Index: third_party/libwebp/dec/frame.c |
diff --git a/third_party/libwebp/dec/frame.c b/third_party/libwebp/dec/frame.c |
index 5f6a7d9823fe3efb9dd0dae28c2e4aac368cd5a5..e1eea94ebe27e59f14b254cb49c5af2e2b6472b4 100644 |
--- a/third_party/libwebp/dec/frame.c |
+++ b/third_party/libwebp/dec/frame.c |
@@ -15,12 +15,11 @@ |
#include "./vp8i.h" |
#include "../utils/utils.h" |
-#if defined(__cplusplus) || defined(c_plusplus) |
-extern "C" { |
-#endif |
- |
#define ALIGN_MASK (32 - 1) |
+static void ReconstructRow(const VP8Decoder* const dec, |
+ const VP8ThreadContext* ctx); // TODO(skal): remove |
+ |
//------------------------------------------------------------------------------ |
// Filtering |
@@ -31,25 +30,18 @@ extern "C" { |
// U/V, so it's 8 samples total (because of the 2x upsampling). |
static const uint8_t kFilterExtraRows[3] = { 0, 2, 8 }; |
-static WEBP_INLINE int hev_thresh_from_level(int level, int keyframe) { |
- if (keyframe) { |
- return (level >= 40) ? 2 : (level >= 15) ? 1 : 0; |
- } else { |
- return (level >= 40) ? 3 : (level >= 20) ? 2 : (level >= 15) ? 1 : 0; |
- } |
-} |
- |
static void DoFilter(const VP8Decoder* const dec, int mb_x, int mb_y) { |
const VP8ThreadContext* const ctx = &dec->thread_ctx_; |
+ const int cache_id = ctx->id_; |
const int y_bps = dec->cache_y_stride_; |
- VP8FInfo* const f_info = ctx->f_info_ + mb_x; |
- uint8_t* const y_dst = dec->cache_y_ + ctx->id_ * 16 * y_bps + mb_x * 16; |
- const int level = f_info->f_level_; |
+ const VP8FInfo* const f_info = ctx->f_info_ + mb_x; |
+ uint8_t* const y_dst = dec->cache_y_ + cache_id * 16 * y_bps + mb_x * 16; |
const int ilevel = f_info->f_ilevel_; |
- const int limit = 2 * level + ilevel; |
- if (level == 0) { |
+ const int limit = f_info->f_limit_; |
+ if (limit == 0) { |
return; |
} |
+ assert(limit >= 3); |
if (dec->filter_type_ == 1) { // simple |
if (mb_x > 0) { |
VP8SimpleHFilter16(y_dst, y_bps, limit + 4); |
@@ -65,10 +57,9 @@ static void DoFilter(const VP8Decoder* const dec, int mb_x, int mb_y) { |
} |
} else { // complex |
const int uv_bps = dec->cache_uv_stride_; |
- uint8_t* const u_dst = dec->cache_u_ + ctx->id_ * 8 * uv_bps + mb_x * 8; |
- uint8_t* const v_dst = dec->cache_v_ + ctx->id_ * 8 * uv_bps + mb_x * 8; |
- const int hev_thresh = |
- hev_thresh_from_level(level, dec->frm_hdr_.key_frame_); |
+ uint8_t* const u_dst = dec->cache_u_ + cache_id * 8 * uv_bps + mb_x * 8; |
+ uint8_t* const v_dst = dec->cache_v_ + cache_id * 8 * uv_bps + mb_x * 8; |
+ const int hev_thresh = f_info->hev_thresh_; |
if (mb_x > 0) { |
VP8HFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh); |
VP8HFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh); |
@@ -128,26 +119,108 @@ static void PrecomputeFilterStrengths(VP8Decoder* const dec) { |
} |
} |
level = (level < 0) ? 0 : (level > 63) ? 63 : level; |
- info->f_level_ = level; |
- |
- if (hdr->sharpness_ > 0) { |
- if (hdr->sharpness_ > 4) { |
- level >>= 2; |
- } else { |
- level >>= 1; |
- } |
- if (level > 9 - hdr->sharpness_) { |
- level = 9 - hdr->sharpness_; |
+ if (level > 0) { |
+ int ilevel = level; |
+ if (hdr->sharpness_ > 0) { |
+ if (hdr->sharpness_ > 4) { |
+ ilevel >>= 2; |
+ } else { |
+ ilevel >>= 1; |
+ } |
+ if (ilevel > 9 - hdr->sharpness_) { |
+ ilevel = 9 - hdr->sharpness_; |
+ } |
} |
+ if (ilevel < 1) ilevel = 1; |
