| Index: third_party/libwebp/dsp/yuv.h
|
| diff --git a/third_party/libwebp/dsp/yuv.h b/third_party/libwebp/dsp/yuv.h
|
| index 3844d8cab326787c742e2f9536c2459a0c098e62..dd778f9cbe870fd6cf72718b43830be9dab4a328 100644
|
| --- a/third_party/libwebp/dsp/yuv.h
|
| +++ b/third_party/libwebp/dsp/yuv.h
|
| @@ -14,7 +14,7 @@
|
| // Y = 0.2569 * R + 0.5044 * G + 0.0979 * B + 16
|
| // U = -0.1483 * R - 0.2911 * G + 0.4394 * B + 128
|
| // V = 0.4394 * R - 0.3679 * G - 0.0715 * B + 128
|
| -// We use 16bit fixed point operations for RGB->YUV conversion.
|
| +// We use 16bit fixed point operations for RGB->YUV conversion (YUV_FIX).
|
| //
|
| // For the Y'CbCr to RGB conversion, the BT.601 specification reads:
|
| // R = 1.164 * (Y-16) + 1.596 * (V-128)
|
| @@ -23,21 +23,24 @@
|
| // where Y is in the [16,235] range, and U/V in the [16,240] range.
|
| // In the table-lookup version (WEBP_YUV_USE_TABLE), the common factor
|
| // "1.164 * (Y-16)" can be handled as an offset in the VP8kClip[] table.
|
| -// So in this case the formulae should be read as:
|
| +// So in this case the formulae should read:
|
| // R = 1.164 * [Y + 1.371 * (V-128) ] - 18.624
|
| // G = 1.164 * [Y - 0.698 * (V-128) - 0.336 * (U-128)] - 18.624
|
| // B = 1.164 * [Y + 1.733 * (U-128)] - 18.624
|
| -// once factorized. Here too, 16bit fixed precision is used.
|
| +// once factorized.
|
| +// For YUV->RGB conversion, only 14bit fixed precision is used (YUV_FIX2).
|
| +// That's the maximum possible for a convenient ARM implementation.
|
| //
|
| // Author: Skal (pascal.massimino@gmail.com)
|
|
|
| #ifndef WEBP_DSP_YUV_H_
|
| #define WEBP_DSP_YUV_H_
|
|
|
| +#include "./dsp.h"
|
| #include "../dec/decode_vp8.h"
|
|
|
| // Define the following to use the LUT-based code:
|
| -#define WEBP_YUV_USE_TABLE
|
| +// #define WEBP_YUV_USE_TABLE
|
|
|
| #if defined(WEBP_EXPERIMENTAL_FEATURES)
|
| // Do NOT activate this feature for real compression. This is only experimental!
|
| @@ -52,53 +55,75 @@
|
| //------------------------------------------------------------------------------
|
| // YUV -> RGB conversion
|
|
|
| -#if defined(__cplusplus) || defined(c_plusplus)
|
| +#ifdef __cplusplus
|
| extern "C" {
|
| #endif
|
|
|
| -enum { YUV_FIX = 16, // fixed-point precision
|
| - YUV_HALF = 1 << (YUV_FIX - 1),
|
| - YUV_MASK = (256 << YUV_FIX) - 1,
|
| - YUV_RANGE_MIN = -227, // min value of r/g/b output
|
| - YUV_RANGE_MAX = 256 + 226 // max value of r/g/b output
|
| +enum {
|
| + YUV_FIX = 16, // fixed-point precision for RGB->YUV
|
| + YUV_HALF = 1 << (YUV_FIX - 1),
|
| + YUV_MASK = (256 << YUV_FIX) - 1,
|
| + YUV_RANGE_MIN = -227, // min value of r/g/b output
|
| + YUV_RANGE_MAX = 256 + 226, // max value of r/g/b output
|
| +
|
| + YUV_FIX2 = 14, // fixed-point precision for YUV->RGB
|
| + YUV_HALF2 = 1 << (YUV_FIX2 - 1),
|
| + YUV_MASK2 = (256 << YUV_FIX2) - 1
|
| };
|
|
|
| -#ifdef WEBP_YUV_USE_TABLE
|
| +// These constants are 14b fixed-point version of ITU-R BT.601 constants.
