Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(177)

Side by Side Diff: third_party/libwebp/dsp/yuv.h

Issue 116213006: Update libwebp to 0.4.0 (Closed) Base URL: svn://svn.chromium.org/chrome/trunk/src
Patch Set: After Blink Roll Created 6 years, 11 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « third_party/libwebp/dsp/upsampling_sse2.c ('k') | third_party/libwebp/dsp/yuv.c » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 // Copyright 2010 Google Inc. All Rights Reserved. 1 // Copyright 2010 Google Inc. All Rights Reserved.
2 // 2 //
3 // Use of this source code is governed by a BSD-style license 3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source 4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found 5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may 6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree. 7 // be found in the AUTHORS file in the root of the source tree.
8 // ----------------------------------------------------------------------------- 8 // -----------------------------------------------------------------------------
9 // 9 //
10 // inline YUV<->RGB conversion function 10 // inline YUV<->RGB conversion function
11 // 11 //
12 // The exact naming is Y'CbCr, following the ITU-R BT.601 standard. 12 // The exact naming is Y'CbCr, following the ITU-R BT.601 standard.
13 // More information at: http://en.wikipedia.org/wiki/YCbCr 13 // More information at: http://en.wikipedia.org/wiki/YCbCr
14 // Y = 0.2569 * R + 0.5044 * G + 0.0979 * B + 16 14 // Y = 0.2569 * R + 0.5044 * G + 0.0979 * B + 16
15 // U = -0.1483 * R - 0.2911 * G + 0.4394 * B + 128 15 // U = -0.1483 * R - 0.2911 * G + 0.4394 * B + 128
16 // V = 0.4394 * R - 0.3679 * G - 0.0715 * B + 128 16 // V = 0.4394 * R - 0.3679 * G - 0.0715 * B + 128
17 // We use 16bit fixed point operations for RGB->YUV conversion. 17 // We use 16bit fixed point operations for RGB->YUV conversion (YUV_FIX).
18 // 18 //
19 // For the Y'CbCr to RGB conversion, the BT.601 specification reads: 19 // For the Y'CbCr to RGB conversion, the BT.601 specification reads:
20 // R = 1.164 * (Y-16) + 1.596 * (V-128) 20 // R = 1.164 * (Y-16) + 1.596 * (V-128)
21 // G = 1.164 * (Y-16) - 0.813 * (V-128) - 0.391 * (U-128) 21 // G = 1.164 * (Y-16) - 0.813 * (V-128) - 0.391 * (U-128)
22 // B = 1.164 * (Y-16) + 2.018 * (U-128) 22 // B = 1.164 * (Y-16) + 2.018 * (U-128)
23 // where Y is in the [16,235] range, and U/V in the [16,240] range. 23 // where Y is in the [16,235] range, and U/V in the [16,240] range.
24 // In the table-lookup version (WEBP_YUV_USE_TABLE), the common factor 24 // In the table-lookup version (WEBP_YUV_USE_TABLE), the common factor
25 // "1.164 * (Y-16)" can be handled as an offset in the VP8kClip[] table. 25 // "1.164 * (Y-16)" can be handled as an offset in the VP8kClip[] table.
26 // So in this case the formulae should be read as: 26 // So in this case the formulae should read:
27 // R = 1.164 * [Y + 1.371 * (V-128) ] - 18.624 27 // R = 1.164 * [Y + 1.371 * (V-128) ] - 18.624
28 // G = 1.164 * [Y - 0.698 * (V-128) - 0.336 * (U-128)] - 18.624 28 // G = 1.164 * [Y - 0.698 * (V-128) - 0.336 * (U-128)] - 18.624
29 // B = 1.164 * [Y + 1.733 * (U-128)] - 18.624 29 // B = 1.164 * [Y + 1.733 * (U-128)] - 18.624
30 // once factorized. Here too, 16bit fixed precision is used. 30 // once factorized.
31 // For YUV->RGB conversion, only 14bit fixed precision is used (YUV_FIX2).
32 // That's the maximum possible for a convenient ARM implementation.