+ info->f_ilevel_ = ilevel; |
+ info->f_limit_ = 2 * level + ilevel; |
+ info->hev_thresh_ = (level >= 40) ? 2 : (level >= 15) ? 1 : 0; |
+ } else { |
+ info->f_limit_ = 0; // no filtering |
} |
- info->f_ilevel_ = (level < 1) ? 1 : level; |
- info->f_inner_ = 0; |
+ info->f_inner_ = i4x4; |
} |
} |
} |
} |
//------------------------------------------------------------------------------ |
+// Dithering |
+ |
+#define DITHER_AMP_TAB_SIZE 12 |
+static const int kQuantToDitherAmp[DITHER_AMP_TAB_SIZE] = { |
+ // roughly, it's dqm->uv_mat_[1] |
+ 8, 7, 6, 4, 4, 2, 2, 2, 1, 1, 1, 1 |
+}; |
+ |
+void VP8InitDithering(const WebPDecoderOptions* const options, |
+ VP8Decoder* const dec) { |
+ assert(dec != NULL); |
+ if (options != NULL) { |
+ const int d = options->dithering_strength; |
+ const int max_amp = (1 << VP8_RANDOM_DITHER_FIX) - 1; |
+ const int f = (d < 0) ? 0 : (d > 100) ? max_amp : (d * max_amp / 100); |
+ if (f > 0) { |
+ int s; |
+ int all_amp = 0; |
+ for (s = 0; s < NUM_MB_SEGMENTS; ++s) { |
+ VP8QuantMatrix* const dqm = &dec->dqm_[s]; |
+ if (dqm->uv_quant_ < DITHER_AMP_TAB_SIZE) { |
+ // TODO(skal): should we specially dither more for uv_quant_ < 0? |
+ const int idx = (dqm->uv_quant_ < 0) ? 0 : dqm->uv_quant_; |
+ dqm->dither_ = (f * kQuantToDitherAmp[idx]) >> 3; |
+ } |
+ all_amp |= dqm->dither_; |
+ } |
+ if (all_amp != 0) { |
+ VP8InitRandom(&dec->dithering_rg_, 1.0f); |
+ dec->dither_ = 1; |
+ } |
+ } |
+ } |
+} |
+ |
+// minimal amp that will provide a non-zero dithering effect |
+#define MIN_DITHER_AMP 4 |
+#define DITHER_DESCALE 4 |
+#define DITHER_DESCALE_ROUNDER (1 << (DITHER_DESCALE - 1)) |
+#define DITHER_AMP_BITS 8 |
+#define DITHER_AMP_CENTER (1 << DITHER_AMP_BITS) |
+ |
+static void Dither8x8(VP8Random* const rg, uint8_t* dst, int bps, int amp) { |
+ int i, j; |
+ for (j = 0; j < 8; ++j) { |
+ for (i = 0; i < 8; ++i) { |
+ // TODO: could be made faster with SSE2 |
+ const int bits = |
+ VP8RandomBits2(rg, DITHER_AMP_BITS + 1, amp) - DITHER_AMP_CENTER; |
+ // Convert to range: [-2,2] for dither=50, [-4,4] for dither=100 |
+ const int delta = (bits + DITHER_DESCALE_ROUNDER) >> DITHER_DESCALE; |
+ const int v = (int)dst[i] + delta; |
+ dst[i] = (v < 0) ? 0 : (v > 255) ? 255u : (uint8_t)v; |
+ } |
+ dst += bps; |
+ } |
+} |
+ |
+static void DitherRow(VP8Decoder* const dec) { |
+ int mb_x; |
+ assert(dec->dither_); |
+ for (mb_x = dec->tl_mb_x_; mb_x < dec->br_mb_x_; ++mb_x) { |
+ const VP8ThreadContext* const ctx = &dec->thread_ctx_; |
+ const VP8MBData* const data = ctx->mb_data_ + mb_x; |
+ const int cache_id = ctx->id_; |
+ const int uv_bps = dec->cache_uv_stride_; |
+ if (data->dither_ >= MIN_DITHER_AMP) { |
+ uint8_t* const u_dst = dec->cache_u_ + cache_id * 8 * uv_bps + mb_x * 8; |
+ uint8_t* const v_dst = dec->cache_v_ + cache_id * 8 * uv_bps + mb_x * 8; |
+ Dither8x8(&dec->dithering_rg_, u_dst, uv_bps, data->dither_); |
+ Dither8x8(&dec->dithering_rg_, v_dst, uv_bps, data->dither_); |
+ } |
+ } |
+} |
+ |
+//------------------------------------------------------------------------------ |
// This function is called after a row of macroblocks is finished decoding. |
// It also takes into account the following restrictions: |
// * In case of in-loop filtering, we must hold off sending some of the bottom |
@@ -164,25 +237,35 @@ static void PrecomputeFilterStrengths(VP8Decoder* const dec) { |
