media/capture/animated_content_sampler.h" | |
| 6 | |
| 7 #include <algorithm> | |
| 8 | |
| 9 namespace content { | |
| 10 | |
| 11 namespace { | |
| 12 | |
| 13 // These specify the minimum/maximum amount of recent event history to examine | |
| 14 // to detect animated content. If the values are too low, there is a greater | |
| 15 // risk of false-positive detections and low accuracy. If they are too high, | |
| 16 // the the implementation will be slow to lock-in/out, and also will not react | |
| 17 // well to mildly-variable frame rate content (e.g., 25 +/- 1 FPS). | |
| 18 // | |
| 19 // These values were established by experimenting with a wide variety of | |
| 20 // scenarios, including 24/25/30 FPS videos, 60 FPS WebGL demos, and the | |
| 21 // transitions between static and animated content. | |
| 22 const int kMinObservationWindowMillis = 1000; | |
| 23 const int kMaxObservationWindowMillis = 2000; | |
| 24 | |
| 25 // The maximum amount of time that can elapse before declaring two subsequent | |
| 26 // events as "not animating." This is the same value found in | |
| 27 // cc::FrameRateCounter. | |
| 28 const int kNonAnimatingThresholdMillis = 250; // 4 FPS | |
| 29 | |
| 30 // The slowest that content can be animating in order for AnimatedContentSampler | |
| 31 // to lock-in. This is the threshold at which the "smoothness" problem is no | |
| 32 // longer relevant. | |
| 33 const int kMaxLockInPeriodMicros = 83333; // 12 FPS | |
| 34 | |
| 35 // The amount of time over which to fully correct the drift of the rewritten | |
| 36 // frame timestamps from the presentation event timestamps. The lower the | |
| 37 // value, the higher the variance in frame timestamps. | |
| 38 const int kDriftCorrectionMillis = 2000; | |
| 39 | |
| 40 } // anonymous namespace | |
| 41 | |
| 42 AnimatedContentSampler::AnimatedContentSampler( | |
| 43 base::TimeDelta min_capture_period) | |
| 44 : min_capture_period_(min_capture_period), | |
| 45 sampling_state_(NOT_SAMPLING) { | |
| 46 DCHECK_GT(min_capture_period_, base::TimeDelta()); | |
| 47 } | |
| 48 | |
| 49 AnimatedContentSampler::~AnimatedContentSampler() {} | |
| 50 | |
| 51 void AnimatedContentSampler::SetTargetSamplingPeriod(base::TimeDelta period) { | |
| 52 target_sampling_period_ = period; | |
| 53 } | |
| 54 | |
| 55 void AnimatedContentSampler::ConsiderPresentationEvent( | |
| 56 const gfx::Rect& damage_rect, base::TimeTicks event_time) { | |
| 57 // Analyze the current event and recent history to determine whether animating | |
| 58 // content is detected. | |
| 59 AddObservation(damage_rect, event_time); | |
| 60 if (!AnalyzeObservations(event_time, &detected_region_, &detected_period_) || | |
| 61 detected_period_ <= base::TimeDelta() || | |
| 62 detected_period_ > | |
| 63 base::TimeDelta::FromMicroseconds(kMaxLockInPeriodMicros)) { | |
| 64 // Animated content not detected. | |
| 65 detected_region_ = gfx::Rect(); | |
| 66 detected_period_ = base::TimeDelta(); | |
| 67 sampling_state_ = NOT_SAMPLING; | |
| 68 return; | |
| 69 } | |
| 70 | |
| 71 // At this point, animation is being detected. Update the sampling period | |
| 72 // since the client may call the accessor method even if the heuristics below | |
| 73 // decide not to sample the current event. | |
| 74 sampling_period_ = ComputeSamplingPeriod(detected_period_, | |
