| Index: third_party/libwebp/dec/frame.c
|
| diff --git a/third_party/libwebp/dec/frame.c b/third_party/libwebp/dec/frame.c
|
| index 5f6a7d9823fe3efb9dd0dae28c2e4aac368cd5a5..e1eea94ebe27e59f14b254cb49c5af2e2b6472b4 100644
|
| --- a/third_party/libwebp/dec/frame.c
|
| +++ b/third_party/libwebp/dec/frame.c
|
| @@ -15,12 +15,11 @@
|
| #include "./vp8i.h"
|
| #include "../utils/utils.h"
|
|
|
| -#if defined(__cplusplus) || defined(c_plusplus)
|
| -extern "C" {
|
| -#endif
|
| -
|
| #define ALIGN_MASK (32 - 1)
|
|
|
| +static void ReconstructRow(const VP8Decoder* const dec,
|
| + const VP8ThreadContext* ctx); // TODO(skal): remove
|
| +
|
| //------------------------------------------------------------------------------
|
| // Filtering
|
|
|
| @@ -31,25 +30,18 @@ extern "C" {
|
| // U/V, so it's 8 samples total (because of the 2x upsampling).
|
| static const uint8_t kFilterExtraRows[3] = { 0, 2, 8 };
|
|
|
| -static WEBP_INLINE int hev_thresh_from_level(int level, int keyframe) {
|
| - if (keyframe) {
|
| - return (level >= 40) ? 2 : (level >= 15) ? 1 : 0;
|
| - } else {
|
| - return (level >= 40) ? 3 : (level >= 20) ? 2 : (level >= 15) ? 1 : 0;
|
| - }
|
| -}
|
| -
|
| static void DoFilter(const VP8Decoder* const dec, int mb_x, int mb_y) {
|
| const VP8ThreadContext* const ctx = &dec->thread_ctx_;
|
| + const int cache_id = ctx->id_;
|
| const int y_bps = dec->cache_y_stride_;
|
| - VP8FInfo* const f_info = ctx->f_info_ + mb_x;
|
| - uint8_t* const y_dst = dec->cache_y_ + ctx->id_ * 16 * y_bps + mb_x * 16;
|
| - const int level = f_info->f_level_;
|
| + const VP8FInfo* const f_info = ctx->f_info_ + mb_x;
|
| + uint8_t* const y_dst = dec->cache_y_ + cache_id * 16 * y_bps + mb_x * 16;
|
| const int ilevel = f_info->f_ilevel_;
|
| - const int limit = 2 * level + ilevel;
|
| - if (level == 0) {
|
| + const int limit = f_info->f_limit_;
|
| + if (limit == 0) {
|
| return;
|
| }
|
| + assert(limit >= 3);
|
| if (dec->filter_type_ == 1) { // simple
|
| if (mb_x > 0) {
|
| VP8SimpleHFilter16(y_dst, y_bps, limit + 4);
|
| @@ -65,10 +57,9 @@ static void DoFilter(const VP8Decoder* const dec, int mb_x, int mb_y) {
|
| }
|
| } else { // complex
|
| const int uv_bps = dec->cache_uv_stride_;
|
| - uint8_t* const u_dst = dec->cache_u_ + ctx->id_ * 8 * uv_bps + mb_x * 8;
|
| - uint8_t* const v_dst = dec->cache_v_ + ctx->id_ * 8 * uv_bps + mb_x * 8;
|
| - const int hev_thresh =
|
| - hev_thresh_from_level(level, dec->frm_hdr_.key_frame_);
|
| + uint8_t* const u_dst = dec->cache_u_ + cache_id * 8 * uv_bps + mb_x * 8;
|
| + uint8_t* const v_dst = dec->cache_v_ + cache_id * 8 * uv_bps + mb_x * 8;
|
| + const int hev_thresh = f_info->hev_thresh_;
|
| if (mb_x > 0) {
|
| VP8HFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh);
|
| VP8HFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh);
|
| @@ -128,26 +119,108 @@ static void PrecomputeFilterStrengths(VP8Decoder* const dec) {
|
| }
|
| }
|
| level = (level < 0) ? 0 : (level > 63) ? 63 : level;
|
| - info->f_level_ = level;
|
| -
|
| - if (hdr->sharpness_ > 0) {
|
| - if (hdr->sharpness_ > 4) {
|
| - level >>= 2;
|
| - } else {
|
| - level >>= 1;
|
| - }
|
| - if (level > 9 - hdr->sharpness_) {
|
| - level = 9 - hdr->sharpness_;
|
| + if (level > 0) {
|
| + int ilevel = level;
|
| + if (hdr->sharpness_ > 0) {
|
| + if (hdr->sharpness_ > 4) {
|
| + ilevel >>= 2;
|
| + } else {
|
| + ilevel >>= 1;
|
| + }
|
| + if (ilevel > 9 - hdr->sharpness_) {