static int FinishRow(VP8Decoder* const dec, VP8Io* const io) { |
int ok = 1; |
const VP8ThreadContext* const ctx = &dec->thread_ctx_; |
+ const int cache_id = ctx->id_; |
const int extra_y_rows = kFilterExtraRows[dec->filter_type_]; |
const int ysize = extra_y_rows * dec->cache_y_stride_; |
const int uvsize = (extra_y_rows / 2) * dec->cache_uv_stride_; |
- const int y_offset = ctx->id_ * 16 * dec->cache_y_stride_; |
- const int uv_offset = ctx->id_ * 8 * dec->cache_uv_stride_; |
+ const int y_offset = cache_id * 16 * dec->cache_y_stride_; |
+ const int uv_offset = cache_id * 8 * dec->cache_uv_stride_; |
uint8_t* const ydst = dec->cache_y_ - ysize + y_offset; |
uint8_t* const udst = dec->cache_u_ - uvsize + uv_offset; |
uint8_t* const vdst = dec->cache_v_ - uvsize + uv_offset; |
- const int first_row = (ctx->mb_y_ == 0); |
- const int last_row = (ctx->mb_y_ >= dec->br_mb_y_ - 1); |
- int y_start = MACROBLOCK_VPOS(ctx->mb_y_); |
- int y_end = MACROBLOCK_VPOS(ctx->mb_y_ + 1); |
+ const int mb_y = ctx->mb_y_; |
+ const int is_first_row = (mb_y == 0); |
+ const int is_last_row = (mb_y >= dec->br_mb_y_ - 1); |
+ |
+ if (dec->mt_method_ == 2) { |
+ ReconstructRow(dec, ctx); |
+ } |
if (ctx->filter_row_) { |
FilterRow(dec); |
} |
- if (io->put) { |
- if (!first_row) { |
+ if (dec->dither_) { |
+ DitherRow(dec); |
+ } |
+ |
+ if (io->put != NULL) { |
+ int y_start = MACROBLOCK_VPOS(mb_y); |
+ int y_end = MACROBLOCK_VPOS(mb_y + 1); |
+ if (!is_first_row) { |
y_start -= extra_y_rows; |
io->y = ydst; |
io->u = udst; |
@@ -193,7 +276,7 @@ static int FinishRow(VP8Decoder* const dec, VP8Io* const io) { |
io->v = dec->cache_v_ + uv_offset; |
} |
- if (!last_row) { |
+ if (!is_last_row) { |
y_end -= extra_y_rows; |
} |
if (y_end > io->crop_bottom) { |
@@ -201,11 +284,8 @@ static int FinishRow(VP8Decoder* const dec, VP8Io* const io) { |
} |
io->a = NULL; |
if (dec->alpha_data_ != NULL && y_start < y_end) { |
- // TODO(skal): several things to correct here: |
- // * testing presence of alpha with dec->alpha_data_ is not a good idea |
- // * we're actually decompressing the full plane only once. It should be |
- // more obvious from signature. |
- // * we could free alpha_data_ right after this call, but we don't own. |
+ // TODO(skal): testing presence of alpha with dec->alpha_data_ is not a |
+ // good idea. |
io->a = VP8DecompressAlphaRows(dec, y_start, y_end - y_start); |
if (io->a == NULL) { |
return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR, |
@@ -237,8 +317,8 @@ static int FinishRow(VP8Decoder* const dec, VP8Io* const io) { |
} |
} |
// rotate top samples if needed |
- if (ctx->id_ + 1 == dec->num_caches_) { |
- if (!last_row) { |
+ if (cache_id + 1 == dec->num_caches_) { |
+ if (!is_last_row) { |
memcpy(dec->cache_y_ - ysize, ydst + 16 * dec->cache_y_stride_, ysize); |
memcpy(dec->cache_u_ - uvsize, udst + 8 * dec->cache_uv_stride_, uvsize); |
memcpy(dec->cache_v_ - uvsize, vdst + 8 * dec->cache_uv_stride_, uvsize); |
@@ -255,10 +335,14 @@ static int FinishRow(VP8Decoder* const dec, VP8Io* const io) { |
int VP8ProcessRow(VP8Decoder* const dec, VP8Io* const io) { |
int ok = 1; |
VP8ThreadContext* const ctx = &dec->thread_ctx_; |
- if (!dec->use_threads_) { |
+ const int filter_row = |
+ (dec->filter_type_ > 0) && |