|
| +#define kYScale 19077 // 1.164 = 255 / 219
|
| +#define kVToR 26149 // 1.596 = 255 / 112 * 0.701
|
| +#define kUToG 6419 // 0.391 = 255 / 112 * 0.886 * 0.114 / 0.587
|
| +#define kVToG 13320 // 0.813 = 255 / 112 * 0.701 * 0.299 / 0.587
|
| +#define kUToB 33050 // 2.018 = 255 / 112 * 0.886
|
| +#define kRCst (-kYScale * 16 - kVToR * 128 + YUV_HALF2)
|
| +#define kGCst (-kYScale * 16 + kUToG * 128 + kVToG * 128 + YUV_HALF2)
|
| +#define kBCst (-kYScale * 16 - kUToB * 128 + YUV_HALF2)
|
|
|
| -extern int16_t VP8kVToR[256], VP8kUToB[256];
|
| -extern int32_t VP8kVToG[256], VP8kUToG[256];
|
| -extern uint8_t VP8kClip[YUV_RANGE_MAX - YUV_RANGE_MIN];
|
| -extern uint8_t VP8kClip4Bits[YUV_RANGE_MAX - YUV_RANGE_MIN];
|
| +//------------------------------------------------------------------------------
|
| +
|
| +#if !defined(WEBP_YUV_USE_TABLE)
|
| +
|
| +// slower on x86 by ~7-8%, but bit-exact with the SSE2 version
|
| +
|
| +static WEBP_INLINE int VP8Clip8(int v) {
|
| + return ((v & ~YUV_MASK2) == 0) ? (v >> YUV_FIX2) : (v < 0) ? 0 : 255;
|
| +}
|
| +
|
| +static WEBP_INLINE int VP8YUVToR(int y, int v) {
|
| + return VP8Clip8(kYScale * y + kVToR * v + kRCst);
|
| +}
|
| +
|
| +static WEBP_INLINE int VP8YUVToG(int y, int u, int v) {
|
| + return VP8Clip8(kYScale * y - kUToG * u - kVToG * v + kGCst);
|
| +}
|
| +
|
| +static WEBP_INLINE int VP8YUVToB(int y, int u) {
|
| + return VP8Clip8(kYScale * y + kUToB * u + kBCst);
|
| +}
|
|
|
| -static WEBP_INLINE void VP8YuvToRgb(uint8_t y, uint8_t u, uint8_t v,
|
| +static WEBP_INLINE void VP8YuvToRgb(int y, int u, int v,
|
| uint8_t* const rgb) {
|
| - const int r_off = VP8kVToR[v];
|
| - const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX;
|
| - const int b_off = VP8kUToB[u];
|
| - rgb[0] = VP8kClip[y + r_off - YUV_RANGE_MIN];
|
| - rgb[1] = VP8kClip[y + g_off - YUV_RANGE_MIN];
|
| - rgb[2] = VP8kClip[y + b_off - YUV_RANGE_MIN];
|
| + rgb[0] = VP8YUVToR(y, v);
|
| + rgb[1] = VP8YUVToG(y, u, v);
|
| + rgb[2] = VP8YUVToB(y, u);
|
| }
|
|
|
| -static WEBP_INLINE void VP8YuvToBgr(uint8_t y, uint8_t u, uint8_t v,
|
| +static WEBP_INLINE void VP8YuvToBgr(int y, int u, int v,
|
| uint8_t* const bgr) {
|
| - const int r_off = VP8kVToR[v];
|
| - const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX;
|
| - const int b_off = VP8kUToB[u];
|
| - bgr[0] = VP8kClip[y + b_off - YUV_RANGE_MIN];
|
| - bgr[1] = VP8kClip[y + g_off - YUV_RANGE_MIN];
|
| - bgr[2] = VP8kClip[y + r_off - YUV_RANGE_MIN];
|
| + bgr[0] = VP8YUVToB(y, u);
|
| + bgr[1] = VP8YUVToG(y, u, v);
|
| + bgr[2] = VP8YUVToR(y, v);
|
| }
|
|
|
| -static WEBP_INLINE void VP8YuvToRgb565(uint8_t y, uint8_t u, uint8_t v,
|
| +static WEBP_INLINE void VP8YuvToRgb565(int y, int u, int v,
|
| uint8_t* const rgb) {
|
| - const int r_off = VP8kVToR[v];
|
| - const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX;
|
| - const int b_off = VP8kUToB[u];
|
| - const uint8_t rg = ((VP8kClip[y + r_off - YUV_RANGE_MIN] & 0xf8) |