|
| + ilevel = 9 - hdr->sharpness_;
|
| + }
|
| }
|
| + if (ilevel < 1) ilevel = 1;
|
| + info->f_ilevel_ = ilevel;
|
| + info->f_limit_ = 2 * level + ilevel;
|
| + info->hev_thresh_ = (level >= 40) ? 2 : (level >= 15) ? 1 : 0;
|
| + } else {
|
| + info->f_limit_ = 0; // no filtering
|
| }
|
| - info->f_ilevel_ = (level < 1) ? 1 : level;
|
| - info->f_inner_ = 0;
|
| + info->f_inner_ = i4x4;
|
| }
|
| }
|
| }
|
| }
|
|
|
| //------------------------------------------------------------------------------
|
| +// Dithering
|
| +
|
| +#define DITHER_AMP_TAB_SIZE 12
|
| +static const int kQuantToDitherAmp[DITHER_AMP_TAB_SIZE] = {
|
| + // roughly, it's dqm->uv_mat_[1]
|
| + 8, 7, 6, 4, 4, 2, 2, 2, 1, 1, 1, 1
|
| +};
|
| +
|
| +void VP8InitDithering(const WebPDecoderOptions* const options,
|
| + VP8Decoder* const dec) {
|
| + assert(dec != NULL);
|
| + if (options != NULL) {
|
| + const int d = options->dithering_strength;
|
| + const int max_amp = (1 << VP8_RANDOM_DITHER_FIX) - 1;
|
| + const int f = (d < 0) ? 0 : (d > 100) ? max_amp : (d * max_amp / 100);
|
| + if (f > 0) {
|
| + int s;
|
| + int all_amp = 0;
|
| + for (s = 0; s < NUM_MB_SEGMENTS; ++s) {
|
| + VP8QuantMatrix* const dqm = &dec->dqm_[s];
|
| + if (dqm->uv_quant_ < DITHER_AMP_TAB_SIZE) {
|
| + // TODO(skal): should we specially dither more for uv_quant_ < 0?
|
| + const int idx = (dqm->uv_quant_ < 0) ? 0 : dqm->uv_quant_;
|
| + dqm->dither_ = (f * kQuantToDitherAmp[idx]) >> 3;
|
| + }
|
| + all_amp |= dqm->dither_;
|
| + }
|
| + if (all_amp != 0) {
|
| + VP8InitRandom(&dec->dithering_rg_, 1.0f);
|
| + dec->dither_ = 1;
|
| + }
|
| + }
|
| + }
|
| +}
|
| +
|
| +// minimal amp that will provide a non-zero dithering effect
|
| +#define MIN_DITHER_AMP 4
|
| +#define DITHER_DESCALE 4
|
| +#define DITHER_DESCALE_ROUNDER (1 << (DITHER_DESCALE - 1))
|
| +#define DITHER_AMP_BITS 8
|
| +#define DITHER_AMP_CENTER (1 << DITHER_AMP_BITS)
|
| +
|
| +static void Dither8x8(VP8Random* const rg, uint8_t* dst, int bps, int amp) {
|
| + int i, j;
|
| + for (j = 0; j < 8; ++j) {
|
| + for (i = 0; i < 8; ++i) {
|
| + // TODO: could be made faster with SSE2
|
| + const int bits =
|
| + VP8RandomBits2(rg, DITHER_AMP_BITS + 1, amp) - DITHER_AMP_CENTER;
|
| + // Convert to range: [-2,2] for dither=50, [-4,4] for dither=100
|
| + const int delta = (bits + DITHER_DESCALE_ROUNDER) >> DITHER_DESCALE;
|
| + const int v = (int)dst[i] + delta;
|
| + dst[i] = (v < 0) ? 0 : (v > 255) ? 255u : (uint8_t)v;
|
| + }
|
| + dst += bps;
|
| + }
|
| +}
|
| +
|
| +static void DitherRow(VP8Decoder* const dec) {
|
| + int mb_x;
|
| + assert(dec->dither_);
|
| + for (mb_x = dec->tl_mb_x_; mb_x < dec->br_mb_x_; ++mb_x) {
|
| + const VP8ThreadContext* const ctx = &dec->thread_ctx_;
|
| + const VP8MBData* const data = ctx->mb_data_ + mb_x;
|
| + const int cache_id = ctx->id_;
|
| + const int uv_bps = dec->cache_uv_stride_;
|
| + if (data->dither_ >= MIN_DITHER_AMP) {
|
| + uint8_t* const u_dst = dec->cache_u_ + cache_id * 8 * uv_bps + mb_x * 8;
|
| + uint8_t* const v_dst = dec->cache_v_ + cache_id * 8 * uv_bps + mb_x * 8;
|
| + Dither8x8(&dec->dithering_rg_, u_dst, uv_bps, data->dither_);
|
| + Dither8x8(&dec->dithering_rg_, v_dst, uv_bps, data->dither_);
|
| + }
|
| + }
|
| +}
|
| +
|
| +//------------------------------------------------------------------------------
|
| // This function is called after a row of macroblocks is finished decoding.