+ (dec->mb_y_ >= dec->tl_mb_y_) && (dec->mb_y_ <= dec->br_mb_y_); |
+ if (dec->mt_method_ == 0) { |
// ctx->id_ and ctx->f_info_ are already set |
ctx->mb_y_ = dec->mb_y_; |
- ctx->filter_row_ = dec->filter_row_; |
+ ctx->filter_row_ = filter_row; |
+ ReconstructRow(dec, ctx); |
ok = FinishRow(dec, io); |
} else { |
WebPWorker* const worker = &dec->worker_; |
@@ -269,13 +353,21 @@ int VP8ProcessRow(VP8Decoder* const dec, VP8Io* const io) { |
ctx->io_ = *io; |
ctx->id_ = dec->cache_id_; |
ctx->mb_y_ = dec->mb_y_; |
- ctx->filter_row_ = dec->filter_row_; |
- if (ctx->filter_row_) { // just swap filter info |
+ ctx->filter_row_ = filter_row; |
+ if (dec->mt_method_ == 2) { // swap macroblock data |
+ VP8MBData* const tmp = ctx->mb_data_; |
+ ctx->mb_data_ = dec->mb_data_; |
+ dec->mb_data_ = tmp; |
+ } else { |
+ // perform reconstruction directly in main thread |
+ ReconstructRow(dec, ctx); |
+ } |
+ if (filter_row) { // swap filter info |
VP8FInfo* const tmp = ctx->f_info_; |
ctx->f_info_ = dec->f_info_; |
dec->f_info_ = tmp; |
} |
- WebPWorkerLaunch(worker); |
+ WebPWorkerLaunch(worker); // (reconstruct)+filter in parallel |
if (++dec->cache_id_ == dec->num_caches_) { |
dec->cache_id_ = 0; |
} |
@@ -289,8 +381,8 @@ int VP8ProcessRow(VP8Decoder* const dec, VP8Io* const io) { |
VP8StatusCode VP8EnterCritical(VP8Decoder* const dec, VP8Io* const io) { |
// Call setup() first. This may trigger additional decoding features on 'io'. |
- // Note: Afterward, we must call teardown() not matter what. |
- if (io->setup && !io->setup(io)) { |
+ // Note: Afterward, we must call teardown() no matter what. |
+ if (io->setup != NULL && !io->setup(io)) { |
VP8SetError(dec, VP8_STATUS_USER_ABORT, "Frame setup failed"); |
return dec->status_; |
} |
@@ -303,7 +395,7 @@ VP8StatusCode VP8EnterCritical(VP8Decoder* const dec, VP8Io* const io) { |
// Define the area where we can skip in-loop filtering, in case of cropping. |
// |
- // 'Simple' filter reads two luma samples outside of the macroblock and |
+ // 'Simple' filter reads two luma samples outside of the macroblock |
// and filters one. It doesn't filter the chroma samples. Hence, we can |
// avoid doing the in-loop filtering before crop_top/crop_left position. |
// For the 'Complex' filter, 3 samples are read and up to 3 are filtered. |
@@ -344,11 +436,11 @@ VP8StatusCode VP8EnterCritical(VP8Decoder* const dec, VP8Io* const io) { |
int VP8ExitCritical(VP8Decoder* const dec, VP8Io* const io) { |
int ok = 1; |
- if (dec->use_threads_) { |
+ if (dec->mt_method_ > 0) { |
ok = WebPWorkerSync(&dec->worker_); |
} |
- if (io->teardown) { |
+ if (io->teardown != NULL) { |
io->teardown(io); |
} |
return ok; |
@@ -384,7 +476,7 @@ int VP8ExitCritical(VP8Decoder* const dec, VP8Io* const io) { |
// Initialize multi/single-thread worker |
static int InitThreadContext(VP8Decoder* const dec) { |
dec->cache_id_ = 0; |
- if (dec->use_threads_) { |
+ if (dec->mt_method_ > 0) { |
WebPWorker* const worker = &dec->worker_; |
if (!WebPWorkerReset(worker)) { |
return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY, |
@@ -401,6 +493,28 @@ static int InitThreadContext(VP8Decoder* const dec) { |
return 1; |
} |
+int VP8GetThreadMethod(const WebPDecoderOptions* const options, |
+ const WebPHeaderStructure* const headers, |
+ int width, int height) { |
+ if (options == NULL || options->use_threads == 0) { |
