Index: source/libvpx/vp9/encoder/vp9_firstpass.c |
=================================================================== |
--- source/libvpx/vp9/encoder/vp9_firstpass.c (revision 0) |
+++ source/libvpx/vp9/encoder/vp9_firstpass.c (revision 0) |
@@ -0,0 +1,2530 @@ |
+/* |
+ * Copyright (c) 2010 The WebM project authors. All Rights Reserved. |
+ * |
+ * Use of this source code is governed by a BSD-style license |
+ * that can be found in the LICENSE file in the root of the source |
+ * tree. An additional intellectual property rights grant can be found |
+ * in the file PATENTS. All contributing project authors may |
+ * be found in the AUTHORS file in the root of the source tree. |
+ */ |
+ |
+#include "math.h" |
+#include "limits.h" |
+#include "vp9/encoder/vp9_block.h" |
+#include "vp9/encoder/vp9_onyx_int.h" |
+#include "vp9/encoder/vp9_variance.h" |
+#include "vp9/encoder/vp9_encodeintra.h" |
+#include "vp9/common/vp9_setupintrarecon.h" |
+#include "vp9/encoder/vp9_mcomp.h" |
+#include "vp9/encoder/vp9_firstpass.h" |
+#include "vpx_scale/vpxscale.h" |
+#include "vp9/encoder/vp9_encodeframe.h" |
+#include "vp9/encoder/vp9_encodemb.h" |
+#include "vp9/common/vp9_extend.h" |
+#include "vp9/common/vp9_systemdependent.h" |
+#include "vpx_mem/vpx_mem.h" |
+#include "vp9/common/vp9_swapyv12buffer.h" |
+#include <stdio.h> |
+#include "vp9/encoder/vp9_quantize.h" |
+#include "vp9/encoder/vp9_rdopt.h" |
+#include "vp9/encoder/vp9_ratectrl.h" |
+#include "vp9/common/vp9_quant_common.h" |
+#include "vp9/common/vp9_entropymv.h" |
+#include "vp9/encoder/vp9_encodemv.h" |
+#include "./vpx_scale_rtcd.h" |
+ |
+#define OUTPUT_FPF 0 |
+ |
+#define IIFACTOR 12.5 |
+#define IIKFACTOR1 12.5 |
+#define IIKFACTOR2 15.0 |
+#define RMAX 128.0 |
+#define GF_RMAX 96.0 |
+#define ERR_DIVISOR 150.0 |
+ |
+#define KF_MB_INTRA_MIN 300 |
+#define GF_MB_INTRA_MIN 200 |
+ |
+#define DOUBLE_DIVIDE_CHECK(X) ((X)<0?(X)-.000001:(X)+.000001) |
+ |
+#define POW1 (double)cpi->oxcf.two_pass_vbrbias/100.0 |
+#define POW2 (double)cpi->oxcf.two_pass_vbrbias/100.0 |
+ |
+static void find_next_key_frame(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame); |
+ |
+static int select_cq_level(int qindex) { |
+ int ret_val = QINDEX_RANGE - 1; |
+ int i; |
+ |
+ double target_q = (vp9_convert_qindex_to_q(qindex) * 0.5847) + 1.0; |
+ |
+ for (i = 0; i < QINDEX_RANGE; i++) { |
+ if (target_q <= vp9_convert_qindex_to_q(i)) { |
+ ret_val = i; |
+ break; |
+ } |
+ } |
+ |
+ return ret_val; |
+} |
+ |
+ |
+// Resets the first pass file to the given position using a relative seek from the current position |
+static void reset_fpf_position(VP9_COMP *cpi, FIRSTPASS_STATS *Position) { |
+ cpi->twopass.stats_in = Position; |
+} |
+ |
+static int lookup_next_frame_stats(VP9_COMP *cpi, FIRSTPASS_STATS *next_frame) { |
+ if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) |
+ return EOF; |
+ |
+ *next_frame = *cpi->twopass.stats_in; |
+ return 1; |
+} |
+ |
+// Read frame stats at an offset from the current position |
+static int read_frame_stats(VP9_COMP *cpi, |
+ FIRSTPASS_STATS *frame_stats, |
+ int offset) { |
+ FIRSTPASS_STATS *fps_ptr = cpi->twopass.stats_in; |
+ |
+ // Check legality of offset |
+ if (offset >= 0) { |
+ if (&fps_ptr[offset] >= cpi->twopass.stats_in_end) |
+ return EOF; |
+ } else if (offset < 0) { |
+ if (&fps_ptr[offset] < cpi->twopass.stats_in_start) |
+ return EOF; |
+ } |
+ |
+ *frame_stats = fps_ptr[offset]; |
+ return 1; |
+} |
+ |
+static int input_stats(VP9_COMP *cpi, FIRSTPASS_STATS *fps) { |
+ if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) |
+ return EOF; |
+ |
+ *fps = *cpi->twopass.stats_in; |
+ cpi->twopass.stats_in = |
+ (void *)((char *)cpi->twopass.stats_in + sizeof(FIRSTPASS_STATS)); |
+ return 1; |
+} |
+ |
+static void output_stats(const VP9_COMP *cpi, |
+ struct vpx_codec_pkt_list *pktlist, |
+ FIRSTPASS_STATS *stats) { |
+ struct vpx_codec_cx_pkt pkt; |
+ pkt.kind = VPX_CODEC_STATS_PKT; |
+ pkt.data.twopass_stats.buf = stats; |
+ pkt.data.twopass_stats.sz = sizeof(FIRSTPASS_STATS); |
+ vpx_codec_pkt_list_add(pktlist, &pkt); |
+ |
+// TEMP debug code |
+#if OUTPUT_FPF |
+ |
+ { |
+ FILE *fpfile; |
+ fpfile = fopen("firstpass.stt", "a"); |