|
| // It also takes into account the following restrictions:
|
| // * In case of in-loop filtering, we must hold off sending some of the bottom
|
| @@ -164,25 +237,35 @@ static void PrecomputeFilterStrengths(VP8Decoder* const dec) {
|
| static int FinishRow(VP8Decoder* const dec, VP8Io* const io) {
|
| int ok = 1;
|
| const VP8ThreadContext* const ctx = &dec->thread_ctx_;
|
| + const int cache_id = ctx->id_;
|
| const int extra_y_rows = kFilterExtraRows[dec->filter_type_];
|
| const int ysize = extra_y_rows * dec->cache_y_stride_;
|
| const int uvsize = (extra_y_rows / 2) * dec->cache_uv_stride_;
|
| - const int y_offset = ctx->id_ * 16 * dec->cache_y_stride_;
|
| - const int uv_offset = ctx->id_ * 8 * dec->cache_uv_stride_;
|
| + const int y_offset = cache_id * 16 * dec->cache_y_stride_;
|
| + const int uv_offset = cache_id * 8 * dec->cache_uv_stride_;
|
| uint8_t* const ydst = dec->cache_y_ - ysize + y_offset;
|
| uint8_t* const udst = dec->cache_u_ - uvsize + uv_offset;
|
| uint8_t* const vdst = dec->cache_v_ - uvsize + uv_offset;
|
| - const int first_row = (ctx->mb_y_ == 0);
|
| - const int last_row = (ctx->mb_y_ >= dec->br_mb_y_ - 1);
|
| - int y_start = MACROBLOCK_VPOS(ctx->mb_y_);
|
| - int y_end = MACROBLOCK_VPOS(ctx->mb_y_ + 1);
|
| + const int mb_y = ctx->mb_y_;
|
| + const int is_first_row = (mb_y == 0);
|
| + const int is_last_row = (mb_y >= dec->br_mb_y_ - 1);
|
| +
|
| + if (dec->mt_method_ == 2) {
|
| + ReconstructRow(dec, ctx);
|
| + }
|
|
|
| if (ctx->filter_row_) {
|
| FilterRow(dec);
|
| }
|
|
|
| - if (io->put) {
|
| - if (!first_row) {
|
| + if (dec->dither_) {
|
| + DitherRow(dec);
|
| + }
|
| +
|
| + if (io->put != NULL) {
|
| + int y_start = MACROBLOCK_VPOS(mb_y);
|
| + int y_end = MACROBLOCK_VPOS(mb_y + 1);
|
| + if (!is_first_row) {
|
| y_start -= extra_y_rows;
|
| io->y = ydst;
|
| io->u = udst;
|
| @@ -193,7 +276,7 @@ static int FinishRow(VP8Decoder* const dec, VP8Io* const io) {
|
| io->v = dec->cache_v_ + uv_offset;
|
| }
|
|
|
| - if (!last_row) {
|
| + if (!is_last_row) {
|
| y_end -= extra_y_rows;
|
| }
|
| if (y_end > io->crop_bottom) {
|
| @@ -201,11 +284,8 @@ static int FinishRow(VP8Decoder* const dec, VP8Io* const io) {
|
| }
|
| io->a = NULL;
|
| if (dec->alpha_data_ != NULL && y_start < y_end) {
|
| - // TODO(skal): several things to correct here:
|
| - // * testing presence of alpha with dec->alpha_data_ is not a good idea
|
| - // * we're actually decompressing the full plane only once. It should be
|
| - // more obvious from signature.
|
| - // * we could free alpha_data_ right after this call, but we don't own.
|
| + // TODO(skal): testing presence of alpha with dec->alpha_data_ is not a
|
| + // good idea.
|
| io->a = VP8DecompressAlphaRows(dec, y_start, y_end - y_start);
|
| if (io->a == NULL) {
|
| return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR,
|
| @@ -237,8 +317,8 @@ static int FinishRow(VP8Decoder* const dec, VP8Io* const io) {
|
| }
|
| }
|
| // rotate top samples if needed
|
| - if (ctx->id_ + 1 == dec->num_caches_) {
|
| - if (!last_row) {
|
| + if (cache_id + 1 == dec->num_caches_) {
|
| + if (!is_last_row) {
|
| memcpy(dec->cache_y_ - ysize, ydst + 16 * dec->cache_y_stride_, ysize);
|
| memcpy(dec->cache_u_ - uvsize, udst + 8 * dec->cache_uv_stride_, uvsize);
|
| memcpy(dec->cache_v_ - uvsize, vdst + 8 * dec->cache_uv_stride_, uvsize);
|
| @@ -255,10 +335,14 @@ static int FinishRow(VP8Decoder* const dec, VP8Io* const io) {
|
| int VP8ProcessRow(VP8Decoder* const dec, VP8Io* const io) {
|
| int ok = 1;
|
| VP8ThreadContext* const ctx = &dec->thread_ctx_;
|
| - if (!dec->use_threads_) {
|
| + const int filter_row =
|
| + (dec->filter_type_ > 0) &&
|
| + (dec->mb_y_ >= dec->tl_mb_y_) && (dec->mb_y_ <= dec->br_mb_y_);
|
| + if (dec->mt_method_ == 0) {
|
| // ctx->id_ and ctx->f_info_ are already set
|
| ctx->mb_y_ = dec->mb_y_;
|
| - ctx->filter_row_ = dec->filter_row_;
|
| + ctx->filter_row_ = filter_row;
|