+ return 0; |
+ } |
+ (void)headers; |
+ (void)width; |
+ (void)height; |
+ assert(!headers->is_lossless); |
+#if defined(WEBP_USE_THREAD) |
+ if (width < MIN_WIDTH_FOR_THREADS) return 0; |
+ // TODO(skal): tune the heuristic further |
+#if 0 |
+ if (height < 2 * width) return 2; |
+#endif |
+ return 2; |
+#else // !WEBP_USE_THREAD |
+ return 0; |
+#endif |
+} |
+ |
#undef MT_CACHE_LINES |
#undef ST_CACHE_LINES |
@@ -412,14 +526,15 @@ static int AllocateMemory(VP8Decoder* const dec) { |
const int mb_w = dec->mb_w_; |
// Note: we use 'size_t' when there's no overflow risk, uint64_t otherwise. |
const size_t intra_pred_mode_size = 4 * mb_w * sizeof(uint8_t); |
- const size_t top_size = (16 + 8 + 8) * mb_w; |
+ const size_t top_size = sizeof(VP8TopSamples) * mb_w; |
const size_t mb_info_size = (mb_w + 1) * sizeof(VP8MB); |
const size_t f_info_size = |
(dec->filter_type_ > 0) ? |
- mb_w * (dec->use_threads_ ? 2 : 1) * sizeof(VP8FInfo) |
+ mb_w * (dec->mt_method_ > 0 ? 2 : 1) * sizeof(VP8FInfo) |
: 0; |
const size_t yuv_size = YUV_SIZE * sizeof(*dec->yuv_b_); |
- const size_t coeffs_size = 384 * sizeof(*dec->coeffs_); |
+ const size_t mb_data_size = |
+ (dec->mt_method_ == 2 ? 2 : 1) * mb_w * sizeof(*dec->mb_data_); |
const size_t cache_height = (16 * num_caches |
+ kFilterExtraRows[dec->filter_type_]) * 3 / 2; |
const size_t cache_size = top_size * cache_height; |
@@ -428,7 +543,7 @@ static int AllocateMemory(VP8Decoder* const dec) { |
(uint64_t)dec->pic_hdr_.width_ * dec->pic_hdr_.height_ : 0ULL; |
const uint64_t needed = (uint64_t)intra_pred_mode_size |
+ top_size + mb_info_size + f_info_size |
- + yuv_size + coeffs_size |
+ + yuv_size + mb_data_size |
+ cache_size + alpha_size + ALIGN_MASK; |
uint8_t* mem; |
@@ -449,12 +564,8 @@ static int AllocateMemory(VP8Decoder* const dec) { |
dec->intra_t_ = (uint8_t*)mem; |
mem += intra_pred_mode_size; |
- dec->y_t_ = (uint8_t*)mem; |
- mem += 16 * mb_w; |
- dec->u_t_ = (uint8_t*)mem; |
- mem += 8 * mb_w; |
- dec->v_t_ = (uint8_t*)mem; |
- mem += 8 * mb_w; |
+ dec->yuv_t_ = (VP8TopSamples*)mem; |
+ mem += top_size; |
dec->mb_info_ = ((VP8MB*)mem) + 1; |
mem += mb_info_size; |
@@ -463,7 +574,7 @@ static int AllocateMemory(VP8Decoder* const dec) { |
mem += f_info_size; |
dec->thread_ctx_.id_ = 0; |
dec->thread_ctx_.f_info_ = dec->f_info_; |
- if (dec->use_threads_) { |
+ if (dec->mt_method_ > 0) { |
// secondary cache line. The deblocking process need to make use of the |
// filtering strength from previous macroblock row, while the new ones |
// are being decoded in parallel. We'll just swap the pointers. |
@@ -475,8 +586,12 @@ static int AllocateMemory(VP8Decoder* const dec) { |
dec->yuv_b_ = (uint8_t*)mem; |
mem += yuv_size; |
- dec->coeffs_ = (int16_t*)mem; |
- mem += coeffs_size; |
+ dec->mb_data_ = (VP8MBData*)mem; |
+ dec->thread_ctx_.mb_data_ = (VP8MBData*)mem; |
+ if (dec->mt_method_ == 2) { |
+ dec->thread_ctx_.mb_data_ += mb_w; |
+ } |
+ mem += mb_data_size; |
dec->cache_y_stride_ = 16 * mb_w; |
dec->cache_uv_stride_ = 8 * mb_w; |
@@ -498,8 +613,9 @@ static int AllocateMemory(VP8Decoder* const dec) { |
mem += alpha_size; |
assert(mem <= (uint8_t*)dec->mem_ + dec->mem_size_); |
- // note: left-info is initialized once for all. |
+ // note: left/top-info is initialized once for all. |
memset(dec->mb_info_ - 1, 0, mb_info_size); |
