Index: source/libvpx/vp9/encoder/x86/vp9_dct_impl_sse2.c |
diff --git a/source/libvpx/vp9/encoder/x86/vp9_dct_impl_sse2.c b/source/libvpx/vp9/encoder/x86/vp9_dct_impl_sse2.c |
deleted file mode 100644 |
index e03a76d2e894305145da306ec96aa113d33a472a..0000000000000000000000000000000000000000 |
--- a/source/libvpx/vp9/encoder/x86/vp9_dct_impl_sse2.c |
+++ /dev/null |
@@ -1,1022 +0,0 @@ |
-/* |
- * Copyright (c) 2014 The WebM project authors. All Rights Reserved. |
- * |
- * Use of this source code is governed by a BSD-style license |
- * that can be found in the LICENSE file in the root of the source |
- * tree. An additional intellectual property rights grant can be found |
- * in the file PATENTS. All contributing project authors may |
- * be found in the AUTHORS file in the root of the source tree. |
- */ |
- |
-#include <emmintrin.h> // SSE2 |
-#include "vp9/common/vp9_idct.h" // for cospi constants |
-#include "vp9/encoder/vp9_dct.h" |
-#include "vp9/encoder/x86/vp9_dct_sse2.h" |
-#include "vpx_ports/mem.h" |
- |
-#if DCT_HIGH_BIT_DEPTH |
-#define ADD_EPI16 _mm_adds_epi16 |
-#define SUB_EPI16 _mm_subs_epi16 |
- |
-#else |
-#define ADD_EPI16 _mm_add_epi16 |
-#define SUB_EPI16 _mm_sub_epi16 |
-#endif |
- |
-void FDCT4x4_2D(const int16_t *input, tran_low_t *output, int stride) { |
- // This 2D transform implements 4 vertical 1D transforms followed |
- // by 4 horizontal 1D transforms. The multiplies and adds are as given |
- // by Chen, Smith and Fralick ('77). The commands for moving the data |
- // around have been minimized by hand. |
- // For the purposes of the comments, the 16 inputs are referred to at i0 |
- // through iF (in raster order), intermediate variables are a0, b0, c0 |
- // through f, and correspond to the in-place computations mapped to input |
- // locations. The outputs, o0 through oF are labeled according to the |
- // output locations. |
- |
- // Constants |
- // These are the coefficients used for the multiplies. |
- // In the comments, pN means cos(N pi /64) and mN is -cos(N pi /64), |
- // where cospi_N_64 = cos(N pi /64) |
- const __m128i k__cospi_A = _mm_setr_epi16(cospi_16_64, cospi_16_64, |
- cospi_16_64, cospi_16_64, |
- cospi_16_64, -cospi_16_64, |
- cospi_16_64, -cospi_16_64); |
- const __m128i k__cospi_B = _mm_setr_epi16(cospi_16_64, -cospi_16_64, |
- cospi_16_64, -cospi_16_64, |
- cospi_16_64, cospi_16_64, |
- cospi_16_64, cospi_16_64); |
- const __m128i k__cospi_C = _mm_setr_epi16(cospi_8_64, cospi_24_64, |
- cospi_8_64, cospi_24_64, |
- cospi_24_64, -cospi_8_64, |
- cospi_24_64, -cospi_8_64); |
- const __m128i k__cospi_D = _mm_setr_epi16(cospi_24_64, -cospi_8_64, |
- cospi_24_64, -cospi_8_64, |
- cospi_8_64, cospi_24_64, |
- cospi_8_64, cospi_24_64); |
- const __m128i k__cospi_E = _mm_setr_epi16(cospi_16_64, cospi_16_64, |
- cospi_16_64, cospi_16_64, |
- cospi_16_64, cospi_16_64, |
- cospi_16_64, cospi_16_64); |
- const __m128i k__cospi_F = _mm_setr_epi16(cospi_16_64, -cospi_16_64, |
- cospi_16_64, -cospi_16_64, |
- cospi_16_64, -cospi_16_64, |
- cospi_16_64, -cospi_16_64); |
- const __m128i k__cospi_G = _mm_setr_epi16(cospi_8_64, cospi_24_64, |
- cospi_8_64, cospi_24_64, |
- -cospi_8_64, -cospi_24_64, |
- -cospi_8_64, -cospi_24_64); |
- const __m128i k__cospi_H = _mm_setr_epi16(cospi_24_64, -cospi_8_64, |
- cospi_24_64, -cospi_8_64, |
- -cospi_24_64, cospi_8_64, |
- -cospi_24_64, cospi_8_64); |
- |
- const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING); |
- // This second rounding constant saves doing some extra adds at the end |
- const __m128i k__DCT_CONST_ROUNDING2 = _mm_set1_epi32(DCT_CONST_ROUNDING |
- +(DCT_CONST_ROUNDING << 1)); |
- const int DCT_CONST_BITS2 = DCT_CONST_BITS + 2; |
- const __m128i k__nonzero_bias_a = _mm_setr_epi16(0, 1, 1, 1, 1, 1, 1, 1); |
- const __m128i k__nonzero_bias_b = _mm_setr_epi16(1, 0, 0, 0, 0, 0, 0, 0); |
- __m128i in0, in1; |
-#if DCT_HIGH_BIT_DEPTH |
- __m128i cmp0, cmp1; |
- int test, overflow; |
-#endif |
- |
- // Load inputs. |
- in0 = _mm_loadl_epi64((const __m128i *)(input + 0 * stride)); |
- in1 = _mm_loadl_epi64((const __m128i *)(input + 1 * stride)); |
- in1 = _mm_unpacklo_epi64(in1, _mm_loadl_epi64((const __m128i *) |
- (input + 2 * stride))); |
- in0 = _mm_unpacklo_epi64(in0, _mm_loadl_epi64((const __m128i *) |
- (input + 3 * stride))); |
- // in0 = [i0 i1 i2 i3 iC iD iE iF] |
- // in1 = [i4 i5 i6 i7 i8 i9 iA iB] |
-#if DCT_HIGH_BIT_DEPTH |
- // Check inputs small enough to use optimised code |
- cmp0 = _mm_xor_si128(_mm_cmpgt_epi16(in0, _mm_set1_epi16(0x3ff)), |
- _mm_cmplt_epi16(in0, _mm_set1_epi16(0xfc00))); |
- cmp1 = _mm_xor_si128(_mm_cmpgt_epi16(in1, _mm_set1_epi16(0x3ff)), |
- _mm_cmplt_epi16(in1, _mm_set1_epi16(0xfc00))); |
- test = _mm_movemask_epi8(_mm_or_si128(cmp0, cmp1)); |
- if (test) { |
- vp9_highbd_fdct4x4_c(input, output, stride); |
- return; |
- } |
-#endif // DCT_HIGH_BIT_DEPTH |
- |
- // multiply by 16 to give some extra precision |
- in0 = _mm_slli_epi16(in0, 4); |
- in1 = _mm_slli_epi16(in1, 4); |
- // if (i == 0 && input[0]) input[0] += 1; |
- // add 1 to the upper left pixel if it is non-zero, which helps reduce |
- // the round-trip error |
- { |
- // The mask will only contain whether the first value is zero, all |
- // other comparison will fail as something shifted by 4 (above << 4) |
- // can never be equal to one. To increment in the non-zero case, we |
- // add the mask and one for the first element: |