|
| - (VP8kClip[y + g_off - YUV_RANGE_MIN] >> 5));
|
| - const uint8_t gb = (((VP8kClip[y + g_off - YUV_RANGE_MIN] << 3) & 0xe0) |
|
| - (VP8kClip[y + b_off - YUV_RANGE_MIN] >> 3));
|
| + const int r = VP8YUVToR(y, v); // 5 usable bits
|
| + const int g = VP8YUVToG(y, u, v); // 6 usable bits
|
| + const int b = VP8YUVToB(y, u); // 5 usable bits
|
| + const int rg = (r & 0xf8) | (g >> 5);
|
| + const int gb = ((g << 3) & 0xe0) | (b >> 3);
|
| #ifdef WEBP_SWAP_16BIT_CSP
|
| rgb[0] = gb;
|
| rgb[1] = rg;
|
| @@ -108,14 +133,13 @@ static WEBP_INLINE void VP8YuvToRgb565(uint8_t y, uint8_t u, uint8_t v,
|
| #endif
|
| }
|
|
|
| -static WEBP_INLINE void VP8YuvToRgba4444(uint8_t y, uint8_t u, uint8_t v,
|
| +static WEBP_INLINE void VP8YuvToRgba4444(int y, int u, int v,
|
| uint8_t* const argb) {
|
| - const int r_off = VP8kVToR[v];
|
| - const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX;
|
| - const int b_off = VP8kUToB[u];
|
| - const uint8_t rg = ((VP8kClip4Bits[y + r_off - YUV_RANGE_MIN] << 4) |
|
| - VP8kClip4Bits[y + g_off - YUV_RANGE_MIN]);
|
| - const uint8_t ba = (VP8kClip4Bits[y + b_off - YUV_RANGE_MIN] << 4) | 0x0f;
|
| + const int r = VP8YUVToR(y, v); // 4 usable bits
|
| + const int g = VP8YUVToG(y, u, v); // 4 usable bits
|
| + const int b = VP8YUVToB(y, u); // 4 usable bits
|
| + const int rg = (r & 0xf0) | (g >> 4);
|
| + const int ba = (b & 0xf0) | 0x0f; // overwrite the lower 4 bits
|
| #ifdef WEBP_SWAP_16BIT_CSP
|
| argb[0] = ba;
|
| argb[1] = rg;
|
| @@ -125,61 +149,45 @@ static WEBP_INLINE void VP8YuvToRgba4444(uint8_t y, uint8_t u, uint8_t v,
|
| #endif
|
| }
|
|
|
| -#else // Table-free version (slower on x86)
|
| -
|
| -// These constants are 16b fixed-point version of ITU-R BT.601 constants
|
| -#define kYScale 76309 // 1.164 = 255 / 219
|
| -#define kVToR 104597 // 1.596 = 255 / 112 * 0.701
|
| -#define kUToG 25674 // 0.391 = 255 / 112 * 0.886 * 0.114 / 0.587
|
| -#define kVToG 53278 // 0.813 = 255 / 112 * 0.701 * 0.299 / 0.587
|
| -#define kUToB 132201 // 2.018 = 255 / 112 * 0.886
|
| -#define kRCst (-kYScale * 16 - kVToR * 128 + YUV_HALF)
|
| -#define kGCst (-kYScale * 16 + kUToG * 128 + kVToG * 128 + YUV_HALF)
|
| -#define kBCst (-kYScale * 16 - kUToB * 128 + YUV_HALF)
|
| -
|
| -static WEBP_INLINE uint8_t VP8Clip8(int v) {
|
| - return ((v & ~YUV_MASK) == 0) ? (uint8_t)(v >> YUV_FIX)
|
| - : (v < 0) ? 0u : 255u;
|
| -}
|
| -
|
| -static WEBP_INLINE uint8_t VP8ClipN(int v, int N) { // clip to N bits
|
| - return ((v & ~YUV_MASK) == 0) ? (uint8_t)(v >> (YUV_FIX + (8 - N)))
|
| - : (v < 0) ? 0u : (255u >> (8 - N));
|
| -}
|
| -
|
| -static WEBP_INLINE int VP8YUVToR(int y, int v) {
|
| - return kYScale * y + kVToR * v + kRCst;
|
| -}
|
| +#else
|
|
|
| -static WEBP_INLINE int VP8YUVToG(int y, int u, int v) {
|
| - return kYScale * y - kUToG * u - kVToG * v + kGCst;
|
| -}
|
| +// Table-based version, not totally equivalent to the SSE2 version.
