Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(166)

Side by Side Diff: third_party/libwebp/dec/frame.c

Issue 116213006: Update libwebp to 0.4.0 (Closed) Base URL: svn://svn.chromium.org/chrome/trunk/src
Patch Set: After Blink Roll Created 6 years, 11 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « third_party/libwebp/dec/decode_vp8.h ('k') | third_party/libwebp/dec/idec.c » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 // Copyright 2010 Google Inc. All Rights Reserved. 1 // Copyright 2010 Google Inc. All Rights Reserved.
2 // 2 //
3 // Use of this source code is governed by a BSD-style license 3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source 4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found 5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may 6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree. 7 // be found in the AUTHORS file in the root of the source tree.
8 // ----------------------------------------------------------------------------- 8 // -----------------------------------------------------------------------------
9 // 9 //
10 // Frame-reconstruction function. Memory allocation. 10 // Frame-reconstruction function. Memory allocation.
11 // 11 //
12 // Author: Skal (pascal.massimino@gmail.com) 12 // Author: Skal (pascal.massimino@gmail.com)
13 13
14 #include <stdlib.h> 14 #include <stdlib.h>
15 #include "./vp8i.h" 15 #include "./vp8i.h"
16 #include "../utils/utils.h" 16 #include "../utils/utils.h"
17 17
18 #if defined(__cplusplus) || defined(c_plusplus) 18 #define ALIGN_MASK (32 - 1)
19 extern "C" {
20 #endif
21 19
22 #define ALIGN_MASK (32 - 1) 20 static void ReconstructRow(const VP8Decoder* const dec,
21 const VP8ThreadContext* ctx); // TODO(skal): remove
23 22
24 //------------------------------------------------------------------------------ 23 //------------------------------------------------------------------------------
25 // Filtering 24 // Filtering
26 25
27 // kFilterExtraRows[] = How many extra lines are needed on the MB boundary 26 // kFilterExtraRows[] = How many extra lines are needed on the MB boundary
28 // for caching, given a filtering level. 27 // for caching, given a filtering level.
29 // Simple filter: up to 2 luma samples are read and 1 is written. 28 // Simple filter: up to 2 luma samples are read and 1 is written.
30 // Complex filter: up to 4 luma samples are read and 3 are written. Same for 29 // Complex filter: up to 4 luma samples are read and 3 are written. Same for
31 // U/V, so it's 8 samples total (because of the 2x upsampling). 30 // U/V, so it's 8 samples total (because of the 2x upsampling).
32 static const uint8_t kFilterExtraRows[3] = { 0, 2, 8 }; 31 static const uint8_t kFilterExtraRows[3] = { 0, 2, 8 };
33 32
34 static WEBP_INLINE int hev_thresh_from_level(int level, int keyframe) {
35 if (keyframe) {
36 return (level >= 40) ? 2 : (level >= 15) ? 1 : 0;
37 } else {
38 return (level >= 40) ? 3 : (level >= 20) ? 2 : (level >= 15) ? 1 : 0;
39 }
40 }
41
42 static void DoFilter(const VP8Decoder* const dec, int mb_x, int mb_y) { 33 static void DoFilter(const VP8Decoder* const dec, int mb_x, int mb_y) {
43 const VP8ThreadContext* const ctx = &dec->thread_ctx_; 34 const VP8ThreadContext* const ctx = &dec->thread_ctx_;
35 const int cache_id = ctx->id_;
44 const int y_bps = dec->cache_y_stride_; 36 const int y_bps = dec->cache_y_stride_;
45 VP8FInfo* const f_info = ctx->f_info_ + mb_x; 37 const VP8FInfo* const f_info = ctx->f_info_ + mb_x;
46 uint8_t* const y_dst = dec->cache_y_ + ctx->id_ * 16 * y_bps + mb_x * 16; 38 uint8_t* const y_dst = dec->cache_y_ + cache_id * 16 * y_bps + mb_x * 16;
47 const int level = f_info->f_level_;
48 const int ilevel = f_info->f_ilevel_; 39 const int ilevel = f_info->f_ilevel_;
49 const int limit = 2 * level + ilevel; 40 const int limit = f_info->f_limit_;
50 if (level == 0) { 41 if (limit == 0) {
51 return; 42 return;
52 } 43 }
44 assert(limit >= 3);
53 if (dec->filter_type_ == 1) { // simple 45 if (dec->filter_type_ == 1) { // simple
54 if (mb_x > 0) { 46 if (mb_x > 0) {
55 VP8SimpleHFilter16(y_dst, y_bps, limit + 4); 47 VP8SimpleHFilter16(y_dst, y_bps, limit + 4);
56 } 48 }
57 if (f_info->f_inner_) { 49 if (f_info->f_inner_) {
58 VP8SimpleHFilter16i(y_dst, y_bps, limit); 50 VP8SimpleHFilter16i(y_dst, y_bps, limit);
59 } 51 }
60 if (mb_y > 0) { 52 if (mb_y > 0) {
61 VP8SimpleVFilter16(y_dst, y_bps, limit + 4); 53 VP8SimpleVFilter16(y_dst, y_bps, limit + 4);
62 } 54 }
63 if (f_info->f_inner_) { 55 if (f_info->f_inner_) {
64 VP8SimpleVFilter16i(y_dst, y_bps, limit); 56 VP8SimpleVFilter16i(y_dst, y_bps, limit);
65 } 57 }
66 } else { // complex 58 } else { // complex
67 const int uv_bps = dec->cache_uv_stride_; 59 const int uv_bps = dec->cache_uv_stride_;
68 uint8_t* const u_dst = dec->cache_u_ + ctx->id_ * 8 * uv_bps + mb_x * 8; 60 uint8_t* const u_dst = dec->cache_u_ + cache_id * 8 * uv_bps + mb_x * 8;
69 uint8_t* const v_dst = dec->cache_v_ + ctx->id_ * 8 * uv_bps + mb_x * 8; 61 uint8_t* const v_dst = dec->cache_v_ + cache_id * 8 * uv_bps + mb_x * 8;
70 const int hev_thresh = 62 const int hev_thresh = f_info->hev_thresh_;
71 hev_thresh_from_level(level, dec->frm_hdr_.key_frame_);
72 if (mb_x > 0) { 63 if (mb_x > 0) {
73 VP8HFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh); 64 VP8HFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh);
74 VP8HFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh); 65 VP8HFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh);
75 } 66 }
76 if (f_info->f_inner_) { 67 if (f_info->f_inner_) {
77 VP8HFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh); 68 VP8HFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh);
78 VP8HFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh); 69 VP8HFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh);
79 } 70 }
80 if (mb_y > 0) { 71 if (mb_y > 0) {
81 VP8VFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh); 72 VP8VFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh);
(...skipping 39 matching lines...) Expand 10 before | Expand all | Expand 10 after
121 VP8FInfo* const info = &dec->fstrengths_[s][i4x4]; 112 VP8FInfo* const info = &dec->fstrengths_[s][i4x4];
122 int level = base_level; 113 int level = base_level;
123 if (hdr->use_lf_delta_) { 114 if (hdr->use_lf_delta_) {
124 // TODO(skal): only CURRENT is handled for now. 115 // TODO(skal): only CURRENT is handled for now.