- // - if zero, mask = -1, v = v - 1 + 1 = v |
- // - if non-zero, mask = 0, v = v + 0 + 1 = v + 1 |
- __m128i mask = _mm_cmpeq_epi16(in0, k__nonzero_bias_a); |
- in0 = _mm_add_epi16(in0, mask); |
- in0 = _mm_add_epi16(in0, k__nonzero_bias_b); |
- } |
- // There are 4 total stages, alternating between an add/subtract stage |
- // followed by an multiply-and-add stage. |
- { |
- // Stage 1: Add/subtract |
- |
- // in0 = [i0 i1 i2 i3 iC iD iE iF] |
- // in1 = [i4 i5 i6 i7 i8 i9 iA iB] |
- const __m128i r0 = _mm_unpacklo_epi16(in0, in1); |
- const __m128i r1 = _mm_unpackhi_epi16(in0, in1); |
- // r0 = [i0 i4 i1 i5 i2 i6 i3 i7] |
- // r1 = [iC i8 iD i9 iE iA iF iB] |
- const __m128i r2 = _mm_shuffle_epi32(r0, 0xB4); |
- const __m128i r3 = _mm_shuffle_epi32(r1, 0xB4); |
- // r2 = [i0 i4 i1 i5 i3 i7 i2 i6] |
- // r3 = [iC i8 iD i9 iF iB iE iA] |
- |
- const __m128i t0 = _mm_add_epi16(r2, r3); |
- const __m128i t1 = _mm_sub_epi16(r2, r3); |
- // t0 = [a0 a4 a1 a5 a3 a7 a2 a6] |
- // t1 = [aC a8 aD a9 aF aB aE aA] |
- |
- // Stage 2: multiply by constants (which gets us into 32 bits). |
- // The constants needed here are: |
- // k__cospi_A = [p16 p16 p16 p16 p16 m16 p16 m16] |
- // k__cospi_B = [p16 m16 p16 m16 p16 p16 p16 p16] |
- // k__cospi_C = [p08 p24 p08 p24 p24 m08 p24 m08] |
- // k__cospi_D = [p24 m08 p24 m08 p08 p24 p08 p24] |
- const __m128i u0 = _mm_madd_epi16(t0, k__cospi_A); |
- const __m128i u2 = _mm_madd_epi16(t0, k__cospi_B); |
- const __m128i u1 = _mm_madd_epi16(t1, k__cospi_C); |
- const __m128i u3 = _mm_madd_epi16(t1, k__cospi_D); |
- // Then add and right-shift to get back to 16-bit range |
- const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING); |
- const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING); |
- const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING); |
- const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING); |
- const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS); |
- const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS); |
- const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS); |
- const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS); |
- // w0 = [b0 b1 b7 b6] |
- // w1 = [b8 b9 bF bE] |
- // w2 = [b4 b5 b3 b2] |
- // w3 = [bC bD bB bA] |
- const __m128i x0 = _mm_packs_epi32(w0, w1); |
- const __m128i x1 = _mm_packs_epi32(w2, w3); |
-#if DCT_HIGH_BIT_DEPTH |
- overflow = check_epi16_overflow_x2(&x0, &x1); |
- if (overflow) { |
- vp9_highbd_fdct4x4_c(input, output, stride); |
- return; |
- } |
-#endif // DCT_HIGH_BIT_DEPTH |
- // x0 = [b0 b1 b7 b6 b8 b9 bF bE] |
- // x1 = [b4 b5 b3 b2 bC bD bB bA] |
- in0 = _mm_shuffle_epi32(x0, 0xD8); |
- in1 = _mm_shuffle_epi32(x1, 0x8D); |
- // in0 = [b0 b1 b8 b9 b7 b6 bF bE] |
- // in1 = [b3 b2 bB bA b4 b5 bC bD] |
- } |
- { |
- // vertical DCTs finished. Now we do the horizontal DCTs. |
- // Stage 3: Add/subtract |
- |
- const __m128i t0 = ADD_EPI16(in0, in1); |
- const __m128i t1 = SUB_EPI16(in0, in1); |
- // t0 = [c0 c1 c8 c9 c4 c5 cC cD] |
- // t1 = [c3 c2 cB cA -c7 -c6 -cF -cE] |
-#if DCT_HIGH_BIT_DEPTH |
- overflow = check_epi16_overflow_x2(&t0, &t1); |
- if (overflow) { |
- vp9_highbd_fdct4x4_c(input, output, stride); |
- return; |
- } |
-#endif // DCT_HIGH_BIT_DEPTH |
- |
- // Stage 4: multiply by constants (which gets us into 32 bits). |
- { |
- // The constants needed here are: |
- // k__cospi_E = [p16 p16 p16 p16 p16 p16 p16 p16] |
- // k__cospi_F = [p16 m16 p16 m16 p16 m16 p16 m16] |
- // k__cospi_G = [p08 p24 p08 p24 m08 m24 m08 m24] |
- // k__cospi_H = [p24 m08 p24 m08 m24 p08 m24 p08] |
- const __m128i u0 = _mm_madd_epi16(t0, k__cospi_E); |
- const __m128i u1 = _mm_madd_epi16(t0, k__cospi_F); |
- const __m128i u2 = _mm_madd_epi16(t1, k__cospi_G); |
- const __m128i u3 = _mm_madd_epi16(t1, k__cospi_H); |
- // Then add and right-shift to get back to 16-bit range |
- // but this combines the final right-shift as well to save operations |
- // This unusual rounding operations is to maintain bit-accurate |
- // compatibility with the c version of this function which has two |
- // rounding steps in a row. |
- const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING2); |
- const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING2); |
- const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING2); |
- const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING2); |
- const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS2); |
- const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS2); |
- const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS2); |
- const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS2); |
- // w0 = [o0 o4 o8 oC] |
- // w1 = [o2 o6 oA oE] |
- // w2 = [o1 o5 o9 oD] |
- // w3 = [o3 o7 oB oF] |
- // remember the o's are numbered according to the correct output location |
- const __m128i x0 = _mm_packs_epi32(w0, w1); |
- const __m128i x1 = _mm_packs_epi32(w2, w3); |
-#if DCT_HIGH_BIT_DEPTH |
- overflow = check_epi16_overflow_x2(&x0, &x1); |
- if (overflow) { |
- vp9_highbd_fdct4x4_c(input, output, stride); |
- return; |
- } |
-#endif // DCT_HIGH_BIT_DEPTH |
- { |
- // x0 = [o0 o4 o8 oC o2 o6 oA oE] |
- // x1 = [o1 o5 o9 oD o3 o7 oB oF] |
- const __m128i y0 = _mm_unpacklo_epi16(x0, x1); |
- const __m128i y1 = _mm_unpackhi_epi16(x0, x1); |
- // y0 = [o0 o1 o4 o5 o8 o9 oC oD] |
- // y1 = [o2 o3 o6 o7 oA oB oE oF] |