|
| +// Rounding diff is only +/-1 though.
|
|
|
| -static WEBP_INLINE int VP8YUVToB(int y, int u) {
|
| - return kYScale * y + kUToB * u + kBCst;
|
| -}
|
| +extern int16_t VP8kVToR[256], VP8kUToB[256];
|
| +extern int32_t VP8kVToG[256], VP8kUToG[256];
|
| +extern uint8_t VP8kClip[YUV_RANGE_MAX - YUV_RANGE_MIN];
|
| +extern uint8_t VP8kClip4Bits[YUV_RANGE_MAX - YUV_RANGE_MIN];
|
|
|
| -static WEBP_INLINE void VP8YuvToRgb(uint8_t y, uint8_t u, uint8_t v,
|
| +static WEBP_INLINE void VP8YuvToRgb(int y, int u, int v,
|
| uint8_t* const rgb) {
|
| - rgb[0] = VP8Clip8(VP8YUVToR(y, v));
|
| - rgb[1] = VP8Clip8(VP8YUVToG(y, u, v));
|
| - rgb[2] = VP8Clip8(VP8YUVToB(y, u));
|
| + const int r_off = VP8kVToR[v];
|
| + const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX;
|
| + const int b_off = VP8kUToB[u];
|
| + rgb[0] = VP8kClip[y + r_off - YUV_RANGE_MIN];
|
| + rgb[1] = VP8kClip[y + g_off - YUV_RANGE_MIN];
|
| + rgb[2] = VP8kClip[y + b_off - YUV_RANGE_MIN];
|
| }
|
|
|
| -static WEBP_INLINE void VP8YuvToBgr(uint8_t y, uint8_t u, uint8_t v,
|
| +static WEBP_INLINE void VP8YuvToBgr(int y, int u, int v,
|
| uint8_t* const bgr) {
|
| - bgr[0] = VP8Clip8(VP8YUVToB(y, u));
|
| - bgr[1] = VP8Clip8(VP8YUVToG(y, u, v));
|
| - bgr[2] = VP8Clip8(VP8YUVToR(y, v));
|
| + const int r_off = VP8kVToR[v];
|
| + const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX;
|
| + const int b_off = VP8kUToB[u];
|
| + bgr[0] = VP8kClip[y + b_off - YUV_RANGE_MIN];
|
| + bgr[1] = VP8kClip[y + g_off - YUV_RANGE_MIN];
|
| + bgr[2] = VP8kClip[y + r_off - YUV_RANGE_MIN];
|
| }
|
|
|
| -static WEBP_INLINE void VP8YuvToRgb565(uint8_t y, uint8_t u, uint8_t v,
|
| +static WEBP_INLINE void VP8YuvToRgb565(int y, int u, int v,
|
| uint8_t* const rgb) {
|
| - const int r = VP8Clip8(VP8YUVToR(y, u));
|
| - const int g = VP8ClipN(VP8YUVToG(y, u, v), 6);
|
| - const int b = VP8ClipN(VP8YUVToB(y, v), 5);
|
| - const uint8_t rg = (r & 0xf8) | (g >> 3);
|
| - const uint8_t gb = (g << 5) | b;
|
| + const int r_off = VP8kVToR[v];
|
| + const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX;
|
| + const int b_off = VP8kUToB[u];
|
| + const int rg = ((VP8kClip[y + r_off - YUV_RANGE_MIN] & 0xf8) |
|
| + (VP8kClip[y + g_off - YUV_RANGE_MIN] >> 5));
|
| + const int gb = (((VP8kClip[y + g_off - YUV_RANGE_MIN] << 3) & 0xe0) |
|
| + (VP8kClip[y + b_off - YUV_RANGE_MIN] >> 3));
|
