Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(155)

Side by Side Diff: test/cctest/test-heap.cc

Issue 1159123002: Revert of Clean up aligned allocation code in preparation for SIMD alignments. (Closed) Base URL: https://chromium.googlesource.com/v8/v8.git@master
Patch Set: Created 5 years, 6 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « src/heap/spaces-inl.h ('k') | no next file » | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 // Copyright 2012 the V8 project authors. All rights reserved. 1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without 2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are 3 // modification, are permitted provided that the following conditions are
4 // met: 4 // met:
5 // 5 //
6 // * Redistributions of source code must retain the above copyright 6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer. 7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above 8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following 9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided 10 // disclaimer in the documentation and/or other materials provided
(...skipping 1766 matching lines...) Expand 10 before | Expand all | Expand 10 after
1777 CHECK_EQ(initial_size, static_cast<int>(CcTest::heap()->SizeOfObjects())); 1777 CHECK_EQ(initial_size, static_cast<int>(CcTest::heap()->SizeOfObjects()));
1778 1778
1779 // Waiting for sweeper threads should not change heap size. 1779 // Waiting for sweeper threads should not change heap size.
1780 if (collector->sweeping_in_progress()) { 1780 if (collector->sweeping_in_progress()) {
1781 collector->EnsureSweepingCompleted(); 1781 collector->EnsureSweepingCompleted();
1782 } 1782 }
1783 CHECK_EQ(initial_size, static_cast<int>(CcTest::heap()->SizeOfObjects())); 1783 CHECK_EQ(initial_size, static_cast<int>(CcTest::heap()->SizeOfObjects()));
1784 } 1784 }
1785 1785
1786 1786
1787 TEST(TestAlignmentCalculations) {
1788 // Maximum fill amounts should be consistent.
1789 int maximum_double_misalignment = kDoubleSize - kPointerSize;
1790 int max_word_fill = Heap::GetMaximumFillToAlign(kWordAligned);
1791 CHECK_EQ(0, max_word_fill);
1792 int max_double_fill = Heap::GetMaximumFillToAlign(kDoubleAligned);
1793 CHECK_EQ(maximum_double_misalignment, max_double_fill);
1794 int max_double_unaligned_fill = Heap::GetMaximumFillToAlign(kDoubleUnaligned);
1795 CHECK_EQ(maximum_double_misalignment, max_double_unaligned_fill);
1796
1797 Address base = reinterpret_cast<Address>(NULL);
1798 int fill = 0;
1799
1800 // Word alignment never requires fill.
1801 fill = Heap::GetFillToAlign(base, kWordAligned);
1802 CHECK_EQ(0, fill);
1803 fill = Heap::GetFillToAlign(base + kPointerSize, kWordAligned);
1804 CHECK_EQ(0, fill);
1805
1806 // No fill is required when address is double aligned.
1807 fill = Heap::GetFillToAlign(base, kDoubleAligned);
1808 CHECK_EQ(0, fill);
1809 // Fill is required if address is not double aligned.
1810 fill = Heap::GetFillToAlign(base + kPointerSize, kDoubleAligned);
1811 CHECK_EQ(maximum_double_misalignment, fill);
1812 // kDoubleUnaligned has the opposite fill amounts.
1813 fill = Heap::GetFillToAlign(base, kDoubleUnaligned);
1814 CHECK_EQ(maximum_double_misalignment, fill);
1815 fill = Heap::GetFillToAlign(base + kPointerSize, kDoubleUnaligned);
1816 CHECK_EQ(0, fill);
1817 }
1818
1819
1820 static HeapObject* NewSpaceAllocateAligned(int size,
1821 AllocationAlignment alignment) {
1822 Heap* heap = CcTest::heap();
1823 AllocationResult allocation =
1824 heap->new_space()->AllocateRawAligned(size, alignment);
1825 HeapObject* obj = NULL;
1826 allocation.To(&obj);
1827 heap->CreateFillerObjectAt(obj->address(), size);
1828 return obj;
1829 }
1830
1831
1832 TEST(TestAlignedAllocation) {
1833 // Double misalignment is 4 on 32-bit platforms, 0 on 64-bit ones.
1834 const intptr_t double_misalignment = kDoubleSize - kPointerSize;
1835 if (double_misalignment) {
1836 // Allocate a pointer sized object that must be double aligned.