- in0 = _mm_unpacklo_epi32(y0, y1); |
- // in0 = [o0 o1 o2 o3 o4 o5 o6 o7] |
- in1 = _mm_unpackhi_epi32(y0, y1); |
- // in1 = [o8 o9 oA oB oC oD oE oF] |
- } |
- } |
- } |
- // Post-condition (v + 1) >> 2 is now incorporated into previous |
- // add and right-shift commands. Only 2 store instructions needed |
- // because we are using the fact that 1/3 are stored just after 0/2. |
- storeu_output(&in0, output + 0 * 4); |
- storeu_output(&in1, output + 2 * 4); |
-} |
- |
- |
-void FDCT8x8_2D(const int16_t *input, tran_low_t *output, int stride) { |
- int pass; |
- // Constants |
- // When we use them, in one case, they are all the same. In all others |
- // it's a pair of them that we need to repeat four times. This is done |
- // by constructing the 32 bit constant corresponding to that pair. |
- const __m128i k__cospi_p16_p16 = _mm_set1_epi16(cospi_16_64); |
- const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64); |
- const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64); |
- const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64); |
- const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64); |
- const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64); |
- const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64); |
- const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64); |
- const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING); |
-#if DCT_HIGH_BIT_DEPTH |
- int overflow; |
-#endif |
- // Load input |
- __m128i in0 = _mm_load_si128((const __m128i *)(input + 0 * stride)); |
- __m128i in1 = _mm_load_si128((const __m128i *)(input + 1 * stride)); |
- __m128i in2 = _mm_load_si128((const __m128i *)(input + 2 * stride)); |
- __m128i in3 = _mm_load_si128((const __m128i *)(input + 3 * stride)); |
- __m128i in4 = _mm_load_si128((const __m128i *)(input + 4 * stride)); |
- __m128i in5 = _mm_load_si128((const __m128i *)(input + 5 * stride)); |
- __m128i in6 = _mm_load_si128((const __m128i *)(input + 6 * stride)); |
- __m128i in7 = _mm_load_si128((const __m128i *)(input + 7 * stride)); |
- // Pre-condition input (shift by two) |
- in0 = _mm_slli_epi16(in0, 2); |
- in1 = _mm_slli_epi16(in1, 2); |
- in2 = _mm_slli_epi16(in2, 2); |
- in3 = _mm_slli_epi16(in3, 2); |
- in4 = _mm_slli_epi16(in4, 2); |
- in5 = _mm_slli_epi16(in5, 2); |
- in6 = _mm_slli_epi16(in6, 2); |
- in7 = _mm_slli_epi16(in7, 2); |
- |
- // We do two passes, first the columns, then the rows. The results of the |
- // first pass are transposed so that the same column code can be reused. The |
- // results of the second pass are also transposed so that the rows (processed |
- // as columns) are put back in row positions. |
- for (pass = 0; pass < 2; pass++) { |
- // To store results of each pass before the transpose. |
- __m128i res0, res1, res2, res3, res4, res5, res6, res7; |
- // Add/subtract |
- const __m128i q0 = ADD_EPI16(in0, in7); |
- const __m128i q1 = ADD_EPI16(in1, in6); |
- const __m128i q2 = ADD_EPI16(in2, in5); |
- const __m128i q3 = ADD_EPI16(in3, in4); |
- const __m128i q4 = SUB_EPI16(in3, in4); |
- const __m128i q5 = SUB_EPI16(in2, in5); |
- const __m128i q6 = SUB_EPI16(in1, in6); |
- const __m128i q7 = SUB_EPI16(in0, in7); |
-#if DCT_HIGH_BIT_DEPTH |
- if (pass == 1) { |
- overflow = check_epi16_overflow_x8(&q0, &q1, &q2, &q3, |
- &q4, &q5, &q6, &q7); |
- if (overflow) { |
- vp9_highbd_fdct8x8_c(input, output, stride); |
- return; |
- } |
- } |
-#endif // DCT_HIGH_BIT_DEPTH |
- // Work on first four results |
- { |
- // Add/subtract |
- const __m128i r0 = ADD_EPI16(q0, q3); |
- const __m128i r1 = ADD_EPI16(q1, q2); |
- const __m128i r2 = SUB_EPI16(q1, q2); |
- const __m128i r3 = SUB_EPI16(q0, q3); |
-#if DCT_HIGH_BIT_DEPTH |
- overflow = check_epi16_overflow_x4(&r0, &r1, &r2, &r3); |
- if (overflow) { |
- vp9_highbd_fdct8x8_c(input, output, stride); |
- return; |
- } |
-#endif // DCT_HIGH_BIT_DEPTH |
- // Interleave to do the multiply by constants which gets us into 32bits |
- { |
- const __m128i t0 = _mm_unpacklo_epi16(r0, r1); |
- const __m128i t1 = _mm_unpackhi_epi16(r0, r1); |
- const __m128i t2 = _mm_unpacklo_epi16(r2, r3); |
- const __m128i t3 = _mm_unpackhi_epi16(r2, r3); |
- const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p16_p16); |
- const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p16_p16); |
- const __m128i u2 = _mm_madd_epi16(t0, k__cospi_p16_m16); |
- const __m128i u3 = _mm_madd_epi16(t1, k__cospi_p16_m16); |
- const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p24_p08); |
- const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p24_p08); |
- const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m08_p24); |
- const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m08_p24); |
- // dct_const_round_shift |
- const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING); |
- const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING); |
- const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING); |
- const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING); |
- const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING); |
- const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING); |
- const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING); |
- const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING); |
- const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS); |
- const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS); |