+ VP8InitScanline(dec); // initialize left too. |
// initialize top |
memset(dec->intra_t_, B_DC_PRED, intra_pred_mode_size); |
@@ -536,159 +652,167 @@ static const int kScan[16] = { |
0 + 12 * BPS, 4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS |
}; |
-static WEBP_INLINE int CheckMode(VP8Decoder* const dec, int mode) { |
+static int CheckMode(int mb_x, int mb_y, int mode) { |
if (mode == B_DC_PRED) { |
- if (dec->mb_x_ == 0) { |
- return (dec->mb_y_ == 0) ? B_DC_PRED_NOTOPLEFT : B_DC_PRED_NOLEFT; |
+ if (mb_x == 0) { |
+ return (mb_y == 0) ? B_DC_PRED_NOTOPLEFT : B_DC_PRED_NOLEFT; |
} else { |
- return (dec->mb_y_ == 0) ? B_DC_PRED_NOTOP : B_DC_PRED; |
+ return (mb_y == 0) ? B_DC_PRED_NOTOP : B_DC_PRED; |
} |
} |
return mode; |
} |
-static WEBP_INLINE void Copy32b(uint8_t* dst, uint8_t* src) { |
- *(uint32_t*)dst = *(uint32_t*)src; |
+static void Copy32b(uint8_t* dst, uint8_t* src) { |
+ memcpy(dst, src, 4); |
+} |
+ |
+static WEBP_INLINE void DoTransform(uint32_t bits, const int16_t* const src, |
+ uint8_t* const dst) { |
+ switch (bits >> 30) { |
+ case 3: |
+ VP8Transform(src, dst, 0); |
+ break; |
+ case 2: |
+ VP8TransformAC3(src, dst); |
+ break; |
+ case 1: |
+ VP8TransformDC(src, dst); |
+ break; |
+ default: |
+ break; |
+ } |
} |
-void VP8ReconstructBlock(VP8Decoder* const dec) { |
+static void DoUVTransform(uint32_t bits, const int16_t* const src, |
+ uint8_t* const dst) { |
+ if (bits & 0xff) { // any non-zero coeff at all? |
+ if (bits & 0xaa) { // any non-zero AC coefficient? |
+ VP8TransformUV(src, dst); // note we don't use the AC3 variant for U/V |
+ } else { |
+ VP8TransformDCUV(src, dst); |
+ } |
+ } |
+} |
+ |
+static void ReconstructRow(const VP8Decoder* const dec, |
+ const VP8ThreadContext* ctx) { |
int j; |
+ int mb_x; |
+ const int mb_y = ctx->mb_y_; |
+ const int cache_id = ctx->id_; |
uint8_t* const y_dst = dec->yuv_b_ + Y_OFF; |
uint8_t* const u_dst = dec->yuv_b_ + U_OFF; |
uint8_t* const v_dst = dec->yuv_b_ + V_OFF; |
+ for (mb_x = 0; mb_x < dec->mb_w_; ++mb_x) { |
+ const VP8MBData* const block = ctx->mb_data_ + mb_x; |
- // Rotate in the left samples from previously decoded block. We move four |
- // pixels at a time for alignment reason, and because of in-loop filter. |
- if (dec->mb_x_ > 0) { |
- for (j = -1; j < 16; ++j) { |
- Copy32b(&y_dst[j * BPS - 4], &y_dst[j * BPS + 12]); |
- } |
- for (j = -1; j < 8; ++j) { |
- Copy32b(&u_dst[j * BPS - 4], &u_dst[j * BPS + 4]); |
- Copy32b(&v_dst[j * BPS - 4], &v_dst[j * BPS + 4]); |
- } |
- } else { |
- for (j = 0; j < 16; ++j) { |
- y_dst[j * BPS - 1] = 129; |
- } |
- for (j = 0; j < 8; ++j) { |
- u_dst[j * BPS - 1] = 129; |
- v_dst[j * BPS - 1] = 129; |
- } |
- // Init top-left sample on left column too |
- if (dec->mb_y_ > 0) { |
- y_dst[-1 - BPS] = u_dst[-1 - BPS] = v_dst[-1 - BPS] = 129; |
- } |
- } |
- { |
- // bring top samples into the cache |
- uint8_t* const top_y = dec->y_t_ + dec->mb_x_ * 16; |
- uint8_t* const top_u = dec->u_t_ + dec->mb_x_ * 8; |
- uint8_t* const top_v = dec->v_t_ + dec->mb_x_ * 8; |
- const int16_t* coeffs = dec->coeffs_; |
- int n; |
- |
- if (dec->mb_y_ > 0) { |
- memcpy(y_dst - BPS, top_y, 16); |
- memcpy(u_dst - BPS, top_u, 8); |
- memcpy(v_dst - BPS, top_v, 8); |
- } else if (dec->mb_x_ == 0) { |
- // we only need to do this init once at block (0,0). |