| #ifdef WEBP_SWAP_16BIT_CSP
|
| rgb[0] = gb;
|
| rgb[1] = rg;
|
| @@ -189,13 +197,14 @@ static WEBP_INLINE void VP8YuvToRgb565(uint8_t y, uint8_t u, uint8_t v,
|
| #endif
|
| }
|
|
|
| -static WEBP_INLINE void VP8YuvToRgba4444(uint8_t y, uint8_t u, uint8_t v,
|
| +static WEBP_INLINE void VP8YuvToRgba4444(int y, int u, int v,
|
| uint8_t* const argb) {
|
| - const int r = VP8Clip8(VP8YUVToR(y, u));
|
| - const int g = VP8ClipN(VP8YUVToG(y, u, v), 4);
|
| - const int b = VP8Clip8(VP8YUVToB(y, v));
|
| - const uint8_t rg = (r & 0xf0) | g;
|
| - const uint8_t ba = b | 0x0f; // overwrite the lower 4 bits
|
| + const int r_off = VP8kVToR[v];
|
| + const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX;
|
| + const int b_off = VP8kUToB[u];
|
| + const int rg = ((VP8kClip4Bits[y + r_off - YUV_RANGE_MIN] << 4) |
|
| + VP8kClip4Bits[y + g_off - YUV_RANGE_MIN]);
|
| + const int ba = (VP8kClip4Bits[y + b_off - YUV_RANGE_MIN] << 4) | 0x0f;
|
| #ifdef WEBP_SWAP_16BIT_CSP
|
| argb[0] = ba;
|
| argb[1] = rg;
|
| @@ -207,6 +216,9 @@ static WEBP_INLINE void VP8YuvToRgba4444(uint8_t y, uint8_t u, uint8_t v,
|
|
|
| #endif // WEBP_YUV_USE_TABLE
|
|
|
| +//-----------------------------------------------------------------------------
|
| +// Alpha handling variants
|
| +
|
| static WEBP_INLINE void VP8YuvToArgb(uint8_t y, uint8_t u, uint8_t v,
|
| uint8_t* const argb) {
|
| argb[0] = 0xff;
|
| @@ -228,56 +240,77 @@ static WEBP_INLINE void VP8YuvToRgba(uint8_t y, uint8_t u, uint8_t v,
|
| // Must be called before everything, to initialize the tables.
|
| void VP8YUVInit(void);
|
|
|
| +//-----------------------------------------------------------------------------
|
| +// SSE2 extra functions (mostly for upsampling_sse2.c)
|
| +
|
| +#if defined(WEBP_USE_SSE2)
|
| +
|
| +#if defined(FANCY_UPSAMPLING)
|
| +// Process 32 pixels and store the result (24b or 32b per pixel) in *dst.
|
| +void VP8YuvToRgba32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
|
| + uint8_t* dst);
|
| +void VP8YuvToRgb32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
|
| + uint8_t* dst);
|
| +void VP8YuvToBgra32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
|
| + uint8_t* dst);
|
| +void VP8YuvToBgr32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
|
| + uint8_t* dst);
|
| +#endif // FANCY_UPSAMPLING
|
| +
|
| +// Must be called to initialize tables before using the functions.