- const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS); |
- const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS); |
- const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS); |
- const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS); |
- const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS); |
- const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS); |
- // Combine |
- res0 = _mm_packs_epi32(w0, w1); |
- res4 = _mm_packs_epi32(w2, w3); |
- res2 = _mm_packs_epi32(w4, w5); |
- res6 = _mm_packs_epi32(w6, w7); |
-#if DCT_HIGH_BIT_DEPTH |
- overflow = check_epi16_overflow_x4(&res0, &res4, &res2, &res6); |
- if (overflow) { |
- vp9_highbd_fdct8x8_c(input, output, stride); |
- return; |
- } |
-#endif // DCT_HIGH_BIT_DEPTH |
- } |
- } |
- // Work on next four results |
- { |
- // Interleave to do the multiply by constants which gets us into 32bits |
- const __m128i d0 = _mm_unpacklo_epi16(q6, q5); |
- const __m128i d1 = _mm_unpackhi_epi16(q6, q5); |
- const __m128i e0 = _mm_madd_epi16(d0, k__cospi_p16_m16); |
- const __m128i e1 = _mm_madd_epi16(d1, k__cospi_p16_m16); |
- const __m128i e2 = _mm_madd_epi16(d0, k__cospi_p16_p16); |
- const __m128i e3 = _mm_madd_epi16(d1, k__cospi_p16_p16); |
- // dct_const_round_shift |
- const __m128i f0 = _mm_add_epi32(e0, k__DCT_CONST_ROUNDING); |
- const __m128i f1 = _mm_add_epi32(e1, k__DCT_CONST_ROUNDING); |
- const __m128i f2 = _mm_add_epi32(e2, k__DCT_CONST_ROUNDING); |
- const __m128i f3 = _mm_add_epi32(e3, k__DCT_CONST_ROUNDING); |
- const __m128i s0 = _mm_srai_epi32(f0, DCT_CONST_BITS); |
- const __m128i s1 = _mm_srai_epi32(f1, DCT_CONST_BITS); |
- const __m128i s2 = _mm_srai_epi32(f2, DCT_CONST_BITS); |
- const __m128i s3 = _mm_srai_epi32(f3, DCT_CONST_BITS); |
- // Combine |
- const __m128i r0 = _mm_packs_epi32(s0, s1); |
- const __m128i r1 = _mm_packs_epi32(s2, s3); |
-#if DCT_HIGH_BIT_DEPTH |
- overflow = check_epi16_overflow_x2(&r0, &r1); |
- if (overflow) { |
- vp9_highbd_fdct8x8_c(input, output, stride); |
- return; |
- } |
-#endif // DCT_HIGH_BIT_DEPTH |
- { |
- // Add/subtract |
- const __m128i x0 = ADD_EPI16(q4, r0); |
- const __m128i x1 = SUB_EPI16(q4, r0); |
- const __m128i x2 = SUB_EPI16(q7, r1); |
- const __m128i x3 = ADD_EPI16(q7, r1); |
-#if DCT_HIGH_BIT_DEPTH |
- overflow = check_epi16_overflow_x4(&x0, &x1, &x2, &x3); |
- if (overflow) { |
- vp9_highbd_fdct8x8_c(input, output, stride); |
- return; |
- } |
-#endif // DCT_HIGH_BIT_DEPTH |
- // Interleave to do the multiply by constants which gets us into 32bits |
- { |
- const __m128i t0 = _mm_unpacklo_epi16(x0, x3); |
- const __m128i t1 = _mm_unpackhi_epi16(x0, x3); |
- const __m128i t2 = _mm_unpacklo_epi16(x1, x2); |
- const __m128i t3 = _mm_unpackhi_epi16(x1, x2); |
- const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p28_p04); |
- const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p28_p04); |
- const __m128i u2 = _mm_madd_epi16(t0, k__cospi_m04_p28); |
- const __m128i u3 = _mm_madd_epi16(t1, k__cospi_m04_p28); |
- const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p12_p20); |
- const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p12_p20); |
- const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m20_p12); |
- const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m20_p12); |
- // dct_const_round_shift |
- const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING); |
- const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING); |
- const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING); |
- const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING); |
- const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING); |
- const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING); |
- const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING); |
- const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING); |
- const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS); |
- const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS); |
- const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS); |
- const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS); |
- const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS); |
- const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS); |
- const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS); |
- const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS); |
- // Combine |
- res1 = _mm_packs_epi32(w0, w1); |
- res7 = _mm_packs_epi32(w2, w3); |
- res5 = _mm_packs_epi32(w4, w5); |
- res3 = _mm_packs_epi32(w6, w7); |
-#if DCT_HIGH_BIT_DEPTH |
- overflow = check_epi16_overflow_x4(&res1, &res7, &res5, &res3); |
- if (overflow) { |
- vp9_highbd_fdct8x8_c(input, output, stride); |
- return; |
- } |
-#endif // DCT_HIGH_BIT_DEPTH |
- } |
- } |
- } |
- // Transpose the 8x8. |
- { |
- // 00 01 02 03 04 05 06 07 |
- // 10 11 12 13 14 15 16 17 |
- // 20 21 22 23 24 25 26 27 |
- // 30 31 32 33 34 35 36 37 |
- // 40 41 42 43 44 45 46 47 |
- // 50 51 52 53 54 55 56 57 |
- // 60 61 62 63 64 65 66 67 |
- // 70 71 72 73 74 75 76 77 |
- const __m128i tr0_0 = _mm_unpacklo_epi16(res0, res1); |
- const __m128i tr0_1 = _mm_unpacklo_epi16(res2, res3); |
- const __m128i tr0_2 = _mm_unpackhi_epi16(res0, res1); |
- const __m128i tr0_3 = _mm_unpackhi_epi16(res2, res3); |
- const __m128i tr0_4 = _mm_unpacklo_epi16(res4, res5); |
- const __m128i tr0_5 = _mm_unpacklo_epi16(res6, res7); |