31 // 33 //
32 // Author: Skal (pascal.massimino@gmail.com) 34 // Author: Skal (pascal.massimino@gmail.com)
33 35
34 #ifndef WEBP_DSP_YUV_H_ 36 #ifndef WEBP_DSP_YUV_H_
35 #define WEBP_DSP_YUV_H_ 37 #define WEBP_DSP_YUV_H_
36 38
39 #include "./dsp.h"
37 #include "../dec/decode_vp8.h" 40 #include "../dec/decode_vp8.h"
38 41
39 // Define the following to use the LUT-based code: 42 // Define the following to use the LUT-based code:
40 #define WEBP_YUV_USE_TABLE 43 // #define WEBP_YUV_USE_TABLE
41 44
42 #if defined(WEBP_EXPERIMENTAL_FEATURES) 45 #if defined(WEBP_EXPERIMENTAL_FEATURES)
43 // Do NOT activate this feature for real compression. This is only experimental! 46 // Do NOT activate this feature for real compression. This is only experimental!
44 // This flag is for comparison purpose against JPEG's "YUVj" natural colorspace. 47 // This flag is for comparison purpose against JPEG's "YUVj" natural colorspace.
45 // This colorspace is close to Rec.601's Y'CbCr model with the notable 48 // This colorspace is close to Rec.601's Y'CbCr model with the notable
46 // difference of allowing larger range for luma/chroma. 49 // difference of allowing larger range for luma/chroma.
47 // See http://en.wikipedia.org/wiki/YCbCr#JPEG_conversion paragraph, and its 50 // See http://en.wikipedia.org/wiki/YCbCr#JPEG_conversion paragraph, and its
48 // difference with http://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion 51 // difference with http://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion
49 // #define USE_YUVj 52 // #define USE_YUVj
50 #endif 53 #endif
51 54
52 //------------------------------------------------------------------------------ 55 //------------------------------------------------------------------------------
53 // YUV -> RGB conversion 56 // YUV -> RGB conversion
54 57
55 #if defined(__cplusplus) || defined(c_plusplus) 58 #ifdef __cplusplus
56 extern "C" { 59 extern "C" {
57 #endif 60 #endif
58 61
59 enum { YUV_FIX = 16, // fixed-point precision 62 enum {
60 YUV_HALF = 1 << (YUV_FIX - 1), 63 YUV_FIX = 16, // fixed-point precision for RGB->YUV
61 YUV_MASK = (256 << YUV_FIX) - 1, 64 YUV_HALF = 1 << (YUV_FIX - 1),
62 YUV_RANGE_MIN = -227, // min value of r/g/b output 65 YUV_MASK = (256 << YUV_FIX) - 1,
63 YUV_RANGE_MAX = 256 + 226 // max value of r/g/b output 66 YUV_RANGE_MIN = -227, // min value of r/g/b output
67 YUV_RANGE_MAX = 256 + 226, // max value of r/g/b output
68
69 YUV_FIX2 = 14, // fixed-point precision for YUV->RGB
70 YUV_HALF2 = 1 << (YUV_FIX2 - 1),
71 YUV_MASK2 = (256 << YUV_FIX2) - 1
64 }; 72 };
65 73
66 #ifdef WEBP_YUV_USE_TABLE 74 // These constants are 14b fixed-point version of ITU-R BT.601 constants.
