Index: third_party/libwebp/utils/huffman.c |
diff --git a/third_party/libwebp/utils/huffman.c b/third_party/libwebp/utils/huffman.c |
index 0ba9d05cfc88ef1a98f75b519c86763004efe548..8c5739f633d4377abf4ae629eca21630ecca0516 100644 |
--- a/third_party/libwebp/utils/huffman.c |
+++ b/third_party/libwebp/utils/huffman.c |
@@ -13,13 +13,14 @@ |
#include <assert.h> |
#include <stdlib.h> |
+#include <string.h> |
#include "./huffman.h" |
#include "../utils/utils.h" |
#include "../webp/format_constants.h" |
-#if defined(__cplusplus) || defined(c_plusplus) |
-extern "C" { |
-#endif |
+// Uncomment the following to use look-up table for ReverseBits() |
+// (might be faster on some platform) |
+// #define USE_LUT_REVERSE_BITS |
#define NON_EXISTENT_SYMBOL (-1) |
@@ -52,11 +53,14 @@ static int TreeInit(HuffmanTree* const tree, int num_leaves) { |
// Note that a Huffman tree is a full binary tree; and in a full binary tree |
// with L leaves, the total number of nodes N = 2 * L - 1. |
tree->max_nodes_ = 2 * num_leaves - 1; |
+ assert(tree->max_nodes_ < (1 << 16)); // limit for the lut_jump_ table |
tree->root_ = (HuffmanTreeNode*)WebPSafeMalloc((uint64_t)tree->max_nodes_, |
sizeof(*tree->root_)); |
if (tree->root_ == NULL) return 0; |
TreeNodeInit(tree->root_); // Initialize root. |
tree->num_nodes_ = 1; |
+ memset(tree->lut_bits_, 255, sizeof(tree->lut_bits_)); |
+ memset(tree->lut_jump_, 0, sizeof(tree->lut_jump_)); |
return 1; |
} |
@@ -117,10 +121,54 @@ int HuffmanCodeLengthsToCodes(const int* const code_lengths, |
return 1; |
} |
+#ifndef USE_LUT_REVERSE_BITS |
+ |
+static int ReverseBitsShort(int bits, int num_bits) { |
+ int retval = 0; |
+ int i; |
+ assert(num_bits <= 8); // Not a hard requirement, just for coherency. |
+ for (i = 0; i < num_bits; ++i) { |
+ retval <<= 1; |
+ retval |= bits & 1; |
+ bits >>= 1; |
+ } |
+ return retval; |
+} |
+ |
+#else |
+ |
+static const uint8_t kReversedBits[16] = { // Pre-reversed 4-bit values. |
+ 0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe, |
+ 0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf |
+}; |
+ |
+static int ReverseBitsShort(int bits, int num_bits) { |
+ const uint8_t v = (kReversedBits[bits & 0xf] << 4) | kReversedBits[bits >> 4]; |
+ assert(num_bits <= 8); |
+ return v >> (8 - num_bits); |
+} |
+ |
+#endif |
+ |
static int TreeAddSymbol(HuffmanTree* const tree, |
int symbol, int code, int code_length) { |
+ int step = HUFF_LUT_BITS; |
+ int base_code; |
HuffmanTreeNode* node = tree->root_; |
const HuffmanTreeNode* const max_node = tree->root_ + tree->max_nodes_; |
+ assert(symbol == (int16_t)symbol); |
+ if (code_length <= HUFF_LUT_BITS) { |
+ int i; |
+ base_code = ReverseBitsShort(code, code_length); |
+ for (i = 0; i < (1 << (HUFF_LUT_BITS - code_length)); ++i) { |
+ const int idx = base_code | (i << code_length); |
+ tree->lut_symbol_[idx] = (int16_t)symbol; |
+ tree->lut_bits_[idx] = code_length; |
+ } |
+ } else { |
+ base_code = ReverseBitsShort((code >> (code_length - HUFF_LUT_BITS)), |
+ HUFF_LUT_BITS); |
+ } |
while (code_length-- > 0) { |
if (node >= max_node) { |
return 0; |
@@ -128,14 +176,17 @@ static int TreeAddSymbol(HuffmanTree* const tree, |
if (NodeIsEmpty(node)) { |
if (IsFull(tree)) return 0; // error: too many symbols. |
AssignChildren(tree, node); |
- } else if (HuffmanTreeNodeIsLeaf(node)) { |
+ } else if (!HuffmanTreeNodeIsNotLeaf(node)) { |
return 0; // leaf is already occupied. |
} |
node += node->children_ + ((code >> code_length) & 1); |
+ if (--step == 0) { |
+ tree->lut_jump_[base_code] = (int16_t)(node - tree->root_); |
+ } |
} |
if (NodeIsEmpty(node)) { |
node->children_ = 0; // turn newly created node into a leaf. |
- } else if (!HuffmanTreeNodeIsLeaf(node)) { |
+ } else if (HuffmanTreeNodeIsNotLeaf(node)) { |
return 0; // trying to assign a symbol to already used code. |
} |
node->symbol_ = symbol; // Add symbol in this node. |
@@ -235,6 +286,3 @@ int HuffmanTreeBuildExplicit(HuffmanTree* const tree, |
return ok; |
} |
-#if defined(__cplusplus) || defined(c_plusplus) |
-} // extern "C" |
-#endif |