125 level += hdr->ref_lf_delta_[0]; 116 level += hdr->ref_lf_delta_[0];
126 if (i4x4) { 117 if (i4x4) {
127 level += hdr->mode_lf_delta_[0]; 118 level += hdr->mode_lf_delta_[0];
128 } 119 }
129 } 120 }
130 level = (level < 0) ? 0 : (level > 63) ? 63 : level; 121 level = (level < 0) ? 0 : (level > 63) ? 63 : level;
131 info->f_level_ = level; 122 if (level > 0) {
123 int ilevel = level;
124 if (hdr->sharpness_ > 0) {
125 if (hdr->sharpness_ > 4) {
126 ilevel >>= 2;
127 } else {
128 ilevel >>= 1;
129 }
130 if (ilevel > 9 - hdr->sharpness_) {
131 ilevel = 9 - hdr->sharpness_;
132 }
133 }
134 if (ilevel < 1) ilevel = 1;
135 info->f_ilevel_ = ilevel;
136 info->f_limit_ = 2 * level + ilevel;
137 info->hev_thresh_ = (level >= 40) ? 2 : (level >= 15) ? 1 : 0;
138 } else {
139 info->f_limit_ = 0; // no filtering
140 }
141 info->f_inner_ = i4x4;
142 }
143 }
144 }
145 }
132 146
133 if (hdr->sharpness_ > 0) { 147 //------------------------------------------------------------------------------
134 if (hdr->sharpness_ > 4) { 148 // Dithering
135 level >>= 2; 149
136 } else { 150 #define DITHER_AMP_TAB_SIZE 12
137 level >>= 1; 151 static const int kQuantToDitherAmp[DITHER_AMP_TAB_SIZE] = {
138 } 152 // roughly, it's dqm->uv_mat_[1]
139 if (level > 9 - hdr->sharpness_) { 153 8, 7, 6, 4, 4, 2, 2, 2, 1, 1, 1, 1
140 level = 9 - hdr->sharpness_; 154 };
141 } 155
156 void VP8InitDithering(const WebPDecoderOptions* const options,
157 VP8Decoder* const dec) {
158 assert(dec != NULL);
159 if (options != NULL) {
160 const int d = options->dithering_strength;
161 const int max_amp = (1 << VP8_RANDOM_DITHER_FIX) - 1;
162 const int f = (d < 0) ? 0 : (d > 100) ? max_amp : (d * max_amp / 100);
163 if (f > 0) {
164 int s;
165 int all_amp = 0;
166 for (s = 0; s < NUM_MB_SEGMENTS; ++s) {
167 VP8QuantMatrix* const dqm = &dec->dqm_[s];
168 if (dqm->uv_quant_ < DITHER_AMP_TAB_SIZE) {
169 // TODO(skal): should we specially dither more for uv_quant_ < 0?
170 const int idx = (dqm->uv_quant_ < 0) ? 0 : dqm->uv_quant_;
171 dqm->dither_ = (f * kQuantToDitherAmp[idx]) >> 3;
142 } 172 }
143 info->f_ilevel_ = (level < 1) ? 1 : level; 173 all_amp |= dqm->dither_;
144 info->f_inner_ = 0;
145 } 174 }
175 if (all_amp != 0) {
176 VP8InitRandom(&dec->dithering_rg_, 1.0f);
177 dec->dither_ = 1;
178 }
179 }
180 }
181 }
182
183 // minimal amp that will provide a non-zero dithering effect
184 #define MIN_DITHER_AMP 4
185 #define DITHER_DESCALE 4
186 #define DITHER_DESCALE_ROUNDER (1 << (DITHER_DESCALE - 1))
187 #define DITHER_AMP_BITS 8
188 #define DITHER_AMP_CENTER (1 << DITHER_AMP_BITS)
189
190 static void Dither8x8(VP8Random* const rg, uint8_t* dst, int bps, int amp) {
191 int i, j;
192 for (j = 0; j < 8; ++j) {
193 for (i = 0; i < 8; ++i) {
194 // TODO: could be made faster with SSE2
195 const int bits =
196 VP8RandomBits2(rg, DITHER_AMP_BITS + 1, amp) - DITHER_AMP_CENTER;
197 // Convert to range: [-2,2] for dither=50, [-4,4] for dither=100
198 const int delta = (bits + DITHER_DESCALE_ROUNDER) >> DITHER_DESCALE;
199 const int v = (int)dst[i] + delta;
200 dst[i] = (v < 0) ? 0 : (v > 255) ? 255u : (uint8_t)v;
201 }
202 dst += bps;
203 }
204 }
205
206 static void DitherRow(VP8Decoder* const dec) {
207 int mb_x;
208 assert(dec->dither_);
209 for (mb_x = dec->tl_mb_x_; mb_x < dec->br_mb_x_; ++mb_x) {
210 const VP8ThreadContext* const ctx = &dec->thread_ctx_;
211 const VP8MBData* const data = ctx->mb_data_ + mb_x;
212 const int cache_id = ctx->id_;
213 const int uv_bps = dec->cache_uv_stride_;
214 if (data->dither_ >= MIN_DITHER_AMP) {
215 uint8_t* const u_dst = dec->cache_u_ + cache_id * 8 * uv_bps + mb_x * 8;
216 uint8_t* const v_dst = dec->cache_v_ + cache_id * 8 * uv_bps + mb_x * 8;
217 Dither8x8(&dec->dithering_rg_, u_dst, uv_bps, data->dither_);
218 Dither8x8(&dec->dithering_rg_, v_dst, uv_bps, data->dither_);
146 } 219 }
147 } 220 }
148 } 221 }
149 222
150 //------------------------------------------------------------------------------ 223 //------------------------------------------------------------------------------
151 // This function is called after a row of macroblocks is finished decoding. 224 // This function is called after a row of macroblocks is finished decoding.
152 // It also takes into account the following restrictions: 225 // It also takes into account the following restrictions:
153 // * In case of in-loop filtering, we must hold off sending some of the bottom 226 // * In case of in-loop filtering, we must hold off sending some of the bottom
154 // pixels as they are yet unfiltered. They will be when the next macroblock 227 // pixels as they are yet unfiltered. They will be when the next macroblock
155 // row is decoded. Meanwhile, we must preserve them by rotating them in the 228 // row is decoded. Meanwhile, we must preserve them by rotating them in the
156 // cache area. This doesn't hold for the very bottom row of the uncropped 229 // cache area. This doesn't hold for the very bottom row of the uncropped
157 // picture of course. 230 // picture of course.
158 // * we must clip the remaining pixels against the cropping area. The VP8Io 231 // * we must clip the remaining pixels against the cropping area. The VP8Io
159 // struct must have the following fields set correctly before calling put(): 232 // struct must have the following fields set correctly before calling put():
160 233
161 #define MACROBLOCK_VPOS(mb_y) ((mb_y) * 16) // vertical position of a MB 234 #define MACROBLOCK_VPOS(mb_y) ((mb_y) * 16) // vertical position of a MB
162 235
163 // Finalize and transmit a complete row. Return false in case of user-abort. 236 // Finalize and transmit a complete row. Return false in case of user-abort.