| + ReconstructRow(dec, ctx);
|
| ok = FinishRow(dec, io);
|
| } else {
|
| WebPWorker* const worker = &dec->worker_;
|
| @@ -269,13 +353,21 @@ int VP8ProcessRow(VP8Decoder* const dec, VP8Io* const io) {
|
| ctx->io_ = *io;
|
| ctx->id_ = dec->cache_id_;
|
| ctx->mb_y_ = dec->mb_y_;
|
| - ctx->filter_row_ = dec->filter_row_;
|
| - if (ctx->filter_row_) { // just swap filter info
|
| + ctx->filter_row_ = filter_row;
|
| + if (dec->mt_method_ == 2) { // swap macroblock data
|
| + VP8MBData* const tmp = ctx->mb_data_;
|
| + ctx->mb_data_ = dec->mb_data_;
|
| + dec->mb_data_ = tmp;
|
| + } else {
|
| + // perform reconstruction directly in main thread
|
| + ReconstructRow(dec, ctx);
|
| + }
|
| + if (filter_row) { // swap filter info
|
| VP8FInfo* const tmp = ctx->f_info_;
|
| ctx->f_info_ = dec->f_info_;
|
| dec->f_info_ = tmp;
|
| }
|
| - WebPWorkerLaunch(worker);
|
| + WebPWorkerLaunch(worker); // (reconstruct)+filter in parallel
|
| if (++dec->cache_id_ == dec->num_caches_) {
|
| dec->cache_id_ = 0;
|
| }
|
| @@ -289,8 +381,8 @@ int VP8ProcessRow(VP8Decoder* const dec, VP8Io* const io) {
|
|
|
| VP8StatusCode VP8EnterCritical(VP8Decoder* const dec, VP8Io* const io) {
|
| // Call setup() first. This may trigger additional decoding features on 'io'.
|
| - // Note: Afterward, we must call teardown() not matter what.
|
| - if (io->setup && !io->setup(io)) {
|
| + // Note: Afterward, we must call teardown() no matter what.
|
| + if (io->setup != NULL && !io->setup(io)) {
|
| VP8SetError(dec, VP8_STATUS_USER_ABORT, "Frame setup failed");
|
| return dec->status_;
|
| }
|
| @@ -303,7 +395,7 @@ VP8StatusCode VP8EnterCritical(VP8Decoder* const dec, VP8Io* const io) {
|
|
|
| // Define the area where we can skip in-loop filtering, in case of cropping.
|
| //
|
| - // 'Simple' filter reads two luma samples outside of the macroblock and
|
| + // 'Simple' filter reads two luma samples outside of the macroblock
|
| // and filters one. It doesn't filter the chroma samples. Hence, we can
|
| // avoid doing the in-loop filtering before crop_top/crop_left position.
|
| // For the 'Complex' filter, 3 samples are read and up to 3 are filtered.
|
| @@ -344,11 +436,11 @@ VP8StatusCode VP8EnterCritical(VP8Decoder* const dec, VP8Io* const io) {
|
|
|
| int VP8ExitCritical(VP8Decoder* const dec, VP8Io* const io) {
|
| int ok = 1;
|
| - if (dec->use_threads_) {
|
| + if (dec->mt_method_ > 0) {
|
| ok = WebPWorkerSync(&dec->worker_);
|
| }
|
|
|
| - if (io->teardown) {
|
| + if (io->teardown != NULL) {
|
| io->teardown(io);
|
| }
|
| return ok;
|
| @@ -384,7 +476,7 @@ int VP8ExitCritical(VP8Decoder* const dec, VP8Io* const io) {
|
| // Initialize multi/single-thread worker
|
| static int InitThreadContext(VP8Decoder* const dec) {
|
| dec->cache_id_ = 0;
|
| - if (dec->use_threads_) {
|
| + if (dec->mt_method_ > 0) {
|
| WebPWorker* const worker = &dec->worker_;
|
| if (!WebPWorkerReset(worker)) {
|
| return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY,
|
| @@ -401,6 +493,28 @@ static int InitThreadContext(VP8Decoder* const dec) {
|
| return 1;
|
| }
|
|
|
| +int VP8GetThreadMethod(const WebPDecoderOptions* const options,
|
| + const WebPHeaderStructure* const headers,
|
| + int width, int height) {
|
| + if (options == NULL || options->use_threads == 0) {
|
| + return 0;
|
| + }
|
| + (void)headers;
|
| + (void)width;
|
| + (void)height;
|
| + assert(!headers->is_lossless);
|
| +#if defined(WEBP_USE_THREAD)
|
| + if (width < MIN_WIDTH_FOR_THREADS) return 0;
|
| + // TODO(skal): tune the heuristic further
|
| +#if 0
|
| + if (height < 2 * width) return 2;
|
| +#endif
|
| + return 2;
|
| +#else // !WEBP_USE_THREAD
|
| + return 0;
|
| +#endif
|
| +}
|
| +
|
| #undef MT_CACHE_LINES
|
| #undef ST_CACHE_LINES
|
|
|
| @@ -412,14 +526,15 @@ static int AllocateMemory(VP8Decoder* const dec) {
|
| const int mb_w = dec->mb_w_;
|
| // Note: we use 'size_t' when there's no overflow risk, uint64_t otherwise.