75 #define kYScale 19077 // 1.164 = 255 / 219
76 #define kVToR 26149 // 1.596 = 255 / 112 * 0.701
77 #define kUToG 6419 // 0.391 = 255 / 112 * 0.886 * 0.114 / 0.587
78 #define kVToG 13320 // 0.813 = 255 / 112 * 0.701 * 0.299 / 0.587
79 #define kUToB 33050 // 2.018 = 255 / 112 * 0.886
80 #define kRCst (-kYScale * 16 - kVToR * 128 + YUV_HALF2)
81 #define kGCst (-kYScale * 16 + kUToG * 128 + kVToG * 128 + YUV_HALF2)
82 #define kBCst (-kYScale * 16 - kUToB * 128 + YUV_HALF2)
67 83
68 extern int16_t VP8kVToR[256], VP8kUToB[256]; 84 //------------------------------------------------------------------------------
69 extern int32_t VP8kVToG[256], VP8kUToG[256];
70 extern uint8_t VP8kClip[YUV_RANGE_MAX - YUV_RANGE_MIN];
71 extern uint8_t VP8kClip4Bits[YUV_RANGE_MAX - YUV_RANGE_MIN];
72 85
73 static WEBP_INLINE void VP8YuvToRgb(uint8_t y, uint8_t u, uint8_t v, 86 #if !defined(WEBP_YUV_USE_TABLE)
74 uint8_t* const rgb) { 87
75 const int r_off = VP8kVToR[v]; 88 // slower on x86 by ~7-8%, but bit-exact with the SSE2 version
76 const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX; 89
77 const int b_off = VP8kUToB[u]; 90 static WEBP_INLINE int VP8Clip8(int v) {
78 rgb[0] = VP8kClip[y + r_off - YUV_RANGE_MIN]; 91 return ((v & ~YUV_MASK2) == 0) ? (v >> YUV_FIX2) : (v < 0) ? 0 : 255;
79 rgb[1] = VP8kClip[y + g_off - YUV_RANGE_MIN];
80 rgb[2] = VP8kClip[y + b_off - YUV_RANGE_MIN];
81 } 92 }
82 93
83 static WEBP_INLINE void VP8YuvToBgr(uint8_t y, uint8_t u, uint8_t v, 94 static WEBP_INLINE int VP8YUVToR(int y, int v) {
84 uint8_t* const bgr) { 95 return VP8Clip8(kYScale * y + kVToR * v + kRCst);
85 const int r_off = VP8kVToR[v];
86 const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX;
87 const int b_off = VP8kUToB[u];
88 bgr[0] = VP8kClip[y + b_off - YUV_RANGE_MIN];
89 bgr[1] = VP8kClip[y + g_off - YUV_RANGE_MIN];
90 bgr[2] = VP8kClip[y + r_off - YUV_RANGE_MIN];
91 } 96 }
92 97
93 static WEBP_INLINE void VP8YuvToRgb565(uint8_t y, uint8_t u, uint8_t v, 98 static WEBP_INLINE int VP8YUVToG(int y, int u, int v) {
99 return VP8Clip8(kYScale * y - kUToG * u - kVToG * v + kGCst);
100 }
101
102 static WEBP_INLINE int VP8YUVToB(int y, int u) {
103 return VP8Clip8(kYScale * y + kUToB * u + kBCst);
104 }
105
106 static WEBP_INLINE void VP8YuvToRgb(int y, int u, int v,
107 uint8_t* const rgb) {
108 rgb[0] = VP8YUVToR(y, v);
109 rgb[1] = VP8YUVToG(y, u, v);
110 rgb[2] = VP8YUVToB(y, u);
111 }
112
113 static WEBP_INLINE void VP8YuvToBgr(int y, int u, int v,
114 uint8_t* const bgr) {
115 bgr[0] = VP8YUVToB(y, u);
116 bgr[1] = VP8YUVToG(y, u, v);
117 bgr[2] = VP8YUVToR(y, v);
118 }
119
120 static WEBP_INLINE void VP8YuvToRgb565(int y, int u, int v,
94 uint8_t* const rgb) { 121 uint8_t* const rgb) {
95 const int r_off = VP8kVToR[v]; 122 const int r = VP8YUVToR(y, v); // 5 usable bits
96 const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX; 123 const int g = VP8YUVToG(y, u, v); // 6 usable bits