164 static int FinishRow(VP8Decoder* const dec, VP8Io* const io) { 237 static int FinishRow(VP8Decoder* const dec, VP8Io* const io) {
165 int ok = 1; 238 int ok = 1;
166 const VP8ThreadContext* const ctx = &dec->thread_ctx_; 239 const VP8ThreadContext* const ctx = &dec->thread_ctx_;
240 const int cache_id = ctx->id_;
167 const int extra_y_rows = kFilterExtraRows[dec->filter_type_]; 241 const int extra_y_rows = kFilterExtraRows[dec->filter_type_];
168 const int ysize = extra_y_rows * dec->cache_y_stride_; 242 const int ysize = extra_y_rows * dec->cache_y_stride_;
169 const int uvsize = (extra_y_rows / 2) * dec->cache_uv_stride_; 243 const int uvsize = (extra_y_rows / 2) * dec->cache_uv_stride_;
170 const int y_offset = ctx->id_ * 16 * dec->cache_y_stride_; 244 const int y_offset = cache_id * 16 * dec->cache_y_stride_;
171 const int uv_offset = ctx->id_ * 8 * dec->cache_uv_stride_; 245 const int uv_offset = cache_id * 8 * dec->cache_uv_stride_;
172 uint8_t* const ydst = dec->cache_y_ - ysize + y_offset; 246 uint8_t* const ydst = dec->cache_y_ - ysize + y_offset;
173 uint8_t* const udst = dec->cache_u_ - uvsize + uv_offset; 247 uint8_t* const udst = dec->cache_u_ - uvsize + uv_offset;
174 uint8_t* const vdst = dec->cache_v_ - uvsize + uv_offset; 248 uint8_t* const vdst = dec->cache_v_ - uvsize + uv_offset;
175 const int first_row = (ctx->mb_y_ == 0); 249 const int mb_y = ctx->mb_y_;
176 const int last_row = (ctx->mb_y_ >= dec->br_mb_y_ - 1); 250 const int is_first_row = (mb_y == 0);
177 int y_start = MACROBLOCK_VPOS(ctx->mb_y_); 251 const int is_last_row = (mb_y >= dec->br_mb_y_ - 1);
178 int y_end = MACROBLOCK_VPOS(ctx->mb_y_ + 1); 252
253 if (dec->mt_method_ == 2) {
254 ReconstructRow(dec, ctx);
255 }
179 256
180 if (ctx->filter_row_) { 257 if (ctx->filter_row_) {
181 FilterRow(dec); 258 FilterRow(dec);
182 } 259 }
183 260
184 if (io->put) { 261 if (dec->dither_) {
185 if (!first_row) { 262 DitherRow(dec);
263 }
264
265 if (io->put != NULL) {
266 int y_start = MACROBLOCK_VPOS(mb_y);
267 int y_end = MACROBLOCK_VPOS(mb_y + 1);
268 if (!is_first_row) {
186 y_start -= extra_y_rows; 269 y_start -= extra_y_rows;
187 io->y = ydst; 270 io->y = ydst;
188 io->u = udst; 271 io->u = udst;
189 io->v = vdst; 272 io->v = vdst;
190 } else { 273 } else {
191 io->y = dec->cache_y_ + y_offset; 274 io->y = dec->cache_y_ + y_offset;
192 io->u = dec->cache_u_ + uv_offset; 275 io->u = dec->cache_u_ + uv_offset;
193 io->v = dec->cache_v_ + uv_offset; 276 io->v = dec->cache_v_ + uv_offset;
194 } 277 }
195 278
196 if (!last_row) { 279 if (!is_last_row) {
197 y_end -= extra_y_rows; 280 y_end -= extra_y_rows;
198 } 281 }
199 if (y_end > io->crop_bottom) { 282 if (y_end > io->crop_bottom) {
200 y_end = io->crop_bottom; // make sure we don't overflow on last row. 283 y_end = io->crop_bottom; // make sure we don't overflow on last row.
201 } 284 }
202 io->a = NULL; 285 io->a = NULL;
203 if (dec->alpha_data_ != NULL && y_start < y_end) { 286 if (dec->alpha_data_ != NULL && y_start < y_end) {
204 // TODO(skal): several things to correct here: 287 // TODO(skal): testing presence of alpha with dec->alpha_data_ is not a
205 // * testing presence of alpha with dec->alpha_data_ is not a good idea 288 // good idea.
206 // * we're actually decompressing the full plane only once. It should be
207 // more obvious from signature.
208 // * we could free alpha_data_ right after this call, but we don't own.
209 io->a = VP8DecompressAlphaRows(dec, y_start, y_end - y_start); 289 io->a = VP8DecompressAlphaRows(dec, y_start, y_end - y_start);
210 if (io->a == NULL) { 290 if (io->a == NULL) {
211 return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR, 291 return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR,
212 "Could not decode alpha data."); 292 "Could not decode alpha data.");
213 } 293 }
214 } 294 }
215 if (y_start < io->crop_top) { 295 if (y_start < io->crop_top) {
216 const int delta_y = io->crop_top - y_start; 296 const int delta_y = io->crop_top - y_start;
217 y_start = io->crop_top; 297 y_start = io->crop_top;
218 assert(!(delta_y & 1)); 298 assert(!(delta_y & 1));
(...skipping 11 matching lines...) Expand all
230 if (io->a != NULL) { 310 if (io->a != NULL) {
231 io->a += io->crop_left; 311 io->a += io->crop_left;
232 } 312 }
233 io->mb_y = y_start - io->crop_top; 313 io->mb_y = y_start - io->crop_top;
234 io->mb_w = io->crop_right - io->crop_left; 314 io->mb_w = io->crop_right - io->crop_left;
235 io->mb_h = y_end - y_start; 315 io->mb_h = y_end - y_start;
236 ok = io->put(io); 316 ok = io->put(io);
237 } 317 }
238 } 318 }
239 // rotate top samples if needed 319 // rotate top samples if needed
240 if (ctx->id_ + 1 == dec->num_caches_) { 320 if (cache_id + 1 == dec->num_caches_) {
241 if (!last_row) { 321 if (!is_last_row) {
242 memcpy(dec->cache_y_ - ysize, ydst + 16 * dec->cache_y_stride_, ysize); 322 memcpy(dec->cache_y_ - ysize, ydst + 16 * dec->cache_y_stride_, ysize);
243 memcpy(dec->cache_u_ - uvsize, udst + 8 * dec->cache_uv_stride_, uvsize); 323 memcpy(dec->cache_u_ - uvsize, udst + 8 * dec->cache_uv_stride_, uvsize);
244 memcpy(dec->cache_v_ - uvsize, vdst + 8 * dec->cache_uv_stride_, uvsize); 324 memcpy(dec->cache_v_ - uvsize, vdst + 8 * dec->cache_uv_stride_, uvsize);
245 } 325 }
246 } 326 }
247 327
248 return ok; 328 return ok;
249 } 329 }
250 330
251 #undef MACROBLOCK_VPOS 331 #undef MACROBLOCK_VPOS
252 332
253 //------------------------------------------------------------------------------ 333 //------------------------------------------------------------------------------
254 334
255 int VP8ProcessRow(VP8Decoder* const dec, VP8Io* const io) { 335 int VP8ProcessRow(VP8Decoder* const dec, VP8Io* const io) {
256 int ok = 1; 336 int ok = 1;
257 VP8ThreadContext* const ctx = &dec->thread_ctx_; 337 VP8ThreadContext* const ctx = &dec->thread_ctx_;
258 if (!dec->use_threads_) { 338 const int filter_row =
339 (dec->filter_type_ > 0) &&
340 (dec->mb_y_ >= dec->tl_mb_y_) && (dec->mb_y_ <= dec->br_mb_y_);
341 if (dec->mt_method_ == 0) {