|
| const size_t intra_pred_mode_size = 4 * mb_w * sizeof(uint8_t);
|
| - const size_t top_size = (16 + 8 + 8) * mb_w;
|
| + const size_t top_size = sizeof(VP8TopSamples) * mb_w;
|
| const size_t mb_info_size = (mb_w + 1) * sizeof(VP8MB);
|
| const size_t f_info_size =
|
| (dec->filter_type_ > 0) ?
|
| - mb_w * (dec->use_threads_ ? 2 : 1) * sizeof(VP8FInfo)
|
| + mb_w * (dec->mt_method_ > 0 ? 2 : 1) * sizeof(VP8FInfo)
|
| : 0;
|
| const size_t yuv_size = YUV_SIZE * sizeof(*dec->yuv_b_);
|
| - const size_t coeffs_size = 384 * sizeof(*dec->coeffs_);
|
| + const size_t mb_data_size =
|
| + (dec->mt_method_ == 2 ? 2 : 1) * mb_w * sizeof(*dec->mb_data_);
|
| const size_t cache_height = (16 * num_caches
|
| + kFilterExtraRows[dec->filter_type_]) * 3 / 2;
|
| const size_t cache_size = top_size * cache_height;
|
| @@ -428,7 +543,7 @@ static int AllocateMemory(VP8Decoder* const dec) {
|
| (uint64_t)dec->pic_hdr_.width_ * dec->pic_hdr_.height_ : 0ULL;
|
| const uint64_t needed = (uint64_t)intra_pred_mode_size
|
| + top_size + mb_info_size + f_info_size
|
| - + yuv_size + coeffs_size
|
| + + yuv_size + mb_data_size
|
| + cache_size + alpha_size + ALIGN_MASK;
|
| uint8_t* mem;
|
|
|
| @@ -449,12 +564,8 @@ static int AllocateMemory(VP8Decoder* const dec) {
|
| dec->intra_t_ = (uint8_t*)mem;
|
| mem += intra_pred_mode_size;
|
|
|
| - dec->y_t_ = (uint8_t*)mem;
|
| - mem += 16 * mb_w;
|
| - dec->u_t_ = (uint8_t*)mem;
|
| - mem += 8 * mb_w;
|
| - dec->v_t_ = (uint8_t*)mem;
|
| - mem += 8 * mb_w;
|
| + dec->yuv_t_ = (VP8TopSamples*)mem;
|
| + mem += top_size;
|
|
|
| dec->mb_info_ = ((VP8MB*)mem) + 1;
|
| mem += mb_info_size;
|
| @@ -463,7 +574,7 @@ static int AllocateMemory(VP8Decoder* const dec) {
|
| mem += f_info_size;
|
| dec->thread_ctx_.id_ = 0;
|
| dec->thread_ctx_.f_info_ = dec->f_info_;
|
| - if (dec->use_threads_) {
|
| + if (dec->mt_method_ > 0) {
|
| // secondary cache line. The deblocking process need to make use of the
|
| // filtering strength from previous macroblock row, while the new ones
|
| // are being decoded in parallel. We'll just swap the pointers.
|
| @@ -475,8 +586,12 @@ static int AllocateMemory(VP8Decoder* const dec) {
|
| dec->yuv_b_ = (uint8_t*)mem;
|
| mem += yuv_size;
|
|
|
| - dec->coeffs_ = (int16_t*)mem;
|
| - mem += coeffs_size;
|
| + dec->mb_data_ = (VP8MBData*)mem;
|
| + dec->thread_ctx_.mb_data_ = (VP8MBData*)mem;
|
| + if (dec->mt_method_ == 2) {
|
| + dec->thread_ctx_.mb_data_ += mb_w;
|
| + }
|
| + mem += mb_data_size;
|
|
|
| dec->cache_y_stride_ = 16 * mb_w;
|
| dec->cache_uv_stride_ = 8 * mb_w;
|
| @@ -498,8 +613,9 @@ static int AllocateMemory(VP8Decoder* const dec) {
|
| mem += alpha_size;
|
| assert(mem <= (uint8_t*)dec->mem_ + dec->mem_size_);
|
|
|
| - // note: left-info is initialized once for all.
|
| + // note: left/top-info is initialized once for all.
|
| memset(dec->mb_info_ - 1, 0, mb_info_size);
|
| + VP8InitScanline(dec); // initialize left too.