- // Afterward, it remains valid for the whole topmost row. |
- memset(y_dst - BPS - 1, 127, 16 + 4 + 1); |
- memset(u_dst - BPS - 1, 127, 8 + 1); |
- memset(v_dst - BPS - 1, 127, 8 + 1); |
+ // Rotate in the left samples from previously decoded block. We move four |
+ // pixels at a time for alignment reason, and because of in-loop filter. |
+ if (mb_x > 0) { |
+ for (j = -1; j < 16; ++j) { |
+ Copy32b(&y_dst[j * BPS - 4], &y_dst[j * BPS + 12]); |
+ } |
+ for (j = -1; j < 8; ++j) { |
+ Copy32b(&u_dst[j * BPS - 4], &u_dst[j * BPS + 4]); |
+ Copy32b(&v_dst[j * BPS - 4], &v_dst[j * BPS + 4]); |
+ } |
+ } else { |
+ for (j = 0; j < 16; ++j) { |
+ y_dst[j * BPS - 1] = 129; |
+ } |
+ for (j = 0; j < 8; ++j) { |
+ u_dst[j * BPS - 1] = 129; |
+ v_dst[j * BPS - 1] = 129; |
+ } |
+ // Init top-left sample on left column too |
+ if (mb_y > 0) { |
+ y_dst[-1 - BPS] = u_dst[-1 - BPS] = v_dst[-1 - BPS] = 129; |
+ } |
} |
+ { |
+ // bring top samples into the cache |
+ VP8TopSamples* const top_yuv = dec->yuv_t_ + mb_x; |
+ const int16_t* const coeffs = block->coeffs_; |
+ uint32_t bits = block->non_zero_y_; |
+ int n; |
+ |
+ if (mb_y > 0) { |
+ memcpy(y_dst - BPS, top_yuv[0].y, 16); |
+ memcpy(u_dst - BPS, top_yuv[0].u, 8); |
+ memcpy(v_dst - BPS, top_yuv[0].v, 8); |
+ } else if (mb_x == 0) { |
+ // we only need to do this init once at block (0,0). |
+ // Afterward, it remains valid for the whole topmost row. |
+ memset(y_dst - BPS - 1, 127, 16 + 4 + 1); |
+ memset(u_dst - BPS - 1, 127, 8 + 1); |
+ memset(v_dst - BPS - 1, 127, 8 + 1); |
+ } |
- // predict and add residuals |
- |
- if (dec->is_i4x4_) { // 4x4 |
- uint32_t* const top_right = (uint32_t*)(y_dst - BPS + 16); |
+ // predict and add residuals |
+ if (block->is_i4x4_) { // 4x4 |
+ uint32_t* const top_right = (uint32_t*)(y_dst - BPS + 16); |
- if (dec->mb_y_ > 0) { |
- if (dec->mb_x_ >= dec->mb_w_ - 1) { // on rightmost border |
- top_right[0] = top_y[15] * 0x01010101u; |
- } else { |
- memcpy(top_right, top_y + 16, sizeof(*top_right)); |
- } |
- } |
- // replicate the top-right pixels below |
- top_right[BPS] = top_right[2 * BPS] = top_right[3 * BPS] = top_right[0]; |
- |
- // predict and add residues for all 4x4 blocks in turn. |
- for (n = 0; n < 16; n++) { |
- uint8_t* const dst = y_dst + kScan[n]; |
- VP8PredLuma4[dec->imodes_[n]](dst); |
- if (dec->non_zero_ac_ & (1 << n)) { |
- VP8Transform(coeffs + n * 16, dst, 0); |
- } else if (dec->non_zero_ & (1 << n)) { // only DC is present |
- VP8TransformDC(coeffs + n * 16, dst); |
+ if (mb_y > 0) { |
+ if (mb_x >= dec->mb_w_ - 1) { // on rightmost border |
+ memset(top_right, top_yuv[0].y[15], sizeof(*top_right)); |
+ } else { |
+ memcpy(top_right, top_yuv[1].y, sizeof(*top_right)); |
+ } |
} |
- } |
- } else { // 16x16 |
- const int pred_func = CheckMode(dec, dec->imodes_[0]); |
- VP8PredLuma16[pred_func](y_dst); |
- if (dec->non_zero_) { |
- for (n = 0; n < 16; n++) { |
+ // replicate the top-right pixels below |
+ top_right[BPS] = top_right[2 * BPS] = top_right[3 * BPS] = top_right[0]; |
+ |
+ // predict and add residuals for all 4x4 blocks in turn. |
+ for (n = 0; n < 16; ++n, bits <<= 2) { |
uint8_t* const dst = y_dst + kScan[n]; |
- if (dec->non_zero_ac_ & (1 << n)) { |
- VP8Transform(coeffs + n * 16, dst, 0); |
- } else if (dec->non_zero_ & (1 << n)) { // only DC is present |