259 // ctx->id_ and ctx->f_info_ are already set 342 // ctx->id_ and ctx->f_info_ are already set
260 ctx->mb_y_ = dec->mb_y_; 343 ctx->mb_y_ = dec->mb_y_;
261 ctx->filter_row_ = dec->filter_row_; 344 ctx->filter_row_ = filter_row;
345 ReconstructRow(dec, ctx);
262 ok = FinishRow(dec, io); 346 ok = FinishRow(dec, io);
263 } else { 347 } else {
264 WebPWorker* const worker = &dec->worker_; 348 WebPWorker* const worker = &dec->worker_;
265 // Finish previous job *before* updating context 349 // Finish previous job *before* updating context
266 ok &= WebPWorkerSync(worker); 350 ok &= WebPWorkerSync(worker);
267 assert(worker->status_ == OK); 351 assert(worker->status_ == OK);
268 if (ok) { // spawn a new deblocking/output job 352 if (ok) { // spawn a new deblocking/output job
269 ctx->io_ = *io; 353 ctx->io_ = *io;
270 ctx->id_ = dec->cache_id_; 354 ctx->id_ = dec->cache_id_;
271 ctx->mb_y_ = dec->mb_y_; 355 ctx->mb_y_ = dec->mb_y_;
272 ctx->filter_row_ = dec->filter_row_; 356 ctx->filter_row_ = filter_row;
273 if (ctx->filter_row_) { // just swap filter info 357 if (dec->mt_method_ == 2) { // swap macroblock data
358 VP8MBData* const tmp = ctx->mb_data_;
359 ctx->mb_data_ = dec->mb_data_;
360 dec->mb_data_ = tmp;
361 } else {
362 // perform reconstruction directly in main thread
363 ReconstructRow(dec, ctx);
364 }
365 if (filter_row) { // swap filter info
274 VP8FInfo* const tmp = ctx->f_info_; 366 VP8FInfo* const tmp = ctx->f_info_;
275 ctx->f_info_ = dec->f_info_; 367 ctx->f_info_ = dec->f_info_;
276 dec->f_info_ = tmp; 368 dec->f_info_ = tmp;
277 } 369 }
278 WebPWorkerLaunch(worker); 370 WebPWorkerLaunch(worker); // (reconstruct)+filter in parallel
279 if (++dec->cache_id_ == dec->num_caches_) { 371 if (++dec->cache_id_ == dec->num_caches_) {
280 dec->cache_id_ = 0; 372 dec->cache_id_ = 0;
281 } 373 }
282 } 374 }
283 } 375 }
284 return ok; 376 return ok;
285 } 377 }
286 378
287 //------------------------------------------------------------------------------ 379 //------------------------------------------------------------------------------
288 // Finish setting up the decoding parameter once user's setup() is called. 380 // Finish setting up the decoding parameter once user's setup() is called.
289 381
290 VP8StatusCode VP8EnterCritical(VP8Decoder* const dec, VP8Io* const io) { 382 VP8StatusCode VP8EnterCritical(VP8Decoder* const dec, VP8Io* const io) {
291 // Call setup() first. This may trigger additional decoding features on 'io'. 383 // Call setup() first. This may trigger additional decoding features on 'io'.
292 // Note: Afterward, we must call teardown() not matter what. 384 // Note: Afterward, we must call teardown() no matter what.
293 if (io->setup && !io->setup(io)) { 385 if (io->setup != NULL && !io->setup(io)) {
294 VP8SetError(dec, VP8_STATUS_USER_ABORT, "Frame setup failed"); 386 VP8SetError(dec, VP8_STATUS_USER_ABORT, "Frame setup failed");
295 return dec->status_; 387 return dec->status_;
296 } 388 }
297 389
298 // Disable filtering per user request 390 // Disable filtering per user request
299 if (io->bypass_filtering) { 391 if (io->bypass_filtering) {
300 dec->filter_type_ = 0; 392 dec->filter_type_ = 0;
301 } 393 }
302 // TODO(skal): filter type / strength / sharpness forcing 394 // TODO(skal): filter type / strength / sharpness forcing
303 395
304 // Define the area where we can skip in-loop filtering, in case of cropping. 396 // Define the area where we can skip in-loop filtering, in case of cropping.
305 // 397 //
306 // 'Simple' filter reads two luma samples outside of the macroblock and 398 // 'Simple' filter reads two luma samples outside of the macroblock
307 // and filters one. It doesn't filter the chroma samples. Hence, we can 399 // and filters one. It doesn't filter the chroma samples. Hence, we can
308 // avoid doing the in-loop filtering before crop_top/crop_left position. 400 // avoid doing the in-loop filtering before crop_top/crop_left position.
309 // For the 'Complex' filter, 3 samples are read and up to 3 are filtered. 401 // For the 'Complex' filter, 3 samples are read and up to 3 are filtered.
310 // Means: there's a dependency chain that goes all the way up to the 402 // Means: there's a dependency chain that goes all the way up to the
311 // top-left corner of the picture (MB #0). We must filter all the previous 403 // top-left corner of the picture (MB #0). We must filter all the previous
312 // macroblocks. 404 // macroblocks.
313 // TODO(skal): add an 'approximate_decoding' option, that won't produce 405 // TODO(skal): add an 'approximate_decoding' option, that won't produce
314 // a 1:1 bit-exactness for complex filtering? 406 // a 1:1 bit-exactness for complex filtering?
315 { 407 {
316 const int extra_pixels = kFilterExtraRows[dec->filter_type_]; 408 const int extra_pixels = kFilterExtraRows[dec->filter_type_];
(...skipping 20 matching lines...) Expand all
337 if (dec->br_mb_y_ > dec->mb_h_) { 429 if (dec->br_mb_y_ > dec->mb_h_) {
338 dec->br_mb_y_ = dec->mb_h_; 430 dec->br_mb_y_ = dec->mb_h_;
339 } 431 }
340 } 432 }
341 PrecomputeFilterStrengths(dec); 433 PrecomputeFilterStrengths(dec);
342 return VP8_STATUS_OK; 434 return VP8_STATUS_OK;
343 } 435 }
344 436
345 int VP8ExitCritical(VP8Decoder* const dec, VP8Io* const io) { 437 int VP8ExitCritical(VP8Decoder* const dec, VP8Io* const io) {
346 int ok = 1; 438 int ok = 1;
347 if (dec->use_threads_) { 439 if (dec->mt_method_ > 0) {
348 ok = WebPWorkerSync(&dec->worker_); 440 ok = WebPWorkerSync(&dec->worker_);
349 } 441 }
350 442
351 if (io->teardown) { 443 if (io->teardown != NULL) {
352 io->teardown(io); 444 io->teardown(io);
353 } 445 }
354 return ok; 446 return ok;
355 } 447 }
356 448
357 //------------------------------------------------------------------------------ 449 //------------------------------------------------------------------------------
358 // For multi-threaded decoding we need to use 3 rows of 16 pixels as delay line. 450 // For multi-threaded decoding we need to use 3 rows of 16 pixels as delay line.