|
| +void VP8YUVInitSSE2(void);
|
| +
|
| +#endif // WEBP_USE_SSE2
|
| +
|
| //------------------------------------------------------------------------------
|
| // RGB -> YUV conversion
|
|
|
| -static WEBP_INLINE int VP8ClipUV(int v) {
|
| - v = (v + (257 << (YUV_FIX + 2 - 1))) >> (YUV_FIX + 2);
|
| - return ((v & ~0xff) == 0) ? v : (v < 0) ? 0 : 255;
|
| +// Stub functions that can be called with various rounding values:
|
| +static WEBP_INLINE int VP8ClipUV(int uv, int rounding) {
|
| + uv = (uv + rounding + (128 << (YUV_FIX + 2))) >> (YUV_FIX + 2);
|
| + return ((uv & ~0xff) == 0) ? uv : (uv < 0) ? 0 : 255;
|
| }
|
|
|
| #ifndef USE_YUVj
|
|
|
| -static WEBP_INLINE int VP8RGBToY(int r, int g, int b) {
|
| - const int kRound = (1 << (YUV_FIX - 1)) + (16 << YUV_FIX);
|
| +static WEBP_INLINE int VP8RGBToY(int r, int g, int b, int rounding) {
|
| const int luma = 16839 * r + 33059 * g + 6420 * b;
|
| - return (luma + kRound) >> YUV_FIX; // no need to clip
|
| + return (luma + rounding + (16 << YUV_FIX)) >> YUV_FIX; // no need to clip
|
| }
|
|
|
| -static WEBP_INLINE int VP8RGBToU(int r, int g, int b) {
|
| +static WEBP_INLINE int VP8RGBToU(int r, int g, int b, int rounding) {
|
| const int u = -9719 * r - 19081 * g + 28800 * b;
|
| - return VP8ClipUV(u);
|
| + return VP8ClipUV(u, rounding);
|
| }
|
|
|
| -static WEBP_INLINE int VP8RGBToV(int r, int g, int b) {
|
| +static WEBP_INLINE int VP8RGBToV(int r, int g, int b, int rounding) {
|
| const int v = +28800 * r - 24116 * g - 4684 * b;
|
| - return VP8ClipUV(v);
|
| + return VP8ClipUV(v, rounding);
|
| }
|
|
|
| #else
|
|
|
| // This JPEG-YUV colorspace, only for comparison!
|
| -// These are also 16-bit precision coefficients from Rec.601, but with full
|
| +// These are also 16bit precision coefficients from Rec.601, but with full
|
| // [0..255] output range.
|
| -static WEBP_INLINE int VP8RGBToY(int r, int g, int b) {
|
| - const int kRound = (1 << (YUV_FIX - 1));
|
| +static WEBP_INLINE int VP8RGBToY(int r, int g, int b, int rounding) {
|
| const int luma = 19595 * r + 38470 * g + 7471 * b;
|
| - return (luma + kRound) >> YUV_FIX; // no need to clip
|
| + return (luma + rounding) >> YUV_FIX; // no need to clip
|
| }
|
|
|
| -static WEBP_INLINE int VP8RGBToU(int r, int g, int b) {
|
| +static WEBP_INLINE int VP8_RGB_TO_U(int r, int g, int b, int rounding) {
|
| const int u = -11058 * r - 21710 * g + 32768 * b;
|
| - return VP8ClipUV(u);
|
| + return VP8ClipUV(u, rounding);
|
| }
|
|
|
| -static WEBP_INLINE int VP8RGBToV(int r, int g, int b) {
|
| +static WEBP_INLINE int VP8_RGB_TO_V(int r, int g, int b, int rounding) {
|
| const int v = 32768 * r - 27439 * g - 5329 * b;
|
| - return VP8ClipUV(v);
|
| + return VP8ClipUV(v, rounding);
|
| }
|
|
|
| #endif // USE_YUVj
|
|
|
| -#if defined(__cplusplus) || defined(c_plusplus)
|
| +#ifdef __cplusplus
|
| } // extern "C"
|
| #endif
|
|
|
|
|