97 const int b_off = VP8kUToB[u]; 124 const int b = VP8YUVToB(y, u); // 5 usable bits
98 const uint8_t rg = ((VP8kClip[y + r_off - YUV_RANGE_MIN] & 0xf8) | 125 const int rg = (r & 0xf8) | (g >> 5);
99 (VP8kClip[y + g_off - YUV_RANGE_MIN] >> 5)); 126 const int gb = ((g << 3) & 0xe0) | (b >> 3);
100 const uint8_t gb = (((VP8kClip[y + g_off - YUV_RANGE_MIN] << 3) & 0xe0) |
101 (VP8kClip[y + b_off - YUV_RANGE_MIN] >> 3));
102 #ifdef WEBP_SWAP_16BIT_CSP 127 #ifdef WEBP_SWAP_16BIT_CSP
103 rgb[0] = gb; 128 rgb[0] = gb;
104 rgb[1] = rg; 129 rgb[1] = rg;
105 #else 130 #else
106 rgb[0] = rg; 131 rgb[0] = rg;
107 rgb[1] = gb; 132 rgb[1] = gb;
108 #endif 133 #endif
109 } 134 }
110 135
111 static WEBP_INLINE void VP8YuvToRgba4444(uint8_t y, uint8_t u, uint8_t v, 136 static WEBP_INLINE void VP8YuvToRgba4444(int y, int u, int v,
112 uint8_t* const argb) { 137 uint8_t* const argb) {
113 const int r_off = VP8kVToR[v]; 138 const int r = VP8YUVToR(y, v); // 4 usable bits
114 const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX; 139 const int g = VP8YUVToG(y, u, v); // 4 usable bits
115 const int b_off = VP8kUToB[u]; 140 const int b = VP8YUVToB(y, u); // 4 usable bits
116 const uint8_t rg = ((VP8kClip4Bits[y + r_off - YUV_RANGE_MIN] << 4) | 141 const int rg = (r & 0xf0) | (g >> 4);
117 VP8kClip4Bits[y + g_off - YUV_RANGE_MIN]); 142 const int ba = (b & 0xf0) | 0x0f; // overwrite the lower 4 bits
118 const uint8_t ba = (VP8kClip4Bits[y + b_off - YUV_RANGE_MIN] << 4) | 0x0f;
119 #ifdef WEBP_SWAP_16BIT_CSP 143 #ifdef WEBP_SWAP_16BIT_CSP
120 argb[0] = ba; 144 argb[0] = ba;
121 argb[1] = rg; 145 argb[1] = rg;
122 #else 146 #else
123 argb[0] = rg; 147 argb[0] = rg;
124 argb[1] = ba; 148 argb[1] = ba;
125 #endif 149 #endif
126 } 150 }
127 151
128 #else // Table-free version (slower on x86) 152 #else
129 153
130 // These constants are 16b fixed-point version of ITU-R BT.601 constants 154 // Table-based version, not totally equivalent to the SSE2 version.
131 #define kYScale 76309 // 1.164 = 255 / 219 155 // Rounding diff is only +/-1 though.
132 #define kVToR 104597 // 1.596 = 255 / 112 * 0.701
133 #define kUToG 25674 // 0.391 = 255 / 112 * 0.886 * 0.114 / 0.587
134 #define kVToG 53278 // 0.813 = 255 / 112 * 0.701 * 0.299 / 0.587
135 #define kUToB 132201 // 2.018 = 255 / 112 * 0.886
136 #define kRCst (-kYScale * 16 - kVToR * 128 + YUV_HALF)
137 #define kGCst (-kYScale * 16 + kUToG * 128 + kVToG * 128 + YUV_HALF)
138 #define kBCst (-kYScale * 16 - kUToB * 128 + YUV_HALF)
139 156
140 static WEBP_INLINE uint8_t VP8Clip8(int v) { 157 extern int16_t VP8kVToR[256], VP8kUToB[256];
141 return ((v & ~YUV_MASK) == 0) ? (uint8_t)(v >> YUV_FIX) 158 extern int32_t VP8kVToG[256], VP8kUToG[256];
142 : (v < 0) ? 0u : 255u; 159 extern uint8_t VP8kClip[YUV_RANGE_MAX - YUV_RANGE_MIN];
160 extern uint8_t VP8kClip4Bits[YUV_RANGE_MAX - YUV_RANGE_MIN];
161
162 static WEBP_INLINE void VP8YuvToRgb(int y, int u, int v,
163 uint8_t* const rgb) {
164 const int r_off = VP8kVToR[v];