359 // 451 //
360 // Reason is: the deblocking filter cannot deblock the bottom horizontal edges 452 // Reason is: the deblocking filter cannot deblock the bottom horizontal edges
361 // immediately, and needs to wait for first few rows of the next macroblock to 453 // immediately, and needs to wait for first few rows of the next macroblock to
(...skipping 15 matching lines...) Expand all
377 // and output process have non-concurrent writing: 469 // and output process have non-concurrent writing:
378 // Decode: [ 0..15][16..31][ 0..15][16..31][... 470 // Decode: [ 0..15][16..31][ 0..15][16..31][...
379 // io->put: [ 0..15][16..31][ 0..15][... 471 // io->put: [ 0..15][16..31][ 0..15][...
380 472
381 #define MT_CACHE_LINES 3 473 #define MT_CACHE_LINES 3
382 #define ST_CACHE_LINES 1 // 1 cache row only for single-threaded case 474 #define ST_CACHE_LINES 1 // 1 cache row only for single-threaded case
383 475
384 // Initialize multi/single-thread worker 476 // Initialize multi/single-thread worker
385 static int InitThreadContext(VP8Decoder* const dec) { 477 static int InitThreadContext(VP8Decoder* const dec) {
386 dec->cache_id_ = 0; 478 dec->cache_id_ = 0;
387 if (dec->use_threads_) { 479 if (dec->mt_method_ > 0) {
388 WebPWorker* const worker = &dec->worker_; 480 WebPWorker* const worker = &dec->worker_;
389 if (!WebPWorkerReset(worker)) { 481 if (!WebPWorkerReset(worker)) {
390 return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY, 482 return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY,
391 "thread initialization failed."); 483 "thread initialization failed.");
392 } 484 }
393 worker->data1 = dec; 485 worker->data1 = dec;
394 worker->data2 = (void*)&dec->thread_ctx_.io_; 486 worker->data2 = (void*)&dec->thread_ctx_.io_;
395 worker->hook = (WebPWorkerHook)FinishRow; 487 worker->hook = (WebPWorkerHook)FinishRow;
396 dec->num_caches_ = 488 dec->num_caches_ =
397 (dec->filter_type_ > 0) ? MT_CACHE_LINES : MT_CACHE_LINES - 1; 489 (dec->filter_type_ > 0) ? MT_CACHE_LINES : MT_CACHE_LINES - 1;
398 } else { 490 } else {
399 dec->num_caches_ = ST_CACHE_LINES; 491 dec->num_caches_ = ST_CACHE_LINES;
400 } 492 }
401 return 1; 493 return 1;
402 } 494 }
403 495
496 int VP8GetThreadMethod(const WebPDecoderOptions* const options,
497 const WebPHeaderStructure* const headers,
498 int width, int height) {
499 if (options == NULL || options->use_threads == 0) {
500 return 0;
501 }
502 (void)headers;
503 (void)width;
504 (void)height;
505 assert(!headers->is_lossless);
506 #if defined(WEBP_USE_THREAD)
507 if (width < MIN_WIDTH_FOR_THREADS) return 0;
508 // TODO(skal): tune the heuristic further
509 #if 0
510 if (height < 2 * width) return 2;
511 #endif
512 return 2;
513 #else // !WEBP_USE_THREAD
514 return 0;
515 #endif
516 }
517
404 #undef MT_CACHE_LINES 518 #undef MT_CACHE_LINES
405 #undef ST_CACHE_LINES 519 #undef ST_CACHE_LINES
406 520
407 //------------------------------------------------------------------------------ 521 //------------------------------------------------------------------------------
408 // Memory setup 522 // Memory setup
409 523
410 static int AllocateMemory(VP8Decoder* const dec) { 524 static int AllocateMemory(VP8Decoder* const dec) {
411 const int num_caches = dec->num_caches_; 525 const int num_caches = dec->num_caches_;
412 const int mb_w = dec->mb_w_; 526 const int mb_w = dec->mb_w_;
413 // Note: we use 'size_t' when there's no overflow risk, uint64_t otherwise. 527 // Note: we use 'size_t' when there's no overflow risk, uint64_t otherwise.
414 const size_t intra_pred_mode_size = 4 * mb_w * sizeof(uint8_t); 528 const size_t intra_pred_mode_size = 4 * mb_w * sizeof(uint8_t);
415 const size_t top_size = (16 + 8 + 8) * mb_w; 529 const size_t top_size = sizeof(VP8TopSamples) * mb_w;
416 const size_t mb_info_size = (mb_w + 1) * sizeof(VP8MB); 530 const size_t mb_info_size = (mb_w + 1) * sizeof(VP8MB);
417 const size_t f_info_size = 531 const size_t f_info_size =
418 (dec->filter_type_ > 0) ? 532 (dec->filter_type_ > 0) ?
419 mb_w * (dec->use_threads_ ? 2 : 1) * sizeof(VP8FInfo) 533 mb_w * (dec->mt_method_ > 0 ? 2 : 1) * sizeof(VP8FInfo)
420 : 0; 534 : 0;
421 const size_t yuv_size = YUV_SIZE * sizeof(*dec->yuv_b_); 535 const size_t yuv_size = YUV_SIZE * sizeof(*dec->yuv_b_);
422 const size_t coeffs_size = 384 * sizeof(*dec->coeffs_); 536 const size_t mb_data_size =
537 (dec->mt_method_ == 2 ? 2 : 1) * mb_w * sizeof(*dec->mb_data_);
423 const size_t cache_height = (16 * num_caches 538 const size_t cache_height = (16 * num_caches
424 + kFilterExtraRows[dec->filter_type_]) * 3 / 2; 539 + kFilterExtraRows[dec->filter_type_]) * 3 / 2;
425 const size_t cache_size = top_size * cache_height; 540 const size_t cache_size = top_size * cache_height;
426 // alpha_size is the only one that scales as width x height. 541 // alpha_size is the only one that scales as width x height.
427 const uint64_t alpha_size = (dec->alpha_data_ != NULL) ? 542 const uint64_t alpha_size = (dec->alpha_data_ != NULL) ?
428 (uint64_t)dec->pic_hdr_.width_ * dec->pic_hdr_.height_ : 0ULL; 543 (uint64_t)dec->pic_hdr_.width_ * dec->pic_hdr_.height_ : 0ULL;
429 const uint64_t needed = (uint64_t)intra_pred_mode_size 544 const uint64_t needed = (uint64_t)intra_pred_mode_size
430 + top_size + mb_info_size + f_info_size 545 + top_size + mb_info_size + f_info_size
431 + yuv_size + coeffs_size 546 + yuv_size + mb_data_size
432 + cache_size + alpha_size + ALIGN_MASK; 547 + cache_size + alpha_size + ALIGN_MASK;
433 uint8_t* mem; 548 uint8_t* mem;
434 549
435 if (needed != (size_t)needed) return 0; // check for overflow 550 if (needed != (size_t)needed) return 0; // check for overflow
436 if (needed > dec->mem_size_) { 551 if (needed > dec->mem_size_) {
437 free(dec->mem_); 552 free(dec->mem_);
438 dec->mem_size_ = 0; 553 dec->mem_size_ = 0;
439 dec->mem_ = WebPSafeMalloc(needed, sizeof(uint8_t)); 554 dec->mem_ = WebPSafeMalloc(needed, sizeof(uint8_t));
440 if (dec->mem_ == NULL) { 555 if (dec->mem_ == NULL) {
441 return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY, 556 return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY,
442 "no memory during frame initialization."); 557 "no memory during frame initialization.");
443 } 558 }
444 // down-cast is ok, thanks to WebPSafeAlloc() above. 559 // down-cast is ok, thanks to WebPSafeAlloc() above.