- VP8TransformDC(coeffs + n * 16, dst); |
- } |
+ VP8PredLuma4[block->imodes_[n]](dst); |
+ DoTransform(bits, coeffs + n * 16, dst); |
} |
- } |
- } |
- { |
- // Chroma |
- const int pred_func = CheckMode(dec, dec->uvmode_); |
- VP8PredChroma8[pred_func](u_dst); |
- VP8PredChroma8[pred_func](v_dst); |
- |
- if (dec->non_zero_ & 0x0f0000) { // chroma-U |
- const int16_t* const u_coeffs = dec->coeffs_ + 16 * 16; |
- if (dec->non_zero_ac_ & 0x0f0000) { |
- VP8TransformUV(u_coeffs, u_dst); |
- } else { |
- VP8TransformDCUV(u_coeffs, u_dst); |
+ } else { // 16x16 |
+ const int pred_func = CheckMode(mb_x, mb_y, |
+ block->imodes_[0]); |
+ VP8PredLuma16[pred_func](y_dst); |
+ if (bits != 0) { |
+ for (n = 0; n < 16; ++n, bits <<= 2) { |
+ DoTransform(bits, coeffs + n * 16, y_dst + kScan[n]); |
+ } |
} |
} |
- if (dec->non_zero_ & 0xf00000) { // chroma-V |
- const int16_t* const v_coeffs = dec->coeffs_ + 20 * 16; |
- if (dec->non_zero_ac_ & 0xf00000) { |
- VP8TransformUV(v_coeffs, v_dst); |
- } else { |
- VP8TransformDCUV(v_coeffs, v_dst); |
- } |
+ { |
+ // Chroma |
+ const uint32_t bits_uv = block->non_zero_uv_; |
+ const int pred_func = CheckMode(mb_x, mb_y, block->uvmode_); |
+ VP8PredChroma8[pred_func](u_dst); |
+ VP8PredChroma8[pred_func](v_dst); |
+ DoUVTransform(bits_uv >> 0, coeffs + 16 * 16, u_dst); |
+ DoUVTransform(bits_uv >> 8, coeffs + 20 * 16, v_dst); |
} |
// stash away top samples for next block |
- if (dec->mb_y_ < dec->mb_h_ - 1) { |
- memcpy(top_y, y_dst + 15 * BPS, 16); |
- memcpy(top_u, u_dst + 7 * BPS, 8); |
- memcpy(top_v, v_dst + 7 * BPS, 8); |
+ if (mb_y < dec->mb_h_ - 1) { |
+ memcpy(top_yuv[0].y, y_dst + 15 * BPS, 16); |
+ memcpy(top_yuv[0].u, u_dst + 7 * BPS, 8); |
+ memcpy(top_yuv[0].v, v_dst + 7 * BPS, 8); |
} |
} |
- } |
- // Transfer reconstructed samples from yuv_b_ cache to final destination. |
- { |
- const int y_offset = dec->cache_id_ * 16 * dec->cache_y_stride_; |
- const int uv_offset = dec->cache_id_ * 8 * dec->cache_uv_stride_; |
- uint8_t* const y_out = dec->cache_y_ + dec->mb_x_ * 16 + y_offset; |
- uint8_t* const u_out = dec->cache_u_ + dec->mb_x_ * 8 + uv_offset; |
- uint8_t* const v_out = dec->cache_v_ + dec->mb_x_ * 8 + uv_offset; |
- for (j = 0; j < 16; ++j) { |
- memcpy(y_out + j * dec->cache_y_stride_, y_dst + j * BPS, 16); |
- } |
- for (j = 0; j < 8; ++j) { |
- memcpy(u_out + j * dec->cache_uv_stride_, u_dst + j * BPS, 8); |
- memcpy(v_out + j * dec->cache_uv_stride_, v_dst + j * BPS, 8); |
+ // Transfer reconstructed samples from yuv_b_ cache to final destination. |
+ { |
+ const int y_offset = cache_id * 16 * dec->cache_y_stride_; |
+ const int uv_offset = cache_id * 8 * dec->cache_uv_stride_; |
+ uint8_t* const y_out = dec->cache_y_ + mb_x * 16 + y_offset; |
+ uint8_t* const u_out = dec->cache_u_ + mb_x * 8 + uv_offset; |
+ uint8_t* const v_out = dec->cache_v_ + mb_x * 8 + uv_offset; |
+ for (j = 0; j < 16; ++j) { |
+ memcpy(y_out + j * dec->cache_y_stride_, y_dst + j * BPS, 16); |
+ } |
+ for (j = 0; j < 8; ++j) { |
+ memcpy(u_out + j * dec->cache_uv_stride_, u_dst + j * BPS, 8); |
+ memcpy(v_out + j * dec->cache_uv_stride_, v_dst + j * BPS, 8); |
+ } |
} |
} |
} |
//------------------------------------------------------------------------------ |
-#if defined(__cplusplus) || defined(c_plusplus) |
-} // extern "C" |
-#endif |