165 const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX;
166 const int b_off = VP8kUToB[u];
167 rgb[0] = VP8kClip[y + r_off - YUV_RANGE_MIN];
168 rgb[1] = VP8kClip[y + g_off - YUV_RANGE_MIN];
169 rgb[2] = VP8kClip[y + b_off - YUV_RANGE_MIN];
143 } 170 }
144 171
145 static WEBP_INLINE uint8_t VP8ClipN(int v, int N) { // clip to N bits 172 static WEBP_INLINE void VP8YuvToBgr(int y, int u, int v,
146 return ((v & ~YUV_MASK) == 0) ? (uint8_t)(v >> (YUV_FIX + (8 - N))) 173 uint8_t* const bgr) {
147 : (v < 0) ? 0u : (255u >> (8 - N)); 174 const int r_off = VP8kVToR[v];
175 const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX;
176 const int b_off = VP8kUToB[u];
177 bgr[0] = VP8kClip[y + b_off - YUV_RANGE_MIN];
178 bgr[1] = VP8kClip[y + g_off - YUV_RANGE_MIN];
179 bgr[2] = VP8kClip[y + r_off - YUV_RANGE_MIN];
148 } 180 }
149 181
150 static WEBP_INLINE int VP8YUVToR(int y, int v) { 182 static WEBP_INLINE void VP8YuvToRgb565(int y, int u, int v,
151 return kYScale * y + kVToR * v + kRCst;
152 }
153
154 static WEBP_INLINE int VP8YUVToG(int y, int u, int v) {
155 return kYScale * y - kUToG * u - kVToG * v + kGCst;
156 }
157
158 static WEBP_INLINE int VP8YUVToB(int y, int u) {
159 return kYScale * y + kUToB * u + kBCst;
160 }
161
162 static WEBP_INLINE void VP8YuvToRgb(uint8_t y, uint8_t u, uint8_t v,
163 uint8_t* const rgb) {
164 rgb[0] = VP8Clip8(VP8YUVToR(y, v));
165 rgb[1] = VP8Clip8(VP8YUVToG(y, u, v));
166 rgb[2] = VP8Clip8(VP8YUVToB(y, u));
167 }
168
169 static WEBP_INLINE void VP8YuvToBgr(uint8_t y, uint8_t u, uint8_t v,
170 uint8_t* const bgr) {
171 bgr[0] = VP8Clip8(VP8YUVToB(y, u));
172 bgr[1] = VP8Clip8(VP8YUVToG(y, u, v));
173 bgr[2] = VP8Clip8(VP8YUVToR(y, v));
174 }
175
176 static WEBP_INLINE void VP8YuvToRgb565(uint8_t y, uint8_t u, uint8_t v,
177 uint8_t* const rgb) { 183 uint8_t* const rgb) {
178 const int r = VP8Clip8(VP8YUVToR(y, u)); 184 const int r_off = VP8kVToR[v];
179 const int g = VP8ClipN(VP8YUVToG(y, u, v), 6); 185 const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX;
180 const int b = VP8ClipN(VP8YUVToB(y, v), 5); 186 const int b_off = VP8kUToB[u];
181 const uint8_t rg = (r & 0xf8) | (g >> 3); 187 const int rg = ((VP8kClip[y + r_off - YUV_RANGE_MIN] & 0xf8) |
182 const uint8_t gb = (g << 5) | b; 188 (VP8kClip[y + g_off - YUV_RANGE_MIN] >> 5));
189 const int gb = (((VP8kClip[y + g_off - YUV_RANGE_MIN] << 3) & 0xe0) |
190 (VP8kClip[y + b_off - YUV_RANGE_MIN] >> 3));
183 #ifdef WEBP_SWAP_16BIT_CSP 191 #ifdef WEBP_SWAP_16BIT_CSP
184 rgb[0] = gb; 192 rgb[0] = gb;
185 rgb[1] = rg; 193 rgb[1] = rg;
186 #else 194 #else
187 rgb[0] = rg; 195 rgb[0] = rg;
188 rgb[1] = gb; 196 rgb[1] = gb;
189 #endif 197 #endif
190 } 198 }
191 199
192 static WEBP_INLINE void VP8YuvToRgba4444(uint8_t y, uint8_t u, uint8_t v, 200 static WEBP_INLINE void VP8YuvToRgba4444(int y, int u, int v,
193 uint8_t* const argb) { 201 uint8_t* const argb) {
194 const int r = VP8Clip8(VP8YUVToR(y, u)); 202 const int r_off = VP8kVToR[v];