1837 Address* top_addr = CcTest::heap()->new_space()->allocation_top_address();
1838 Address start = *top_addr;
1839 HeapObject* obj1 = NewSpaceAllocateAligned(kPointerSize, kDoubleAligned);
1840 CHECK(IsAddressAligned(obj1->address(), kDoubleAlignment));
1841 // Allocate a second pointer sized object. These two allocations should
1842 // cause exactly one filler object to be created.
1843 HeapObject* obj2 = NewSpaceAllocateAligned(kPointerSize, kDoubleAligned);
1844 CHECK(IsAddressAligned(obj2->address(), kDoubleAlignment));
1845 CHECK_EQ(2 * kPointerSize + double_misalignment, *top_addr - start);
1846 // There should be 3 filler objects now (the two HeapObjects we created and
1847 // the filler.)
1848 CHECK(HeapObject::FromAddress(start)->IsFiller() &&
1849 HeapObject::FromAddress(start + kPointerSize)->IsFiller() &&
1850 HeapObject::FromAddress(start + 2 * kPointerSize)->IsFiller());
1851
1852 // Similarly for kDoubleUnaligned.
1853 start = *top_addr;
1854 obj1 = NewSpaceAllocateAligned(kPointerSize, kDoubleUnaligned);
1855 CHECK(IsAddressAligned(obj1->address(), kDoubleAlignment, kPointerSize));
1856 obj2 = NewSpaceAllocateAligned(kPointerSize, kDoubleUnaligned);
1857 CHECK(IsAddressAligned(obj2->address(), kDoubleAlignment, kPointerSize));
1858 CHECK_EQ(2 * kPointerSize + double_misalignment, *top_addr - start);
1859 CHECK(HeapObject::FromAddress(start)->IsFiller() &&
1860 HeapObject::FromAddress(start + kPointerSize)->IsFiller() &&
1861 HeapObject::FromAddress(start + 2 * kPointerSize)->IsFiller());
1862 }
1863 }
1864
1865
1866 // Force allocation to happen from the free list, at a desired misalignment.
1867 static Address SetUpFreeListAllocation(int misalignment) {
1868 Heap* heap = CcTest::heap();
1869 OldSpace* old_space = heap->old_space();
1870 Address top = old_space->top();
1871 // First, allocate enough filler to get the linear area into the desired
1872 // misalignment.
1873 const intptr_t maximum_misalignment = 2 * kPointerSize;
1874 const intptr_t maximum_misalignment_mask = maximum_misalignment - 1;
1875 intptr_t top_alignment = OffsetFrom(top) & maximum_misalignment_mask;
1876 int filler_size = misalignment - static_cast<int>(top_alignment);
1877 if (filler_size < 0) filler_size += maximum_misalignment;
1878 if (filler_size) {
1879 // Create the filler object.
1880 AllocationResult allocation = old_space->AllocateRawUnaligned(filler_size);
1881 HeapObject* obj = NULL;
1882 allocation.To(&obj);
1883 heap->CreateFillerObjectAt(obj->address(), filler_size);
1884 }
1885 top = old_space->top();
1886 old_space->EmptyAllocationInfo();
1887 return top;
1888 }
1889
1890
1891 static HeapObject* OldSpaceAllocateAligned(int size,
1892 AllocationAlignment alignment) {
1893 Heap* heap = CcTest::heap();
1894 AllocationResult allocation =
1895 heap->old_space()->AllocateRawAligned(size, alignment);
1896 HeapObject* obj = NULL;
1897 allocation.To(&obj);
1898 heap->CreateFillerObjectAt(obj->address(), size);
1899 return obj;
1900 }
1901
1902
1903 // Test the case where allocation must be done from the free list, so filler
1904 // may precede or follow the object.
1905 TEST(TestAlignedOverAllocation) {
1906 // Double misalignment is 4 on 32-bit platforms, 0 on 64-bit ones.
1907 const intptr_t double_misalignment = kDoubleSize - kPointerSize;
1908 if (double_misalignment) {
1909 Address start = SetUpFreeListAllocation(0);
1910 HeapObject* obj1 = OldSpaceAllocateAligned(kPointerSize, kDoubleAligned);
1911 // The object should be aligned, and a filler object should be created.