| 75 target_sampling_period_, | |
| 76 min_capture_period_); | |
| 77 | |
| 78 // If this is the first event causing animating content to be detected, | |
| 79 // transition to the START_SAMPLING state. | |
| 80 if (sampling_state_ == NOT_SAMPLING) | |
| 81 sampling_state_ = START_SAMPLING; | |
| 82 | |
| 83 // If the current event does not represent a frame that is part of the | |
| 84 // animation, do not sample. | |
| 85 if (damage_rect != detected_region_) { | |
| 86 if (sampling_state_ == SHOULD_SAMPLE) | |
| 87 sampling_state_ = SHOULD_NOT_SAMPLE; | |
| 88 return; | |
| 89 } | |
| 90 | |
| 91 // When starting sampling, determine where to sync-up for sampling and frame | |
| 92 // timestamp rewriting. Otherwise, just add one animation period's worth of | |
| 93 // tokens to the token bucket. | |
| 94 if (sampling_state_ == START_SAMPLING) { | |
| 95 if (event_time - frame_timestamp_ > sampling_period_) { | |
| 96 // The frame timestamp sequence should start with the current event | |
| 97 // time. | |
| 98 frame_timestamp_ = event_time - sampling_period_; | |
| 99 token_bucket_ = sampling_period_; | |
| 100 } else { | |
| 101 // The frame timestamp sequence will continue from the last recorded | |
| 102 // frame timestamp. | |
| 103 token_bucket_ = event_time - frame_timestamp_; | |
| 104 } | |
| 105 | |
| 106 // Provide a little extra in the initial token bucket so that minor error in | |
| 107 // the detected period won't prevent a reasonably-timed event from being | |
| 108 // sampled. | |
| 109 token_bucket_ += detected_period_ / 2; | |
| 110 } else { | |
| 111 token_bucket_ += detected_period_; | |
| 112 } | |
| 113 | |
| 114 // If the token bucket is full enough, take tokens from it and propose | |
| 115 // sampling. Otherwise, do not sample. | |
| 116 DCHECK_LE(detected_period_, sampling_period_); | |
| 117 if (token_bucket_ >= sampling_period_) { | |
| 118 token_bucket_ -= sampling_period_; | |
| 119 frame_timestamp_ = ComputeNextFrameTimestamp(event_time); | |
| 120 sampling_state_ = SHOULD_SAMPLE; | |
| 121 } else { | |
| 122 sampling_state_ = SHOULD_NOT_SAMPLE; | |
| 123 } | |
| 124 } | |
| 125 | |
| 126 bool AnimatedContentSampler::HasProposal() const { | |
| 127 return sampling_state_ != NOT_SAMPLING; | |
| 128 } | |
| 129 | |
| 130 bool AnimatedContentSampler::ShouldSample() const { | |
| 131 return sampling_state_ == SHOULD_SAMPLE; | |
| 132 } | |
| 133 | |
| 134 void AnimatedContentSampler::RecordSample(base::TimeTicks frame_timestamp) { | |
| 135 if (sampling_state_ == NOT_SAMPLING) | |
| 136 frame_timestamp_ = frame_timestamp; | |
| 137 else if (sampling_state_ == SHOULD_SAMPLE) | |
| 138 sampling_state_ = SHOULD_NOT_SAMPLE; | |
| 139 } | |
| 140 | |
| 141 void AnimatedContentSampler::AddObservation(const gfx::Rect& damage_rect, | |
| 142 base::TimeTicks event_time) { | |
| 143 if (damage_rect.IsEmpty()) | |
| 144 return; // Useless observation. | |
| 145 | |
| 146 // Add the observation to the FIFO queue. | |
| 147 if (!observations_.empty() && observations_.back().event_time > event_time) | |
| 148 return; // The implementation assumes chronological order. | |
| 149 observations_.push_back(Observation(damage_rect, event_time)); | |
| 150 | |
| 151 // Prune-out old observations. | |
| 152 const base::TimeDelta threshold = | |