195 const int g = VP8ClipN(VP8YUVToG(y, u, v), 4); 203 const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX;
196 const int b = VP8Clip8(VP8YUVToB(y, v)); 204 const int b_off = VP8kUToB[u];
197 const uint8_t rg = (r & 0xf0) | g; 205 const int rg = ((VP8kClip4Bits[y + r_off - YUV_RANGE_MIN] << 4) |
198 const uint8_t ba = b | 0x0f; // overwrite the lower 4 bits 206 VP8kClip4Bits[y + g_off - YUV_RANGE_MIN]);
207 const int ba = (VP8kClip4Bits[y + b_off - YUV_RANGE_MIN] << 4) | 0x0f;
199 #ifdef WEBP_SWAP_16BIT_CSP 208 #ifdef WEBP_SWAP_16BIT_CSP
200 argb[0] = ba; 209 argb[0] = ba;
201 argb[1] = rg; 210 argb[1] = rg;
202 #else 211 #else
203 argb[0] = rg; 212 argb[0] = rg;
204 argb[1] = ba; 213 argb[1] = ba;
205 #endif 214 #endif
206 } 215 }
207 216
208 #endif // WEBP_YUV_USE_TABLE 217 #endif // WEBP_YUV_USE_TABLE
209 218
219 //-----------------------------------------------------------------------------
220 // Alpha handling variants
221
210 static WEBP_INLINE void VP8YuvToArgb(uint8_t y, uint8_t u, uint8_t v, 222 static WEBP_INLINE void VP8YuvToArgb(uint8_t y, uint8_t u, uint8_t v,
211 uint8_t* const argb) { 223 uint8_t* const argb) {
212 argb[0] = 0xff; 224 argb[0] = 0xff;
213 VP8YuvToRgb(y, u, v, argb + 1); 225 VP8YuvToRgb(y, u, v, argb + 1);
214 } 226 }
215 227
216 static WEBP_INLINE void VP8YuvToBgra(uint8_t y, uint8_t u, uint8_t v, 228 static WEBP_INLINE void VP8YuvToBgra(uint8_t y, uint8_t u, uint8_t v,
217 uint8_t* const bgra) { 229 uint8_t* const bgra) {
218 VP8YuvToBgr(y, u, v, bgra); 230 VP8YuvToBgr(y, u, v, bgra);
219 bgra[3] = 0xff; 231 bgra[3] = 0xff;
220 } 232 }
221 233
222 static WEBP_INLINE void VP8YuvToRgba(uint8_t y, uint8_t u, uint8_t v, 234 static WEBP_INLINE void VP8YuvToRgba(uint8_t y, uint8_t u, uint8_t v,
223 uint8_t* const rgba) { 235 uint8_t* const rgba) {
224 VP8YuvToRgb(y, u, v, rgba); 236 VP8YuvToRgb(y, u, v, rgba);
225 rgba[3] = 0xff; 237 rgba[3] = 0xff;
226 } 238 }
227 239
228 // Must be called before everything, to initialize the tables. 240 // Must be called before everything, to initialize the tables.
229 void VP8YUVInit(void); 241 void VP8YUVInit(void);
230 242
243 //-----------------------------------------------------------------------------
244 // SSE2 extra functions (mostly for upsampling_sse2.c)
245
246 #if defined(WEBP_USE_SSE2)
247
248 #if defined(FANCY_UPSAMPLING)
249 // Process 32 pixels and store the result (24b or 32b per pixel) in *dst.
250 void VP8YuvToRgba32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
251 uint8_t* dst);
252 void VP8YuvToRgb32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
253 uint8_t* dst);
254 void VP8YuvToBgra32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
255 uint8_t* dst);
256 void VP8YuvToBgr32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
257 uint8_t* dst);
258 #endif // FANCY_UPSAMPLING
259
260 // Must be called to initialize tables before using the functions.