1912 CHECK(IsAddressAligned(obj1->address(), kDoubleAlignment));
1913 CHECK(HeapObject::FromAddress(start)->IsFiller() &&
1914 HeapObject::FromAddress(start + kPointerSize)->IsFiller());
1915 // Try the opposite alignment case.
1916 start = SetUpFreeListAllocation(kPointerSize);
1917 HeapObject* obj2 = OldSpaceAllocateAligned(kPointerSize, kDoubleAligned);
1918 CHECK(IsAddressAligned(obj2->address(), kDoubleAlignment));
1919 CHECK(HeapObject::FromAddress(start)->IsFiller() &&
1920 HeapObject::FromAddress(start + kPointerSize)->IsFiller());
1921
1922 // Similarly for kDoubleUnaligned.
1923 start = SetUpFreeListAllocation(0);
1924 obj1 = OldSpaceAllocateAligned(kPointerSize, kDoubleUnaligned);
1925 // The object should be aligned, and a filler object should be created.
1926 CHECK(IsAddressAligned(obj1->address(), kDoubleAlignment, kPointerSize));
1927 CHECK(HeapObject::FromAddress(start)->IsFiller() &&
1928 HeapObject::FromAddress(start + kPointerSize)->IsFiller());
1929 // Try the opposite alignment case.
1930 start = SetUpFreeListAllocation(kPointerSize);
1931 obj2 = OldSpaceAllocateAligned(kPointerSize, kDoubleUnaligned);
1932 CHECK(IsAddressAligned(obj2->address(), kDoubleAlignment, kPointerSize));
1933 CHECK(HeapObject::FromAddress(start)->IsFiller() &&
1934 HeapObject::FromAddress(start + kPointerSize)->IsFiller());
1935 }
1936 }
1937
1938
1939 TEST(TestSizeOfObjectsVsHeapIteratorPrecision) { 1787 TEST(TestSizeOfObjectsVsHeapIteratorPrecision) {
1940 CcTest::InitializeVM(); 1788 CcTest::InitializeVM();
1941 HeapIterator iterator(CcTest::heap()); 1789 HeapIterator iterator(CcTest::heap());
1942 intptr_t size_of_objects_1 = CcTest::heap()->SizeOfObjects(); 1790 intptr_t size_of_objects_1 = CcTest::heap()->SizeOfObjects();
1943 intptr_t size_of_objects_2 = 0; 1791 intptr_t size_of_objects_2 = 0;
1944 for (HeapObject* obj = iterator.next(); 1792 for (HeapObject* obj = iterator.next();
1945 obj != NULL; 1793 obj != NULL;
1946 obj = iterator.next()) { 1794 obj = iterator.next()) {
1947 if (!obj->IsFreeSpace()) { 1795 if (!obj->IsFreeSpace()) {
1948 size_of_objects_2 += obj->Size(); 1796 size_of_objects_2 += obj->Size();
(...skipping 3754 matching lines...) Expand 10 before | Expand all | Expand 10 after
5703 size_t counter2 = 2000; 5551 size_t counter2 = 2000;
5704 tracer->SampleNewSpaceAllocation(time2, counter2); 5552 tracer->SampleNewSpaceAllocation(time2, counter2);
5705 size_t bytes = tracer->NewSpaceAllocatedBytesInLast(1000); 5553 size_t bytes = tracer->NewSpaceAllocatedBytesInLast(1000);
5706 CHECK_EQ(10000, bytes); 5554 CHECK_EQ(10000, bytes);
5707 int time3 = 1000; 5555 int time3 = 1000;
5708 size_t counter3 = 30000; 5556 size_t counter3 = 30000;
5709 tracer->SampleNewSpaceAllocation(time3, counter3); 5557 tracer->SampleNewSpaceAllocation(time3, counter3);
5710 bytes = tracer->NewSpaceAllocatedBytesInLast(100); 5558 bytes = tracer->NewSpaceAllocatedBytesInLast(100);
5711 CHECK_EQ((counter3 - counter1) * 100 / (time3 - time1), bytes); 5559 CHECK_EQ((counter3 - counter1) * 100 / (time3 - time1), bytes);
5712 } 5560 }
OLDNEW
« no previous file with comments | « src/heap/spaces-inl.h ('k') | no next file » | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698