|
|
|
| // initialize top
|
| memset(dec->intra_t_, B_DC_PRED, intra_pred_mode_size);
|
| @@ -536,159 +652,167 @@ static const int kScan[16] = {
|
| 0 + 12 * BPS, 4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS
|
| };
|
|
|
| -static WEBP_INLINE int CheckMode(VP8Decoder* const dec, int mode) {
|
| +static int CheckMode(int mb_x, int mb_y, int mode) {
|
| if (mode == B_DC_PRED) {
|
| - if (dec->mb_x_ == 0) {
|
| - return (dec->mb_y_ == 0) ? B_DC_PRED_NOTOPLEFT : B_DC_PRED_NOLEFT;
|
| + if (mb_x == 0) {
|
| + return (mb_y == 0) ? B_DC_PRED_NOTOPLEFT : B_DC_PRED_NOLEFT;
|
| } else {
|
| - return (dec->mb_y_ == 0) ? B_DC_PRED_NOTOP : B_DC_PRED;
|
| + return (mb_y == 0) ? B_DC_PRED_NOTOP : B_DC_PRED;
|
| }
|
| }
|
| return mode;
|
| }
|
|
|
| -static WEBP_INLINE void Copy32b(uint8_t* dst, uint8_t* src) {
|
| - *(uint32_t*)dst = *(uint32_t*)src;
|
| +static void Copy32b(uint8_t* dst, uint8_t* src) {
|
| + memcpy(dst, src, 4);
|
| +}
|
| +
|
| +static WEBP_INLINE void DoTransform(uint32_t bits, const int16_t* const src,
|
| + uint8_t* const dst) {
|
| + switch (bits >> 30) {
|
| + case 3:
|
| + VP8Transform(src, dst, 0);
|
| + break;
|
| + case 2:
|
| + VP8TransformAC3(src, dst);
|
| + break;
|
| + case 1:
|
| + VP8TransformDC(src, dst);
|
| + break;
|
| + default:
|
| + break;
|
| + }
|
| }
|
|
|
| -void VP8ReconstructBlock(VP8Decoder* const dec) {
|
| +static void DoUVTransform(uint32_t bits, const int16_t* const src,
|
| + uint8_t* const dst) {
|
| + if (bits & 0xff) { // any non-zero coeff at all?
|
| + if (bits & 0xaa) { // any non-zero AC coefficient?
|
| + VP8TransformUV(src, dst); // note we don't use the AC3 variant for U/V
|
| + } else {
|
| + VP8TransformDCUV(src, dst);
|
| + }
|
| + }
|
| +}
|
| +
|
| +static void ReconstructRow(const VP8Decoder* const dec,
|
| + const VP8ThreadContext* ctx) {
|
| int j;
|
| + int mb_x;
|
| + const int mb_y = ctx->mb_y_;
|
| + const int cache_id = ctx->id_;
|
| uint8_t* const y_dst = dec->yuv_b_ + Y_OFF;
|
| uint8_t* const u_dst = dec->yuv_b_ + U_OFF;
|
| uint8_t* const v_dst = dec->yuv_b_ + V_OFF;
|
| + for (mb_x = 0; mb_x < dec->mb_w_; ++mb_x) {
|
| + const VP8MBData* const block = ctx->mb_data_ + mb_x;
|
|
|
| - // Rotate in the left samples from previously decoded block. We move four
|
| - // pixels at a time for alignment reason, and because of in-loop filter.
|
| - if (dec->mb_x_ > 0) {
|
| - for (j = -1; j < 16; ++j) {
|
| - Copy32b(&y_dst[j * BPS - 4], &y_dst[j * BPS + 12]);
|
| - }
|
| - for (j = -1; j < 8; ++j) {
|
| - Copy32b(&u_dst[j * BPS - 4], &u_dst[j * BPS + 4]);
|
| - Copy32b(&v_dst[j * BPS - 4], &v_dst[j * BPS + 4]);
|
| - }
|
| - } else {
|
| - for (j = 0; j < 16; ++j) {
|
| - y_dst[j * BPS - 1] = 129;
|
| - }
|
| - for (j = 0; j < 8; ++j) {
|
| - u_dst[j * BPS - 1] = 129;
|
| - v_dst[j * BPS - 1] = 129;
|
| - }
|
| - // Init top-left sample on left column too
|
| - if (dec->mb_y_ > 0) {
|
| - y_dst[-1 - BPS] = u_dst[-1 - BPS] = v_dst[-1 - BPS] = 129;
|
| - }
|
| - }
|
| - {
|
| - // bring top samples into the cache
|
| - uint8_t* const top_y = dec->y_t_ + dec->mb_x_ * 16;
|
| - uint8_t* const top_u = dec->u_t_ + dec->mb_x_ * 8;
|
| - uint8_t* const top_v = dec->v_t_ + dec->mb_x_ * 8;
|
| - const int16_t* coeffs = dec->coeffs_;
|
| - int n;
|
| -
|
| - if (dec->mb_y_ > 0) {
|
| - memcpy(y_dst - BPS, top_y, 16);
|
| - memcpy(u_dst - BPS, top_u, 8);
|
| - memcpy(v_dst - BPS, top_v, 8);
|
| - } else if (dec->mb_x_ == 0) {
|
| - // we only need to do this init once at block (0,0).
|
| - // Afterward, it remains valid for the whole topmost row.
|
| - memset(y_dst - BPS - 1, 127, 16 + 4 + 1);
|
| - memset(u_dst - BPS - 1, 127, 8 + 1);
|
| - memset(v_dst - BPS - 1, 127, 8 + 1);
|
| + // Rotate in the left samples from previously decoded block. We move four
|
| + // pixels at a time for alignment reason, and because of in-loop filter.