445 dec->mem_size_ = (size_t)needed; 560 dec->mem_size_ = (size_t)needed;
446 } 561 }
447 562
448 mem = (uint8_t*)dec->mem_; 563 mem = (uint8_t*)dec->mem_;
449 dec->intra_t_ = (uint8_t*)mem; 564 dec->intra_t_ = (uint8_t*)mem;
450 mem += intra_pred_mode_size; 565 mem += intra_pred_mode_size;
451 566
452 dec->y_t_ = (uint8_t*)mem; 567 dec->yuv_t_ = (VP8TopSamples*)mem;
453 mem += 16 * mb_w; 568 mem += top_size;
454 dec->u_t_ = (uint8_t*)mem;
455 mem += 8 * mb_w;
456 dec->v_t_ = (uint8_t*)mem;
457 mem += 8 * mb_w;
458 569
459 dec->mb_info_ = ((VP8MB*)mem) + 1; 570 dec->mb_info_ = ((VP8MB*)mem) + 1;
460 mem += mb_info_size; 571 mem += mb_info_size;
461 572
462 dec->f_info_ = f_info_size ? (VP8FInfo*)mem : NULL; 573 dec->f_info_ = f_info_size ? (VP8FInfo*)mem : NULL;
463 mem += f_info_size; 574 mem += f_info_size;
464 dec->thread_ctx_.id_ = 0; 575 dec->thread_ctx_.id_ = 0;
465 dec->thread_ctx_.f_info_ = dec->f_info_; 576 dec->thread_ctx_.f_info_ = dec->f_info_;
466 if (dec->use_threads_) { 577 if (dec->mt_method_ > 0) {
467 // secondary cache line. The deblocking process need to make use of the 578 // secondary cache line. The deblocking process need to make use of the
468 // filtering strength from previous macroblock row, while the new ones 579 // filtering strength from previous macroblock row, while the new ones
469 // are being decoded in parallel. We'll just swap the pointers. 580 // are being decoded in parallel. We'll just swap the pointers.
470 dec->thread_ctx_.f_info_ += mb_w; 581 dec->thread_ctx_.f_info_ += mb_w;
471 } 582 }
472 583
473 mem = (uint8_t*)((uintptr_t)(mem + ALIGN_MASK) & ~ALIGN_MASK); 584 mem = (uint8_t*)((uintptr_t)(mem + ALIGN_MASK) & ~ALIGN_MASK);
474 assert((yuv_size & ALIGN_MASK) == 0); 585 assert((yuv_size & ALIGN_MASK) == 0);
475 dec->yuv_b_ = (uint8_t*)mem; 586 dec->yuv_b_ = (uint8_t*)mem;
476 mem += yuv_size; 587 mem += yuv_size;
477 588
478 dec->coeffs_ = (int16_t*)mem; 589 dec->mb_data_ = (VP8MBData*)mem;
479 mem += coeffs_size; 590 dec->thread_ctx_.mb_data_ = (VP8MBData*)mem;
591 if (dec->mt_method_ == 2) {
592 dec->thread_ctx_.mb_data_ += mb_w;
593 }
594 mem += mb_data_size;
480 595
481 dec->cache_y_stride_ = 16 * mb_w; 596 dec->cache_y_stride_ = 16 * mb_w;
482 dec->cache_uv_stride_ = 8 * mb_w; 597 dec->cache_uv_stride_ = 8 * mb_w;
483 { 598 {
484 const int extra_rows = kFilterExtraRows[dec->filter_type_]; 599 const int extra_rows = kFilterExtraRows[dec->filter_type_];
485 const int extra_y = extra_rows * dec->cache_y_stride_; 600 const int extra_y = extra_rows * dec->cache_y_stride_;
486 const int extra_uv = (extra_rows / 2) * dec->cache_uv_stride_; 601 const int extra_uv = (extra_rows / 2) * dec->cache_uv_stride_;
487 dec->cache_y_ = ((uint8_t*)mem) + extra_y; 602 dec->cache_y_ = ((uint8_t*)mem) + extra_y;
488 dec->cache_u_ = dec->cache_y_ 603 dec->cache_u_ = dec->cache_y_
489 + 16 * num_caches * dec->cache_y_stride_ + extra_uv; 604 + 16 * num_caches * dec->cache_y_stride_ + extra_uv;
490 dec->cache_v_ = dec->cache_u_ 605 dec->cache_v_ = dec->cache_u_
491 + 8 * num_caches * dec->cache_uv_stride_ + extra_uv; 606 + 8 * num_caches * dec->cache_uv_stride_ + extra_uv;
492 dec->cache_id_ = 0; 607 dec->cache_id_ = 0;
493 } 608 }
494 mem += cache_size; 609 mem += cache_size;
495 610
496 // alpha plane 611 // alpha plane
497 dec->alpha_plane_ = alpha_size ? (uint8_t*)mem : NULL; 612 dec->alpha_plane_ = alpha_size ? (uint8_t*)mem : NULL;
498 mem += alpha_size; 613 mem += alpha_size;
499 assert(mem <= (uint8_t*)dec->mem_ + dec->mem_size_); 614 assert(mem <= (uint8_t*)dec->mem_ + dec->mem_size_);
500 615
501 // note: left-info is initialized once for all. 616 // note: left/top-info is initialized once for all.
502 memset(dec->mb_info_ - 1, 0, mb_info_size); 617 memset(dec->mb_info_ - 1, 0, mb_info_size);
618 VP8InitScanline(dec); // initialize left too.
503 619
504 // initialize top 620 // initialize top
505 memset(dec->intra_t_, B_DC_PRED, intra_pred_mode_size); 621 memset(dec->intra_t_, B_DC_PRED, intra_pred_mode_size);
506 622
507 return 1; 623 return 1;
508 } 624 }
509 625
510 static void InitIo(VP8Decoder* const dec, VP8Io* io) { 626 static void InitIo(VP8Decoder* const dec, VP8Io* io) {
511 // prepare 'io' 627 // prepare 'io'
512 io->mb_y = 0; 628 io->mb_y = 0;
(...skipping 16 matching lines...) Expand all
529 //------------------------------------------------------------------------------ 645 //------------------------------------------------------------------------------
530 // Main reconstruction function. 646 // Main reconstruction function.