- const __m128i tr0_6 = _mm_unpackhi_epi16(res4, res5); |
- const __m128i tr0_7 = _mm_unpackhi_epi16(res6, res7); |
- // 00 10 01 11 02 12 03 13 |
- // 20 30 21 31 22 32 23 33 |
- // 04 14 05 15 06 16 07 17 |
- // 24 34 25 35 26 36 27 37 |
- // 40 50 41 51 42 52 43 53 |
- // 60 70 61 71 62 72 63 73 |
- // 54 54 55 55 56 56 57 57 |
- // 64 74 65 75 66 76 67 77 |
- const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1); |
- const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_2, tr0_3); |
- const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1); |
- const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_2, tr0_3); |
- const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_4, tr0_5); |
- const __m128i tr1_5 = _mm_unpacklo_epi32(tr0_6, tr0_7); |
- const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_4, tr0_5); |
- const __m128i tr1_7 = _mm_unpackhi_epi32(tr0_6, tr0_7); |
- // 00 10 20 30 01 11 21 31 |
- // 40 50 60 70 41 51 61 71 |
- // 02 12 22 32 03 13 23 33 |
- // 42 52 62 72 43 53 63 73 |
- // 04 14 24 34 05 15 21 36 |
- // 44 54 64 74 45 55 61 76 |
- // 06 16 26 36 07 17 27 37 |
- // 46 56 66 76 47 57 67 77 |
- in0 = _mm_unpacklo_epi64(tr1_0, tr1_4); |
- in1 = _mm_unpackhi_epi64(tr1_0, tr1_4); |
- in2 = _mm_unpacklo_epi64(tr1_2, tr1_6); |
- in3 = _mm_unpackhi_epi64(tr1_2, tr1_6); |
- in4 = _mm_unpacklo_epi64(tr1_1, tr1_5); |
- in5 = _mm_unpackhi_epi64(tr1_1, tr1_5); |
- in6 = _mm_unpacklo_epi64(tr1_3, tr1_7); |
- in7 = _mm_unpackhi_epi64(tr1_3, tr1_7); |
- // 00 10 20 30 40 50 60 70 |
- // 01 11 21 31 41 51 61 71 |
- // 02 12 22 32 42 52 62 72 |
- // 03 13 23 33 43 53 63 73 |
- // 04 14 24 34 44 54 64 74 |
- // 05 15 25 35 45 55 65 75 |
- // 06 16 26 36 46 56 66 76 |
- // 07 17 27 37 47 57 67 77 |
- } |
- } |
- // Post-condition output and store it |
- { |
- // Post-condition (division by two) |
- // division of two 16 bits signed numbers using shifts |
- // n / 2 = (n - (n >> 15)) >> 1 |
- const __m128i sign_in0 = _mm_srai_epi16(in0, 15); |
- const __m128i sign_in1 = _mm_srai_epi16(in1, 15); |
- const __m128i sign_in2 = _mm_srai_epi16(in2, 15); |
- const __m128i sign_in3 = _mm_srai_epi16(in3, 15); |
- const __m128i sign_in4 = _mm_srai_epi16(in4, 15); |
- const __m128i sign_in5 = _mm_srai_epi16(in5, 15); |
- const __m128i sign_in6 = _mm_srai_epi16(in6, 15); |
- const __m128i sign_in7 = _mm_srai_epi16(in7, 15); |
- in0 = _mm_sub_epi16(in0, sign_in0); |
- in1 = _mm_sub_epi16(in1, sign_in1); |
- in2 = _mm_sub_epi16(in2, sign_in2); |
- in3 = _mm_sub_epi16(in3, sign_in3); |
- in4 = _mm_sub_epi16(in4, sign_in4); |
- in5 = _mm_sub_epi16(in5, sign_in5); |
- in6 = _mm_sub_epi16(in6, sign_in6); |
- in7 = _mm_sub_epi16(in7, sign_in7); |
- in0 = _mm_srai_epi16(in0, 1); |
- in1 = _mm_srai_epi16(in1, 1); |
- in2 = _mm_srai_epi16(in2, 1); |
- in3 = _mm_srai_epi16(in3, 1); |
- in4 = _mm_srai_epi16(in4, 1); |
- in5 = _mm_srai_epi16(in5, 1); |
- in6 = _mm_srai_epi16(in6, 1); |
- in7 = _mm_srai_epi16(in7, 1); |
- // store results |
- store_output(&in0, (output + 0 * 8)); |
- store_output(&in1, (output + 1 * 8)); |
- store_output(&in2, (output + 2 * 8)); |
- store_output(&in3, (output + 3 * 8)); |
- store_output(&in4, (output + 4 * 8)); |
- store_output(&in5, (output + 5 * 8)); |
- store_output(&in6, (output + 6 * 8)); |
- store_output(&in7, (output + 7 * 8)); |
- } |
-} |
- |
-void FDCT16x16_2D(const int16_t *input, tran_low_t *output, int stride) { |
- // The 2D transform is done with two passes which are actually pretty |
- // similar. In the first one, we transform the columns and transpose |
- // the results. In the second one, we transform the rows. To achieve that, |
- // as the first pass results are transposed, we transpose the columns (that |
- // is the transposed rows) and transpose the results (so that it goes back |
- // in normal/row positions). |
- int pass; |
- // We need an intermediate buffer between passes. |
- DECLARE_ALIGNED(16, int16_t, intermediate[256]); |
- const int16_t *in = input; |
- int16_t *out0 = intermediate; |
- tran_low_t *out1 = output; |
- // Constants |
- // When we use them, in one case, they are all the same. In all others |
- // it's a pair of them that we need to repeat four times. This is done |
- // by constructing the 32 bit constant corresponding to that pair. |
- const __m128i k__cospi_p16_p16 = _mm_set1_epi16(cospi_16_64); |
- const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64); |
- const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64); |
- const __m128i k__cospi_p08_m24 = pair_set_epi16(cospi_8_64, -cospi_24_64); |
- const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64); |
- const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64); |
- const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64); |
- const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64); |
- const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64); |
- const __m128i k__cospi_p30_p02 = pair_set_epi16(cospi_30_64, cospi_2_64); |
- const __m128i k__cospi_p14_p18 = pair_set_epi16(cospi_14_64, cospi_18_64); |
- const __m128i k__cospi_m02_p30 = pair_set_epi16(-cospi_2_64, cospi_30_64); |
- const __m128i k__cospi_m18_p14 = pair_set_epi16(-cospi_18_64, cospi_14_64); |
- const __m128i k__cospi_p22_p10 = pair_set_epi16(cospi_22_64, cospi_10_64); |
- const __m128i k__cospi_p06_p26 = pair_set_epi16(cospi_6_64, cospi_26_64); |