|
| + if (mb_x > 0) {
|
| + for (j = -1; j < 16; ++j) {
|
| + Copy32b(&y_dst[j * BPS - 4], &y_dst[j * BPS + 12]);
|
| + }
|
| + for (j = -1; j < 8; ++j) {
|
| + Copy32b(&u_dst[j * BPS - 4], &u_dst[j * BPS + 4]);
|
| + Copy32b(&v_dst[j * BPS - 4], &v_dst[j * BPS + 4]);
|
| + }
|
| + } else {
|
| + for (j = 0; j < 16; ++j) {
|
| + y_dst[j * BPS - 1] = 129;
|
| + }
|
| + for (j = 0; j < 8; ++j) {
|
| + u_dst[j * BPS - 1] = 129;
|
| + v_dst[j * BPS - 1] = 129;
|
| + }
|
| + // Init top-left sample on left column too
|
| + if (mb_y > 0) {
|
| + y_dst[-1 - BPS] = u_dst[-1 - BPS] = v_dst[-1 - BPS] = 129;
|
| + }
|
| }
|
| + {
|
| + // bring top samples into the cache
|
| + VP8TopSamples* const top_yuv = dec->yuv_t_ + mb_x;
|
| + const int16_t* const coeffs = block->coeffs_;
|
| + uint32_t bits = block->non_zero_y_;
|
| + int n;
|
| +
|
| + if (mb_y > 0) {
|
| + memcpy(y_dst - BPS, top_yuv[0].y, 16);
|
| + memcpy(u_dst - BPS, top_yuv[0].u, 8);
|
| + memcpy(v_dst - BPS, top_yuv[0].v, 8);
|
| + } else if (mb_x == 0) {
|
| + // we only need to do this init once at block (0,0).
|
| + // Afterward, it remains valid for the whole topmost row.
|
| + memset(y_dst - BPS - 1, 127, 16 + 4 + 1);
|
| + memset(u_dst - BPS - 1, 127, 8 + 1);
|
| + memset(v_dst - BPS - 1, 127, 8 + 1);
|
| + }
|
|
|
| - // predict and add residuals
|
| -
|
| - if (dec->is_i4x4_) { // 4x4
|
| - uint32_t* const top_right = (uint32_t*)(y_dst - BPS + 16);
|
| + // predict and add residuals
|
| + if (block->is_i4x4_) { // 4x4
|
| + uint32_t* const top_right = (uint32_t*)(y_dst - BPS + 16);
|
|
|
| - if (dec->mb_y_ > 0) {
|
| - if (dec->mb_x_ >= dec->mb_w_ - 1) { // on rightmost border
|
| - top_right[0] = top_y[15] * 0x01010101u;
|
| - } else {
|
| - memcpy(top_right, top_y + 16, sizeof(*top_right));
|
| - }
|
| - }
|
| - // replicate the top-right pixels below
|
| - top_right[BPS] = top_right[2 * BPS] = top_right[3 * BPS] = top_right[0];
|
| -
|
| - // predict and add residues for all 4x4 blocks in turn.
|
| - for (n = 0; n < 16; n++) {
|
| - uint8_t* const dst = y_dst + kScan[n];
|
| - VP8PredLuma4[dec->imodes_[n]](dst);
|
| - if (dec->non_zero_ac_ & (1 << n)) {
|
| - VP8Transform(coeffs + n * 16, dst, 0);
|
| - } else if (dec->non_zero_ & (1 << n)) { // only DC is present
|
| - VP8TransformDC(coeffs + n * 16, dst);
|
| + if (mb_y > 0) {
|
| + if (mb_x >= dec->mb_w_ - 1) { // on rightmost border
|
| + memset(top_right, top_yuv[0].y[15], sizeof(*top_right));
|
| + } else {
|
| + memcpy(top_right, top_yuv[1].y, sizeof(*top_right));
|
| + }
|
| }
|
| - }
|
| - } else { // 16x16
|
| - const int pred_func = CheckMode(dec, dec->imodes_[0]);
|
| - VP8PredLuma16[pred_func](y_dst);
|
| - if (dec->non_zero_) {
|
| - for (n = 0; n < 16; n++) {
|
| + // replicate the top-right pixels below
|
| + top_right[BPS] = top_right[2 * BPS] = top_right[3 * BPS] = top_right[0];
|
| +
|
| + // predict and add residuals for all 4x4 blocks in turn.