531 647
532 static const int kScan[16] = { 648 static const int kScan[16] = {
533 0 + 0 * BPS, 4 + 0 * BPS, 8 + 0 * BPS, 12 + 0 * BPS, 649 0 + 0 * BPS, 4 + 0 * BPS, 8 + 0 * BPS, 12 + 0 * BPS,
534 0 + 4 * BPS, 4 + 4 * BPS, 8 + 4 * BPS, 12 + 4 * BPS, 650 0 + 4 * BPS, 4 + 4 * BPS, 8 + 4 * BPS, 12 + 4 * BPS,
535 0 + 8 * BPS, 4 + 8 * BPS, 8 + 8 * BPS, 12 + 8 * BPS, 651 0 + 8 * BPS, 4 + 8 * BPS, 8 + 8 * BPS, 12 + 8 * BPS,
536 0 + 12 * BPS, 4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS 652 0 + 12 * BPS, 4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS
537 }; 653 };
538 654
539 static WEBP_INLINE int CheckMode(VP8Decoder* const dec, int mode) { 655 static int CheckMode(int mb_x, int mb_y, int mode) {
540 if (mode == B_DC_PRED) { 656 if (mode == B_DC_PRED) {
541 if (dec->mb_x_ == 0) { 657 if (mb_x == 0) {
542 return (dec->mb_y_ == 0) ? B_DC_PRED_NOTOPLEFT : B_DC_PRED_NOLEFT; 658 return (mb_y == 0) ? B_DC_PRED_NOTOPLEFT : B_DC_PRED_NOLEFT;
543 } else { 659 } else {
544 return (dec->mb_y_ == 0) ? B_DC_PRED_NOTOP : B_DC_PRED; 660 return (mb_y == 0) ? B_DC_PRED_NOTOP : B_DC_PRED;
545 } 661 }
546 } 662 }
547 return mode; 663 return mode;
548 } 664 }
549 665
550 static WEBP_INLINE void Copy32b(uint8_t* dst, uint8_t* src) { 666 static void Copy32b(uint8_t* dst, uint8_t* src) {
551 *(uint32_t*)dst = *(uint32_t*)src; 667 memcpy(dst, src, 4);
552 } 668 }
553 669
554 void VP8ReconstructBlock(VP8Decoder* const dec) { 670 static WEBP_INLINE void DoTransform(uint32_t bits, const int16_t* const src,
671 uint8_t* const dst) {
672 switch (bits >> 30) {
673 case 3:
674 VP8Transform(src, dst, 0);
675 break;
676 case 2:
677 VP8TransformAC3(src, dst);
678 break;
679 case 1:
680 VP8TransformDC(src, dst);
681 break;
682 default:
683 break;
684 }
685 }
686
687 static void DoUVTransform(uint32_t bits, const int16_t* const src,
688 uint8_t* const dst) {
689 if (bits & 0xff) { // any non-zero coeff at all?
690 if (bits & 0xaa) { // any non-zero AC coefficient?
691 VP8TransformUV(src, dst); // note we don't use the AC3 variant for U/V
692 } else {
693 VP8TransformDCUV(src, dst);
694 }
695 }
696 }
697
698 static void ReconstructRow(const VP8Decoder* const dec,
699 const VP8ThreadContext* ctx) {
555 int j; 700 int j;
701 int mb_x;
702 const int mb_y = ctx->mb_y_;
703 const int cache_id = ctx->id_;
556 uint8_t* const y_dst = dec->yuv_b_ + Y_OFF; 704 uint8_t* const y_dst = dec->yuv_b_ + Y_OFF;
557 uint8_t* const u_dst = dec->yuv_b_ + U_OFF; 705 uint8_t* const u_dst = dec->yuv_b_ + U_OFF;
558 uint8_t* const v_dst = dec->yuv_b_ + V_OFF; 706 uint8_t* const v_dst = dec->yuv_b_ + V_OFF;
707 for (mb_x = 0; mb_x < dec->mb_w_; ++mb_x) {
708 const VP8MBData* const block = ctx->mb_data_ + mb_x;
559 709
560 // Rotate in the left samples from previously decoded block. We move four 710 // Rotate in the left samples from previously decoded block. We move four
561 // pixels at a time for alignment reason, and because of in-loop filter. 711 // pixels at a time for alignment reason, and because of in-loop filter.
562 if (dec->mb_x_ > 0) { 712 if (mb_x > 0) {
563 for (j = -1; j < 16; ++j) { 713 for (j = -1; j < 16; ++j) {
564 Copy32b(&y_dst[j * BPS - 4], &y_dst[j * BPS + 12]); 714 Copy32b(&y_dst[j * BPS - 4], &y_dst[j * BPS + 12]);
715 }
716 for (j = -1; j < 8; ++j) {
717 Copy32b(&u_dst[j * BPS - 4], &u_dst[j * BPS + 4]);
718 Copy32b(&v_dst[j * BPS - 4], &v_dst[j * BPS + 4]);
719 }
720 } else {
721 for (j = 0; j < 16; ++j) {
722 y_dst[j * BPS - 1] = 129;
723 }
724 for (j = 0; j < 8; ++j) {
725 u_dst[j * BPS - 1] = 129;
726 v_dst[j * BPS - 1] = 129;
727 }
728 // Init top-left sample on left column too
729 if (mb_y > 0) {
730 y_dst[-1 - BPS] = u_dst[-1 - BPS] = v_dst[-1 - BPS] = 129;
731 }
565 } 732 }
566 for (j = -1; j < 8; ++j) { 733 {
567 Copy32b(&u_dst[j * BPS - 4], &u_dst[j * BPS + 4]); 734 // bring top samples into the cache
568 Copy32b(&v_dst[j * BPS - 4], &v_dst[j * BPS + 4]); 735 VP8TopSamples* const top_yuv = dec->yuv_t_ + mb_x;
569 } 736 const int16_t* const coeffs = block->coeffs_;
570 } else { 737 uint32_t bits = block->non_zero_y_;
571 for (j = 0; j < 16; ++j) { 738 int n;
572 y_dst[j * BPS - 1] = 129;
573 }
574 for (j = 0; j < 8; ++j) {
575 u_dst[j * BPS - 1] = 129;
576 v_dst[j * BPS - 1] = 129;
577 }
578 // Init top-left sample on left column too
579 if (dec->mb_y_ > 0) {
580 y_dst[-1 - BPS] = u_dst[-1 - BPS] = v_dst[-1 - BPS] = 129;
581 }
582 }
583 {
584 // bring top samples into the cache
585 uint8_t* const top_y = dec->y_t_ + dec->mb_x_ * 16;
586 uint8_t* const top_u = dec->u_t_ + dec->mb_x_ * 8;
587 uint8_t* const top_v = dec->v_t_ + dec->mb_x_ * 8;
588 const int16_t* coeffs = dec->coeffs_;
589 int n;
590 739
591 if (dec->mb_y_ > 0) { 740 if (mb_y > 0) {
592 memcpy(y_dst - BPS, top_y, 16); 741 memcpy(y_dst - BPS, top_yuv[0].y, 16);
593 memcpy(u_dst - BPS, top_u, 8); 742 memcpy(u_dst - BPS, top_yuv[0].u, 8);
594 memcpy(v_dst - BPS, top_v, 8); 743 memcpy(v_dst - BPS, top_yuv[0].v, 8);
595 } else if (dec->mb_x_ == 0) { 744 } else if (mb_x == 0) {
596 // we only need to do this init once at block (0,0). 745 // we only need to do this init once at block (0,0).
597 // Afterward, it remains valid for the whole topmost row. 746 // Afterward, it remains valid for the whole topmost row.
598 memset(y_dst - BPS - 1, 127, 16 + 4 + 1); 747 memset(y_dst - BPS - 1, 127, 16 + 4 + 1);
599 memset(u_dst - BPS - 1, 127, 8 + 1); 748 memset(u_dst - BPS - 1, 127, 8 + 1);
600 memset(v_dst - BPS - 1, 127, 8 + 1); 749 memset(v_dst - BPS - 1, 127, 8 + 1);
601 } 750 }
602 751
603 // predict and add residuals 752 // predict and add residuals
753 if (block->is_i4x4_) { // 4x4
754 uint32_t* const top_right = (uint32_t*)(y_dst - BPS + 16);
604 755
605 if (dec->is_i4x4_) { // 4x4 756 if (mb_y > 0) {
606 uint32_t* const top_right = (uint32_t*)(y_dst - BPS + 16); 757 if (mb_x >= dec->mb_w_ - 1) { // on rightmost border
758 memset(top_right, top_yuv[0].y[15], sizeof(*top_right));
759 } else {
760 memcpy(top_right, top_yuv[1].y, sizeof(*top_right));
761 }
762 }
763 // replicate the top-right pixels below
764 top_right[BPS] = top_right[2 * BPS] = top_right[3 * BPS] = top_right[0];
607 765
608 if (dec->mb_y_ > 0) { 766 // predict and add residuals for all 4x4 blocks in turn.