- const __m128i k__cospi_m10_p22 = pair_set_epi16(-cospi_10_64, cospi_22_64); |
- const __m128i k__cospi_m26_p06 = pair_set_epi16(-cospi_26_64, cospi_6_64); |
- const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING); |
- const __m128i kOne = _mm_set1_epi16(1); |
- // Do the two transform/transpose passes |
- for (pass = 0; pass < 2; ++pass) { |
- // We process eight columns (transposed rows in second pass) at a time. |
- int column_start; |
-#if DCT_HIGH_BIT_DEPTH |
- int overflow; |
-#endif |
- for (column_start = 0; column_start < 16; column_start += 8) { |
- __m128i in00, in01, in02, in03, in04, in05, in06, in07; |
- __m128i in08, in09, in10, in11, in12, in13, in14, in15; |
- __m128i input0, input1, input2, input3, input4, input5, input6, input7; |
- __m128i step1_0, step1_1, step1_2, step1_3; |
- __m128i step1_4, step1_5, step1_6, step1_7; |
- __m128i step2_1, step2_2, step2_3, step2_4, step2_5, step2_6; |
- __m128i step3_0, step3_1, step3_2, step3_3; |
- __m128i step3_4, step3_5, step3_6, step3_7; |
- __m128i res00, res01, res02, res03, res04, res05, res06, res07; |
- __m128i res08, res09, res10, res11, res12, res13, res14, res15; |
- // Load and pre-condition input. |
- if (0 == pass) { |
- in00 = _mm_load_si128((const __m128i *)(in + 0 * stride)); |
- in01 = _mm_load_si128((const __m128i *)(in + 1 * stride)); |
- in02 = _mm_load_si128((const __m128i *)(in + 2 * stride)); |
- in03 = _mm_load_si128((const __m128i *)(in + 3 * stride)); |
- in04 = _mm_load_si128((const __m128i *)(in + 4 * stride)); |
- in05 = _mm_load_si128((const __m128i *)(in + 5 * stride)); |
- in06 = _mm_load_si128((const __m128i *)(in + 6 * stride)); |
- in07 = _mm_load_si128((const __m128i *)(in + 7 * stride)); |
- in08 = _mm_load_si128((const __m128i *)(in + 8 * stride)); |
- in09 = _mm_load_si128((const __m128i *)(in + 9 * stride)); |
- in10 = _mm_load_si128((const __m128i *)(in + 10 * stride)); |
- in11 = _mm_load_si128((const __m128i *)(in + 11 * stride)); |
- in12 = _mm_load_si128((const __m128i *)(in + 12 * stride)); |
- in13 = _mm_load_si128((const __m128i *)(in + 13 * stride)); |
- in14 = _mm_load_si128((const __m128i *)(in + 14 * stride)); |
- in15 = _mm_load_si128((const __m128i *)(in + 15 * stride)); |
- // x = x << 2 |
- in00 = _mm_slli_epi16(in00, 2); |
- in01 = _mm_slli_epi16(in01, 2); |
- in02 = _mm_slli_epi16(in02, 2); |
- in03 = _mm_slli_epi16(in03, 2); |
- in04 = _mm_slli_epi16(in04, 2); |
- in05 = _mm_slli_epi16(in05, 2); |
- in06 = _mm_slli_epi16(in06, 2); |
- in07 = _mm_slli_epi16(in07, 2); |
- in08 = _mm_slli_epi16(in08, 2); |
- in09 = _mm_slli_epi16(in09, 2); |
- in10 = _mm_slli_epi16(in10, 2); |
- in11 = _mm_slli_epi16(in11, 2); |
- in12 = _mm_slli_epi16(in12, 2); |
- in13 = _mm_slli_epi16(in13, 2); |
- in14 = _mm_slli_epi16(in14, 2); |
- in15 = _mm_slli_epi16(in15, 2); |
- } else { |
- in00 = _mm_load_si128((const __m128i *)(in + 0 * 16)); |
- in01 = _mm_load_si128((const __m128i *)(in + 1 * 16)); |
- in02 = _mm_load_si128((const __m128i *)(in + 2 * 16)); |
- in03 = _mm_load_si128((const __m128i *)(in + 3 * 16)); |
- in04 = _mm_load_si128((const __m128i *)(in + 4 * 16)); |
- in05 = _mm_load_si128((const __m128i *)(in + 5 * 16)); |
- in06 = _mm_load_si128((const __m128i *)(in + 6 * 16)); |
- in07 = _mm_load_si128((const __m128i *)(in + 7 * 16)); |
- in08 = _mm_load_si128((const __m128i *)(in + 8 * 16)); |
- in09 = _mm_load_si128((const __m128i *)(in + 9 * 16)); |
- in10 = _mm_load_si128((const __m128i *)(in + 10 * 16)); |
- in11 = _mm_load_si128((const __m128i *)(in + 11 * 16)); |
- in12 = _mm_load_si128((const __m128i *)(in + 12 * 16)); |
- in13 = _mm_load_si128((const __m128i *)(in + 13 * 16)); |
- in14 = _mm_load_si128((const __m128i *)(in + 14 * 16)); |
- in15 = _mm_load_si128((const __m128i *)(in + 15 * 16)); |
- // x = (x + 1) >> 2 |
- in00 = _mm_add_epi16(in00, kOne); |
- in01 = _mm_add_epi16(in01, kOne); |
- in02 = _mm_add_epi16(in02, kOne); |
- in03 = _mm_add_epi16(in03, kOne); |
- in04 = _mm_add_epi16(in04, kOne); |
- in05 = _mm_add_epi16(in05, kOne); |
- in06 = _mm_add_epi16(in06, kOne); |
- in07 = _mm_add_epi16(in07, kOne); |
- in08 = _mm_add_epi16(in08, kOne); |
- in09 = _mm_add_epi16(in09, kOne); |
- in10 = _mm_add_epi16(in10, kOne); |
- in11 = _mm_add_epi16(in11, kOne); |
- in12 = _mm_add_epi16(in12, kOne); |
- in13 = _mm_add_epi16(in13, kOne); |
- in14 = _mm_add_epi16(in14, kOne); |
- in15 = _mm_add_epi16(in15, kOne); |
- in00 = _mm_srai_epi16(in00, 2); |
- in01 = _mm_srai_epi16(in01, 2); |
- in02 = _mm_srai_epi16(in02, 2); |
- in03 = _mm_srai_epi16(in03, 2); |
- in04 = _mm_srai_epi16(in04, 2); |
- in05 = _mm_srai_epi16(in05, 2); |
- in06 = _mm_srai_epi16(in06, 2); |
- in07 = _mm_srai_epi16(in07, 2); |
- in08 = _mm_srai_epi16(in08, 2); |
- in09 = _mm_srai_epi16(in09, 2); |
- in10 = _mm_srai_epi16(in10, 2); |
- in11 = _mm_srai_epi16(in11, 2); |
- in12 = _mm_srai_epi16(in12, 2); |
- in13 = _mm_srai_epi16(in13, 2); |
- in14 = _mm_srai_epi16(in14, 2); |
- in15 = _mm_srai_epi16(in15, 2); |
- } |
- in += 8; |
- // Calculate input for the first 8 results. |
- { |
- input0 = ADD_EPI16(in00, in15); |
- input1 = ADD_EPI16(in01, in14); |
- input2 = ADD_EPI16(in02, in13); |
- input3 = ADD_EPI16(in03, in12); |
- input4 = ADD_EPI16(in04, in11); |
- input5 = ADD_EPI16(in05, in10); |
- input6 = ADD_EPI16(in06, in09); |
- input7 = ADD_EPI16(in07, in08); |
-#if DCT_HIGH_BIT_DEPTH |