| 153 base::TimeDelta::FromMilliseconds(kMaxObservationWindowMillis); | |
| 154 while ((event_time - observations_.front().event_time) > threshold) | |
| 155 observations_.pop_front(); | |
| 156 } | |
| 157 | |
| 158 gfx::Rect AnimatedContentSampler::ElectMajorityDamageRect() const { | |
| 159 // This is an derivative of the Boyer-Moore Majority Vote Algorithm where each | |
| 160 // pixel in a candidate gets one vote, as opposed to each candidate getting | |
| 161 // one vote. | |
| 162 const gfx::Rect* candidate = NULL; | |
| 163 int64 votes = 0; | |
| 164 for (ObservationFifo::const_iterator i = observations_.begin(); | |
| 165 i != observations_.end(); ++i) { | |
| 166 DCHECK_GT(i->damage_rect.size().GetArea(), 0); | |
| 167 if (votes == 0) { | |
| 168 candidate = &(i->damage_rect); | |
| 169 votes = candidate->size().GetArea(); | |
| 170 } else if (i->damage_rect == *candidate) { | |
| 171 votes += i->damage_rect.size().GetArea(); | |
| 172 } else { | |
| 173 votes -= i->damage_rect.size().GetArea(); | |
| 174 if (votes < 0) { | |
| 175 candidate = &(i->damage_rect); | |
| 176 votes = -votes; | |
| 177 } | |
| 178 } | |
| 179 } | |
| 180 return (votes > 0) ? *candidate : gfx::Rect(); | |
| 181 } | |
| 182 | |
| 183 bool AnimatedContentSampler::AnalyzeObservations( | |
| 184 base::TimeTicks event_time, | |
| 185 gfx::Rect* rect, | |
| 186 base::TimeDelta* period) const { | |
| 187 const gfx::Rect elected_rect = ElectMajorityDamageRect(); | |
| 188 if (elected_rect.IsEmpty()) | |
| 189 return false; // There is no regular animation present. | |
| 190 | |
| 191 // Scan |observations_|, gathering metrics about the ones having a damage Rect | |
| 192 // equivalent to the |elected_rect|. Along the way, break early whenever the | |
| 193 // event times reveal a non-animating period. | |
| 194 int64 num_pixels_damaged_in_all = 0; | |
| 195 int64 num_pixels_damaged_in_chosen = 0; | |
| 196 base::TimeDelta sum_frame_durations; | |
| 197 size_t count_frame_durations = 0; | |
| 198 base::TimeTicks first_event_time; | |
| 199 base::TimeTicks last_event_time; | |
| 200 for (ObservationFifo::const_reverse_iterator i = observations_.rbegin(); | |
| 201 i != observations_.rend(); ++i) { | |
| 202 const int area = i->damage_rect.size().GetArea(); | |
| 203 num_pixels_damaged_in_all += area; | |
| 204 if (i->damage_rect != elected_rect) | |
| 205 continue; | |
| 206 num_pixels_damaged_in_chosen += area; | |
| 207 if (last_event_time.is_null()) { | |
| 208 last_event_time = i->event_time; | |
| 209 if ((event_time - last_event_time) >= | |
| 210 base::TimeDelta::FromMilliseconds(kNonAnimatingThresholdMillis)) { | |
| 211 return false; // Content animation has recently ended. | |
| 212 } | |
| 213 } else { | |
| 214 const base::TimeDelta frame_duration = first_event_time - i->event_time; | |
| 215 if (frame_duration >= | |
| 216 base::TimeDelta::FromMilliseconds(kNonAnimatingThresholdMillis)) { | |
| 217 break; // Content not animating before this point. | |
| 218 } | |
| 219 sum_frame_durations += frame_duration; | |
| 220 ++count_frame_durations; | |
| 221 } | |
| 222 first_event_time = i->event_time; | |
| 223 } | |
| 224 | |
| 225 if ((last_event_time - first_event_time) < | |
| 226 base::TimeDelta::FromMilliseconds(kMinObservationWindowMillis)) { | |