|
| + for (n = 0; n < 16; ++n, bits <<= 2) {
|
| uint8_t* const dst = y_dst + kScan[n];
|
| - if (dec->non_zero_ac_ & (1 << n)) {
|
| - VP8Transform(coeffs + n * 16, dst, 0);
|
| - } else if (dec->non_zero_ & (1 << n)) { // only DC is present
|
| - VP8TransformDC(coeffs + n * 16, dst);
|
| - }
|
| + VP8PredLuma4[block->imodes_[n]](dst);
|
| + DoTransform(bits, coeffs + n * 16, dst);
|
| }
|
| - }
|
| - }
|
| - {
|
| - // Chroma
|
| - const int pred_func = CheckMode(dec, dec->uvmode_);
|
| - VP8PredChroma8[pred_func](u_dst);
|
| - VP8PredChroma8[pred_func](v_dst);
|
| -
|
| - if (dec->non_zero_ & 0x0f0000) { // chroma-U
|
| - const int16_t* const u_coeffs = dec->coeffs_ + 16 * 16;
|
| - if (dec->non_zero_ac_ & 0x0f0000) {
|
| - VP8TransformUV(u_coeffs, u_dst);
|
| - } else {
|
| - VP8TransformDCUV(u_coeffs, u_dst);
|
| + } else { // 16x16
|
| + const int pred_func = CheckMode(mb_x, mb_y,
|
| + block->imodes_[0]);
|
| + VP8PredLuma16[pred_func](y_dst);
|
| + if (bits != 0) {
|
| + for (n = 0; n < 16; ++n, bits <<= 2) {
|
| + DoTransform(bits, coeffs + n * 16, y_dst + kScan[n]);
|
| + }
|
| }
|
| }
|
| - if (dec->non_zero_ & 0xf00000) { // chroma-V
|
| - const int16_t* const v_coeffs = dec->coeffs_ + 20 * 16;
|
| - if (dec->non_zero_ac_ & 0xf00000) {
|
| - VP8TransformUV(v_coeffs, v_dst);
|
| - } else {
|
| - VP8TransformDCUV(v_coeffs, v_dst);
|
| - }
|
| + {
|
| + // Chroma
|
| + const uint32_t bits_uv = block->non_zero_uv_;
|
| + const int pred_func = CheckMode(mb_x, mb_y, block->uvmode_);
|
| + VP8PredChroma8[pred_func](u_dst);
|
| + VP8PredChroma8[pred_func](v_dst);
|
| + DoUVTransform(bits_uv >> 0, coeffs + 16 * 16, u_dst);
|
| + DoUVTransform(bits_uv >> 8, coeffs + 20 * 16, v_dst);
|
| }
|
|
|
| // stash away top samples for next block
|
| - if (dec->mb_y_ < dec->mb_h_ - 1) {
|
| - memcpy(top_y, y_dst + 15 * BPS, 16);
|
| - memcpy(top_u, u_dst + 7 * BPS, 8);
|
| - memcpy(top_v, v_dst + 7 * BPS, 8);
|
| + if (mb_y < dec->mb_h_ - 1) {
|
| + memcpy(top_yuv[0].y, y_dst + 15 * BPS, 16);
|
| + memcpy(top_yuv[0].u, u_dst + 7 * BPS, 8);
|
| + memcpy(top_yuv[0].v, v_dst + 7 * BPS, 8);
|
| }
|
| }
|
| - }
|
| - // Transfer reconstructed samples from yuv_b_ cache to final destination.
|
| - {
|
| - const int y_offset = dec->cache_id_ * 16 * dec->cache_y_stride_;
|
| - const int uv_offset = dec->cache_id_ * 8 * dec->cache_uv_stride_;
|
| - uint8_t* const y_out = dec->cache_y_ + dec->mb_x_ * 16 + y_offset;
|
| - uint8_t* const u_out = dec->cache_u_ + dec->mb_x_ * 8 + uv_offset;
|
| - uint8_t* const v_out = dec->cache_v_ + dec->mb_x_ * 8 + uv_offset;
|
| - for (j = 0; j < 16; ++j) {
|
| - memcpy(y_out + j * dec->cache_y_stride_, y_dst + j * BPS, 16);
|
| - }
|
| - for (j = 0; j < 8; ++j) {
|
| - memcpy(u_out + j * dec->cache_uv_stride_, u_dst + j * BPS, 8);
|
| - memcpy(v_out + j * dec->cache_uv_stride_, v_dst + j * BPS, 8);
|
| + // Transfer reconstructed samples from yuv_b_ cache to final destination.
|
| + {
|
| + const int y_offset = cache_id * 16 * dec->cache_y_stride_;
|
| + const int uv_offset = cache_id * 8 * dec->cache_uv_stride_;
|
| + uint8_t* const y_out = dec->cache_y_ + mb_x * 16 + y_offset;
|
| + uint8_t* const u_out = dec->cache_u_ + mb_x * 8 + uv_offset;
|
| + uint8_t* const v_out = dec->cache_v_ + mb_x * 8 + uv_offset;
|
| + for (j = 0; j < 16; ++j) {
|
| + memcpy(y_out + j * dec->cache_y_stride_, y_dst + j * BPS, 16);
|
| + }
|
| + for (j = 0; j < 8; ++j) {
|
| + memcpy(u_out + j * dec->cache_uv_stride_, u_dst + j * BPS, 8);
|
| + memcpy(v_out + j * dec->cache_uv_stride_, v_dst + j * BPS, 8);
|
| + }
|
| }
|
| }
|
| }
|
|
|
| //------------------------------------------------------------------------------
|
|
|
| -#if defined(__cplusplus) || defined(c_plusplus)
|
| -} // extern "C"
|
| -#endif
|
|
|