609 if (dec->mb_x_ >= dec->mb_w_ - 1) { // on rightmost border 767 for (n = 0; n < 16; ++n, bits <<= 2) {
610 top_right[0] = top_y[15] * 0x01010101u; 768 uint8_t* const dst = y_dst + kScan[n];
611 } else { 769 VP8PredLuma4[block->imodes_[n]](dst);
612 memcpy(top_right, top_y + 16, sizeof(*top_right)); 770 DoTransform(bits, coeffs + n * 16, dst);
613 } 771 }
614 } 772 } else { // 16x16
615 // replicate the top-right pixels below 773 const int pred_func = CheckMode(mb_x, mb_y,
616 top_right[BPS] = top_right[2 * BPS] = top_right[3 * BPS] = top_right[0]; 774 block->imodes_[0]);
617 775 VP8PredLuma16[pred_func](y_dst);
618 // predict and add residues for all 4x4 blocks in turn. 776 if (bits != 0) {
619 for (n = 0; n < 16; n++) { 777 for (n = 0; n < 16; ++n, bits <<= 2) {
620 uint8_t* const dst = y_dst + kScan[n]; 778 DoTransform(bits, coeffs + n * 16, y_dst + kScan[n]);
621 VP8PredLuma4[dec->imodes_[n]](dst);
622 if (dec->non_zero_ac_ & (1 << n)) {
623 VP8Transform(coeffs + n * 16, dst, 0);
624 } else if (dec->non_zero_ & (1 << n)) { // only DC is present
625 VP8TransformDC(coeffs + n * 16, dst);
626 }
627 }
628 } else { // 16x16
629 const int pred_func = CheckMode(dec, dec->imodes_[0]);
630 VP8PredLuma16[pred_func](y_dst);
631 if (dec->non_zero_) {
632 for (n = 0; n < 16; n++) {
633 uint8_t* const dst = y_dst + kScan[n];
634 if (dec->non_zero_ac_ & (1 << n)) {
635 VP8Transform(coeffs + n * 16, dst, 0);
636 } else if (dec->non_zero_ & (1 << n)) { // only DC is present
637 VP8TransformDC(coeffs + n * 16, dst);
638 } 779 }
639 } 780 }
640 } 781 }
641 } 782 {
642 { 783 // Chroma
643 // Chroma 784 const uint32_t bits_uv = block->non_zero_uv_;
644 const int pred_func = CheckMode(dec, dec->uvmode_); 785 const int pred_func = CheckMode(mb_x, mb_y, block->uvmode_);
645 VP8PredChroma8[pred_func](u_dst); 786 VP8PredChroma8[pred_func](u_dst);
646 VP8PredChroma8[pred_func](v_dst); 787 VP8PredChroma8[pred_func](v_dst);
647 788 DoUVTransform(bits_uv >> 0, coeffs + 16 * 16, u_dst);
648 if (dec->non_zero_ & 0x0f0000) { // chroma-U 789 DoUVTransform(bits_uv >> 8, coeffs + 20 * 16, v_dst);
649 const int16_t* const u_coeffs = dec->coeffs_ + 16 * 16;
650 if (dec->non_zero_ac_ & 0x0f0000) {
651 VP8TransformUV(u_coeffs, u_dst);
652 } else {
653 VP8TransformDCUV(u_coeffs, u_dst);
654 }
655 }
656 if (dec->non_zero_ & 0xf00000) { // chroma-V
657 const int16_t* const v_coeffs = dec->coeffs_ + 20 * 16;
658 if (dec->non_zero_ac_ & 0xf00000) {
659 VP8TransformUV(v_coeffs, v_dst);
660 } else {
661 VP8TransformDCUV(v_coeffs, v_dst);
662 }
663 } 790 }
664 791
665 // stash away top samples for next block 792 // stash away top samples for next block
666 if (dec->mb_y_ < dec->mb_h_ - 1) { 793 if (mb_y < dec->mb_h_ - 1) {
667 memcpy(top_y, y_dst + 15 * BPS, 16); 794 memcpy(top_yuv[0].y, y_dst + 15 * BPS, 16);
668 memcpy(top_u, u_dst + 7 * BPS, 8); 795 memcpy(top_yuv[0].u, u_dst + 7 * BPS, 8);
669 memcpy(top_v, v_dst + 7 * BPS, 8); 796 memcpy(top_yuv[0].v, v_dst + 7 * BPS, 8);
670 } 797 }
671 } 798 }
672 } 799 // Transfer reconstructed samples from yuv_b_ cache to final destination.
673 // Transfer reconstructed samples from yuv_b_ cache to final destination. 800 {
674 { 801 const int y_offset = cache_id * 16 * dec->cache_y_stride_;
675 const int y_offset = dec->cache_id_ * 16 * dec->cache_y_stride_; 802 const int uv_offset = cache_id * 8 * dec->cache_uv_stride_;
676 const int uv_offset = dec->cache_id_ * 8 * dec->cache_uv_stride_; 803 uint8_t* const y_out = dec->cache_y_ + mb_x * 16 + y_offset;
677 uint8_t* const y_out = dec->cache_y_ + dec->mb_x_ * 16 + y_offset; 804 uint8_t* const u_out = dec->cache_u_ + mb_x * 8 + uv_offset;
678 uint8_t* const u_out = dec->cache_u_ + dec->mb_x_ * 8 + uv_offset; 805 uint8_t* const v_out = dec->cache_v_ + mb_x * 8 + uv_offset;
679 uint8_t* const v_out = dec->cache_v_ + dec->mb_x_ * 8 + uv_offset; 806 for (j = 0; j < 16; ++j) {
680 for (j = 0; j < 16; ++j) { 807 memcpy(y_out + j * dec->cache_y_stride_, y_dst + j * BPS, 16);
681 memcpy(y_out + j * dec->cache_y_stride_, y_dst + j * BPS, 16); 808 }
682 } 809 for (j = 0; j < 8; ++j) {
683 for (j = 0; j < 8; ++j) { 810 memcpy(u_out + j * dec->cache_uv_stride_, u_dst + j * BPS, 8);
684 memcpy(u_out + j * dec->cache_uv_stride_, u_dst + j * BPS, 8); 811 memcpy(v_out + j * dec->cache_uv_stride_, v_dst + j * BPS, 8);
685 memcpy(v_out + j * dec->cache_uv_stride_, v_dst + j * BPS, 8); 812 }
686 } 813 }
687 } 814 }
688 } 815 }
689 816
690 //------------------------------------------------------------------------------ 817 //------------------------------------------------------------------------------
691 818
692 #if defined(__cplusplus) || defined(c_plusplus)
693 } // extern "C"
694 #endif
OLDNEW
« no previous file with comments | « third_party/libwebp/dec/decode_vp8.h ('k') | third_party/libwebp/dec/idec.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698