261 void VP8YUVInitSSE2(void);
262
263 #endif // WEBP_USE_SSE2
264
231 //------------------------------------------------------------------------------ 265 //------------------------------------------------------------------------------
232 // RGB -> YUV conversion 266 // RGB -> YUV conversion
233 267
234 static WEBP_INLINE int VP8ClipUV(int v) { 268 // Stub functions that can be called with various rounding values:
235 v = (v + (257 << (YUV_FIX + 2 - 1))) >> (YUV_FIX + 2); 269 static WEBP_INLINE int VP8ClipUV(int uv, int rounding) {
236 return ((v & ~0xff) == 0) ? v : (v < 0) ? 0 : 255; 270 uv = (uv + rounding + (128 << (YUV_FIX + 2))) >> (YUV_FIX + 2);
271 return ((uv & ~0xff) == 0) ? uv : (uv < 0) ? 0 : 255;
237 } 272 }
238 273
239 #ifndef USE_YUVj 274 #ifndef USE_YUVj
240 275
241 static WEBP_INLINE int VP8RGBToY(int r, int g, int b) { 276 static WEBP_INLINE int VP8RGBToY(int r, int g, int b, int rounding) {
242 const int kRound = (1 << (YUV_FIX - 1)) + (16 << YUV_FIX);
243 const int luma = 16839 * r + 33059 * g + 6420 * b; 277 const int luma = 16839 * r + 33059 * g + 6420 * b;
244 return (luma + kRound) >> YUV_FIX; // no need to clip 278 return (luma + rounding + (16 << YUV_FIX)) >> YUV_FIX; // no need to clip
245 } 279 }
246 280
247 static WEBP_INLINE int VP8RGBToU(int r, int g, int b) { 281 static WEBP_INLINE int VP8RGBToU(int r, int g, int b, int rounding) {
248 const int u = -9719 * r - 19081 * g + 28800 * b; 282 const int u = -9719 * r - 19081 * g + 28800 * b;
249 return VP8ClipUV(u); 283 return VP8ClipUV(u, rounding);
250 } 284 }
251 285
252 static WEBP_INLINE int VP8RGBToV(int r, int g, int b) { 286 static WEBP_INLINE int VP8RGBToV(int r, int g, int b, int rounding) {
253 const int v = +28800 * r - 24116 * g - 4684 * b; 287 const int v = +28800 * r - 24116 * g - 4684 * b;
254 return VP8ClipUV(v); 288 return VP8ClipUV(v, rounding);
255 } 289 }
256 290
257 #else 291 #else
258 292
259 // This JPEG-YUV colorspace, only for comparison! 293 // This JPEG-YUV colorspace, only for comparison!
260 // These are also 16-bit precision coefficients from Rec.601, but with full 294 // These are also 16bit precision coefficients from Rec.601, but with full
261 // [0..255] output range. 295 // [0..255] output range.
262 static WEBP_INLINE int VP8RGBToY(int r, int g, int b) { 296 static WEBP_INLINE int VP8RGBToY(int r, int g, int b, int rounding) {
263 const int kRound = (1 << (YUV_FIX - 1));
264 const int luma = 19595 * r + 38470 * g + 7471 * b; 297 const int luma = 19595 * r + 38470 * g + 7471 * b;
265 return (luma + kRound) >> YUV_FIX; // no need to clip 298 return (luma + rounding) >> YUV_FIX; // no need to clip
266 } 299 }
267 300
268 static WEBP_INLINE int VP8RGBToU(int r, int g, int b) { 301 static WEBP_INLINE int VP8_RGB_TO_U(int r, int g, int b, int rounding) {
269 const int u = -11058 * r - 21710 * g + 32768 * b; 302 const int u = -11058 * r - 21710 * g + 32768 * b;
270 return VP8ClipUV(u); 303 return VP8ClipUV(u, rounding);
271 } 304 }
272 305
273 static WEBP_INLINE int VP8RGBToV(int r, int g, int b) { 306 static WEBP_INLINE int VP8_RGB_TO_V(int r, int g, int b, int rounding) {
274 const int v = 32768 * r - 27439 * g - 5329 * b; 307 const int v = 32768 * r - 27439 * g - 5329 * b;
275 return VP8ClipUV(v); 308 return VP8ClipUV(v, rounding);
276 } 309 }
277 310
278 #endif // USE_YUVj 311 #endif // USE_YUVj
279 312
280 #if defined(__cplusplus) || defined(c_plusplus) 313 #ifdef __cplusplus
281 } // extern "C" 314 } // extern "C"
282 #endif 315 #endif
283 316
284 #endif /* WEBP_DSP_YUV_H_ */ 317 #endif /* WEBP_DSP_YUV_H_ */
OLDNEW
« no previous file with comments | « third_party/libwebp/dsp/upsampling_sse2.c ('k') | third_party/libwebp/dsp/yuv.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698