| 227 return false; // Content has not animated for long enough for accuracy. | |
| 228 } | |
| 229 if (num_pixels_damaged_in_chosen <= (num_pixels_damaged_in_all * 2 / 3)) | |
| 230 return false; // Animation is not damaging a supermajority of pixels. | |
| 231 | |
| 232 *rect = elected_rect; | |
| 233 DCHECK_GT(count_frame_durations, 0u); | |
| 234 *period = sum_frame_durations / count_frame_durations; | |
| 235 return true; | |
| 236 } | |
| 237 | |
| 238 base::TimeTicks AnimatedContentSampler::ComputeNextFrameTimestamp( | |
| 239 base::TimeTicks event_time) const { | |
| 240 // The ideal next frame timestamp one sampling period since the last one. | |
| 241 const base::TimeTicks ideal_timestamp = frame_timestamp_ + sampling_period_; | |
| 242 | |
| 243 // Account for two main sources of drift: 1) The clock drift of the system | |
| 244 // clock relative to the video hardware, which affects the event times; and | |
| 245 // 2) The small error introduced by this frame timestamp rewriting, as it is | |
| 246 // based on averaging over recent events. | |
| 247 // | |
| 248 // TODO(miu): This is similar to the ClockSmoother in | |
| 249 // media/base/audio_shifter.cc. Consider refactor-and-reuse here. | |
| 250 const base::TimeDelta drift = ideal_timestamp - event_time; | |
| 251 const int64 correct_over_num_frames = | |
| 252 base::TimeDelta::FromMilliseconds(kDriftCorrectionMillis) / | |
| 253 sampling_period_; | |
| 254 DCHECK_GT(correct_over_num_frames, 0); | |
| 255 | |
| 256 return ideal_timestamp - drift / correct_over_num_frames; | |
| 257 } | |
| 258 | |
| 259 // static | |
| 260 base::TimeDelta AnimatedContentSampler::ComputeSamplingPeriod( | |
| 261 base::TimeDelta animation_period, | |
| 262 base::TimeDelta target_sampling_period, | |
| 263 base::TimeDelta min_capture_period) { | |
| 264 // If the animation rate is unknown, return the ideal sampling period. | |
| 265 if (animation_period == base::TimeDelta()) { | |
| 266 return std::max(target_sampling_period, min_capture_period); | |
| 267 } | |
| 268 | |
| 269 // Determine whether subsampling is needed. If so, compute the sampling | |
| 270 // period corresponding to the sampling rate is the closest integer division | |
| 271 // of the animation frame rate to the target sampling rate. | |
| 272 // | |
| 273 // For example, consider a target sampling rate of 30 FPS and an animation | |
| 274 // rate of 42 FPS. Possible sampling rates would be 42/1 = 42, 42/2 = 21, | |
| 275 // 42/3 = 14, and so on. Of these candidates, 21 FPS is closest to 30. | |
| 276 base::TimeDelta sampling_period; | |
| 277 if (animation_period < target_sampling_period) { | |
| 278 const int64 ratio = target_sampling_period / animation_period; | |
| 279 const double target_fps = 1.0 / target_sampling_period.InSecondsF(); | |
| 280 const double animation_fps = 1.0 / animation_period.InSecondsF(); | |
| 281 if (std::abs(animation_fps / ratio - target_fps) < | |
| 282 std::abs(animation_fps / (ratio + 1) - target_fps)) { | |
| 283 sampling_period = ratio * animation_period; | |
| 284 } else { | |
| 285 sampling_period = (ratio + 1) * animation_period; | |
| 286 } | |
| 287 } else { | |
| 288 sampling_period = animation_period; | |
| 289 } | |
| 290 return std::max(sampling_period, min_capture_period); | |
| 291 } | |
| 292 | |
| 293 } // namespace content | |
| OLD | NEW |