- overflow = check_epi16_overflow_x8(&input0, &input1, &input2, &input3, |
- &input4, &input5, &input6, &input7); |
- if (overflow) { |
- vp9_highbd_fdct16x16_c(input, output, stride); |
- return; |
- } |
-#endif // DCT_HIGH_BIT_DEPTH |
- } |
- // Calculate input for the next 8 results. |
- { |
- step1_0 = SUB_EPI16(in07, in08); |
- step1_1 = SUB_EPI16(in06, in09); |
- step1_2 = SUB_EPI16(in05, in10); |
- step1_3 = SUB_EPI16(in04, in11); |
- step1_4 = SUB_EPI16(in03, in12); |
- step1_5 = SUB_EPI16(in02, in13); |
- step1_6 = SUB_EPI16(in01, in14); |
- step1_7 = SUB_EPI16(in00, in15); |
-#if DCT_HIGH_BIT_DEPTH |
- overflow = check_epi16_overflow_x8(&step1_0, &step1_1, |
- &step1_2, &step1_3, |
- &step1_4, &step1_5, |
- &step1_6, &step1_7); |
- if (overflow) { |
- vp9_highbd_fdct16x16_c(input, output, stride); |
- return; |
- } |
-#endif // DCT_HIGH_BIT_DEPTH |
- } |
- // Work on the first eight values; fdct8(input, even_results); |
- { |
- // Add/subtract |
- const __m128i q0 = ADD_EPI16(input0, input7); |
- const __m128i q1 = ADD_EPI16(input1, input6); |
- const __m128i q2 = ADD_EPI16(input2, input5); |
- const __m128i q3 = ADD_EPI16(input3, input4); |
- const __m128i q4 = SUB_EPI16(input3, input4); |
- const __m128i q5 = SUB_EPI16(input2, input5); |
- const __m128i q6 = SUB_EPI16(input1, input6); |
- const __m128i q7 = SUB_EPI16(input0, input7); |
-#if DCT_HIGH_BIT_DEPTH |
- overflow = check_epi16_overflow_x8(&q0, &q1, &q2, &q3, |
- &q4, &q5, &q6, &q7); |
- if (overflow) { |
- vp9_highbd_fdct16x16_c(input, output, stride); |
- return; |
- } |
-#endif // DCT_HIGH_BIT_DEPTH |
- // Work on first four results |
- { |
- // Add/subtract |
- const __m128i r0 = ADD_EPI16(q0, q3); |
- const __m128i r1 = ADD_EPI16(q1, q2); |
- const __m128i r2 = SUB_EPI16(q1, q2); |
- const __m128i r3 = SUB_EPI16(q0, q3); |
-#if DCT_HIGH_BIT_DEPTH |
- overflow = check_epi16_overflow_x4(&r0, &r1, &r2, &r3); |
- if (overflow) { |
- vp9_highbd_fdct16x16_c(input, output, stride); |
- return; |
- } |
-#endif // DCT_HIGH_BIT_DEPTH |
- // Interleave to do the multiply by constants which gets us |
- // into 32 bits. |
- { |
- const __m128i t0 = _mm_unpacklo_epi16(r0, r1); |
- const __m128i t1 = _mm_unpackhi_epi16(r0, r1); |
- const __m128i t2 = _mm_unpacklo_epi16(r2, r3); |
- const __m128i t3 = _mm_unpackhi_epi16(r2, r3); |
- res00 = mult_round_shift(&t0, &t1, &k__cospi_p16_p16, |
- &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); |
- res08 = mult_round_shift(&t0, &t1, &k__cospi_p16_m16, |
- &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); |
- res04 = mult_round_shift(&t2, &t3, &k__cospi_p24_p08, |
- &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); |
- res12 = mult_round_shift(&t2, &t3, &k__cospi_m08_p24, |
- &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); |
-#if DCT_HIGH_BIT_DEPTH |
- overflow = check_epi16_overflow_x4(&res00, &res08, &res04, &res12); |
- if (overflow) { |
- vp9_highbd_fdct16x16_c(input, output, stride); |
- return; |
- } |
-#endif // DCT_HIGH_BIT_DEPTH |
- } |
- } |
- // Work on next four results |
- { |
- // Interleave to do the multiply by constants which gets us |
- // into 32 bits. |
- const __m128i d0 = _mm_unpacklo_epi16(q6, q5); |
- const __m128i d1 = _mm_unpackhi_epi16(q6, q5); |
- const __m128i r0 = mult_round_shift(&d0, &d1, &k__cospi_p16_m16, |
- &k__DCT_CONST_ROUNDING, |
- DCT_CONST_BITS); |
- const __m128i r1 = mult_round_shift(&d0, &d1, &k__cospi_p16_p16, |
- &k__DCT_CONST_ROUNDING, |
- DCT_CONST_BITS); |
-#if DCT_HIGH_BIT_DEPTH |
- overflow = check_epi16_overflow_x2(&r0, &r1); |
- if (overflow) { |
- vp9_highbd_fdct16x16_c(input, output, stride); |
- return; |
- } |
-#endif // DCT_HIGH_BIT_DEPTH |
- { |
- // Add/subtract |
- const __m128i x0 = ADD_EPI16(q4, r0); |
- const __m128i x1 = SUB_EPI16(q4, r0); |
- const __m128i x2 = SUB_EPI16(q7, r1); |
- const __m128i x3 = ADD_EPI16(q7, r1); |
-#if DCT_HIGH_BIT_DEPTH |
- overflow = check_epi16_overflow_x4(&x0, &x1, &x2, &x3); |
- if (overflow) { |
- vp9_highbd_fdct16x16_c(input, output, stride); |
- return; |
- } |
-#endif // DCT_HIGH_BIT_DEPTH |
- // Interleave to do the multiply by constants which gets us |
- // into 32 bits. |
- { |
- const __m128i t0 = _mm_unpacklo_epi16(x0, x3); |
- const __m128i t1 = _mm_unpackhi_epi16(x0, x3); |
- const __m128i t2 = _mm_unpacklo_epi16(x1, x2); |
- const __m128i t3 = _mm_unpackhi_epi16(x1, x2); |
- res02 = mult_round_shift(&t0, &t1, &k__cospi_p28_p04, |
- &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); |
- res14 = mult_round_shift(&t0, &t1, &k__cospi_m04_p28, |
- &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); |
- res10 = mult_round_shift(&t2, &t3, &k__cospi_p12_p20, |
- &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); |
- res06 = mult_round_shift(&t2, &t3, &k__cospi_m20_p12, |
- &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); |
-#if DCT_HIGH_BIT_DEPTH |
- overflow = check_epi16_overflow_x4(&res02, &res14, |
- &res10, &res06); |
- if (overflow) { |
- vp9_highbd_fdct16x16_c(input, output, stride); |
- return; |
- } |
-#endif // DCT_HIGH_BIT_DEPTH |
- } |
- } |
- } |
- } |
- // Work on the next eight values; step1 -> odd_results |
- { |
- // step 2 |
- { |
- const __m128i t0 = _mm_unpacklo_epi16(step1_5, step1_2); |
- const __m128i t1 = _mm_unpackhi_epi16(step1_5, step1_2); |
- const __m128i t2 = _mm_unpacklo_epi16(step1_4, step1_3); |
- const __m128i t3 = _mm_unpackhi_epi16(step1_4, step1_3); |
- step2_2 = mult_round_shift(&t0, &t1, &k__cospi_p16_m16, |
- &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); |
- step2_3 = mult_round_shift(&t2, &t3, &k__cospi_p16_m16, |
- &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); |
- step2_5 = mult_round_shift(&t0, &t1, &k__cospi_p16_p16, |
- &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); |
- step2_4 = mult_round_shift(&t2, &t3, &k__cospi_p16_p16, |
- &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); |
-#if DCT_HIGH_BIT_DEPTH |
- overflow = check_epi16_overflow_x4(&step2_2, &step2_3, &step2_5, |
- &step2_4); |
- if (overflow) { |
- vp9_highbd_fdct16x16_c(input, output, stride); |
- return; |
- } |
-#endif // DCT_HIGH_BIT_DEPTH |
- } |
- // step 3 |
- { |
- step3_0 = ADD_EPI16(step1_0, step2_3); |
- step3_1 = ADD_EPI16(step1_1, step2_2); |
- step3_2 = SUB_EPI16(step1_1, step2_2); |
- step3_3 = SUB_EPI16(step1_0, step2_3); |
- step3_4 = SUB_EPI16(step1_7, step2_4); |
- step3_5 = SUB_EPI16(step1_6, step2_5); |
- step3_6 = ADD_EPI16(step1_6, step2_5); |
- step3_7 = ADD_EPI16(step1_7, step2_4); |
-#if DCT_HIGH_BIT_DEPTH |
- overflow = check_epi16_overflow_x8(&step3_0, &step3_1, |
- &step3_2, &step3_3, |
- &step3_4, &step3_5, |
- &step3_6, &step3_7); |
- if (overflow) { |
- vp9_highbd_fdct16x16_c(input, output, stride); |
- return; |
- } |
-#endif // DCT_HIGH_BIT_DEPTH |
- } |
- // step 4 |
- { |
- const __m128i t0 = _mm_unpacklo_epi16(step3_1, step3_6); |
- const __m128i t1 = _mm_unpackhi_epi16(step3_1, step3_6); |
- const __m128i t2 = _mm_unpacklo_epi16(step3_2, step3_5); |
- const __m128i t3 = _mm_unpackhi_epi16(step3_2, step3_5); |
- step2_1 = mult_round_shift(&t0, &t1, &k__cospi_m08_p24, |
- &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); |
- step2_2 = mult_round_shift(&t2, &t3, &k__cospi_p24_p08, |
- &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); |
- step2_6 = mult_round_shift(&t0, &t1, &k__cospi_p24_p08, |
- &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); |
- step2_5 = mult_round_shift(&t2, &t3, &k__cospi_p08_m24, |
- &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); |
-#if DCT_HIGH_BIT_DEPTH |
- overflow = check_epi16_overflow_x4(&step2_1, &step2_2, &step2_6, |
- &step2_5); |
- if (overflow) { |
- vp9_highbd_fdct16x16_c(input, output, stride); |
- return; |
- } |
-#endif // DCT_HIGH_BIT_DEPTH |
- } |
- // step 5 |
- { |
- step1_0 = ADD_EPI16(step3_0, step2_1); |
- step1_1 = SUB_EPI16(step3_0, step2_1); |
- step1_2 = ADD_EPI16(step3_3, step2_2); |
- step1_3 = SUB_EPI16(step3_3, step2_2); |
- step1_4 = SUB_EPI16(step3_4, step2_5); |
- step1_5 = ADD_EPI16(step3_4, step2_5); |
- step1_6 = SUB_EPI16(step3_7, step2_6); |
- step1_7 = ADD_EPI16(step3_7, step2_6); |
-#if DCT_HIGH_BIT_DEPTH |
- overflow = check_epi16_overflow_x8(&step1_0, &step1_1, |
- &step1_2, &step1_3, |
- &step1_4, &step1_5, |
- &step1_6, &step1_7); |
- if (overflow) { |
- vp9_highbd_fdct16x16_c(input, output, stride); |
- return; |
- } |
-#endif // DCT_HIGH_BIT_DEPTH |
- } |
- // step 6 |
- { |
- const __m128i t0 = _mm_unpacklo_epi16(step1_0, step1_7); |
- const __m128i t1 = _mm_unpackhi_epi16(step1_0, step1_7); |
- const __m128i t2 = _mm_unpacklo_epi16(step1_1, step1_6); |
- const __m128i t3 = _mm_unpackhi_epi16(step1_1, step1_6); |
- res01 = mult_round_shift(&t0, &t1, &k__cospi_p30_p02, |
- &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); |
- res09 = mult_round_shift(&t2, &t3, &k__cospi_p14_p18, |
- &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); |
- res15 = mult_round_shift(&t0, &t1, &k__cospi_m02_p30, |
- &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); |
- res07 = mult_round_shift(&t2, &t3, &k__cospi_m18_p14, |
- &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); |
-#if DCT_HIGH_BIT_DEPTH |
- overflow = check_epi16_overflow_x4(&res01, &res09, &res15, &res07); |
- if (overflow) { |
- vp9_highbd_fdct16x16_c(input, output, stride); |
- return; |
- } |
-#endif // DCT_HIGH_BIT_DEPTH |
- } |
- { |
- const __m128i t0 = _mm_unpacklo_epi16(step1_2, step1_5); |
- const __m128i t1 = _mm_unpackhi_epi16(step1_2, step1_5); |
- const __m128i t2 = _mm_unpacklo_epi16(step1_3, step1_4); |
- const __m128i t3 = _mm_unpackhi_epi16(step1_3, step1_4); |
- res05 = mult_round_shift(&t0, &t1, &k__cospi_p22_p10, |
- &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); |
- res13 = mult_round_shift(&t2, &t3, &k__cospi_p06_p26, |
- &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); |
- res11 = mult_round_shift(&t0, &t1, &k__cospi_m10_p22, |
- &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); |
- res03 = mult_round_shift(&t2, &t3, &k__cospi_m26_p06, |
- &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); |
-#if DCT_HIGH_BIT_DEPTH |
- overflow = check_epi16_overflow_x4(&res05, &res13, &res11, &res03); |
- if (overflow) { |
- vp9_highbd_fdct16x16_c(input, output, stride); |
- return; |
- } |
-#endif // DCT_HIGH_BIT_DEPTH |
- } |
- } |
- // Transpose the results, do it as two 8x8 transposes. |
- transpose_and_output8x8(&res00, &res01, &res02, &res03, |
- &res04, &res05, &res06, &res07, |
- pass, out0, out1); |
- transpose_and_output8x8(&res08, &res09, &res10, &res11, |
- &res12, &res13, &res14, &res15, |
- pass, out0 + 8, out1 + 8); |
- if (pass == 0) { |
- out0 += 8*16; |
- } else { |
- out1 += 8*16; |
- } |
- } |
- // Setup in/out for next pass. |
- in = intermediate; |
- } |
-} |
- |
-#undef ADD_EPI16 |
-#undef SUB_EPI16 |