+ |
+ fprintf(fpfile, "%12.0f %12.0f %12.0f %12.0f %12.0f %12.4f %12.4f" |
+ "%12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f" |
+ "%12.0f %12.0f %12.4f %12.0f %12.0f %12.4f\n", |
+ stats->frame, |
+ stats->intra_error, |
+ stats->coded_error, |
+ stats->sr_coded_error, |
+ stats->ssim_weighted_pred_err, |
+ stats->pcnt_inter, |
+ stats->pcnt_motion, |
+ stats->pcnt_second_ref, |
+ stats->pcnt_neutral, |
+ stats->MVr, |
+ stats->mvr_abs, |
+ stats->MVc, |
+ stats->mvc_abs, |
+ stats->MVrv, |
+ stats->MVcv, |
+ stats->mv_in_out_count, |
+ stats->new_mv_count, |
+ stats->count, |
+ stats->duration); |
+ fclose(fpfile); |
+ } |
+#endif |
+} |
+ |
+static void zero_stats(FIRSTPASS_STATS *section) { |
+ section->frame = 0.0; |
+ section->intra_error = 0.0; |
+ section->coded_error = 0.0; |
+ section->sr_coded_error = 0.0; |
+ section->ssim_weighted_pred_err = 0.0; |
+ section->pcnt_inter = 0.0; |
+ section->pcnt_motion = 0.0; |
+ section->pcnt_second_ref = 0.0; |
+ section->pcnt_neutral = 0.0; |
+ section->MVr = 0.0; |
+ section->mvr_abs = 0.0; |
+ section->MVc = 0.0; |
+ section->mvc_abs = 0.0; |
+ section->MVrv = 0.0; |
+ section->MVcv = 0.0; |
+ section->mv_in_out_count = 0.0; |
+ section->new_mv_count = 0.0; |
+ section->count = 0.0; |
+ section->duration = 1.0; |
+} |
+ |
+static void accumulate_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame) { |
+ section->frame += frame->frame; |
+ section->intra_error += frame->intra_error; |
+ section->coded_error += frame->coded_error; |
+ section->sr_coded_error += frame->sr_coded_error; |
+ section->ssim_weighted_pred_err += frame->ssim_weighted_pred_err; |
+ section->pcnt_inter += frame->pcnt_inter; |
+ section->pcnt_motion += frame->pcnt_motion; |
+ section->pcnt_second_ref += frame->pcnt_second_ref; |
+ section->pcnt_neutral += frame->pcnt_neutral; |
+ section->MVr += frame->MVr; |
+ section->mvr_abs += frame->mvr_abs; |
+ section->MVc += frame->MVc; |
+ section->mvc_abs += frame->mvc_abs; |
+ section->MVrv += frame->MVrv; |
+ section->MVcv += frame->MVcv; |
+ section->mv_in_out_count += frame->mv_in_out_count; |
+ section->new_mv_count += frame->new_mv_count; |
+ section->count += frame->count; |
+ section->duration += frame->duration; |
+} |
+ |
+static void subtract_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame) { |
+ section->frame -= frame->frame; |
+ section->intra_error -= frame->intra_error; |
+ section->coded_error -= frame->coded_error; |
+ section->sr_coded_error -= frame->sr_coded_error; |
+ section->ssim_weighted_pred_err -= frame->ssim_weighted_pred_err; |
+ section->pcnt_inter -= frame->pcnt_inter; |
+ section->pcnt_motion -= frame->pcnt_motion; |
+ section->pcnt_second_ref -= frame->pcnt_second_ref; |
+ section->pcnt_neutral -= frame->pcnt_neutral; |
+ section->MVr -= frame->MVr; |
+ section->mvr_abs -= frame->mvr_abs; |
+ section->MVc -= frame->MVc; |
+ section->mvc_abs -= frame->mvc_abs; |
+ section->MVrv -= frame->MVrv; |
+ section->MVcv -= frame->MVcv; |
+ section->mv_in_out_count -= frame->mv_in_out_count; |
+ section->new_mv_count -= frame->new_mv_count; |
+ section->count -= frame->count; |
+ section->duration -= frame->duration; |
+} |
+ |
+static void avg_stats(FIRSTPASS_STATS *section) { |
+ if (section->count < 1.0) |
+ return; |
+ |
+ section->intra_error /= section->count; |
+ section->coded_error /= section->count; |
+ section->sr_coded_error /= section->count; |
+ section->ssim_weighted_pred_err /= section->count; |
+ section->pcnt_inter /= section->count; |
+ section->pcnt_second_ref /= section->count; |
+ section->pcnt_neutral /= section->count; |
+ section->pcnt_motion /= section->count; |
+ section->MVr /= section->count; |
+ section->mvr_abs /= section->count; |
+ section->MVc /= section->count; |
+ section->mvc_abs /= section->count; |
+ section->MVrv /= section->count; |
+ section->MVcv /= section->count; |
+ section->mv_in_out_count /= section->count; |
+ section->duration /= section->count; |
+} |
+ |
+// Calculate a modified Error used in distributing bits between easier and harder frames |
+static double calculate_modified_err(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) { |
+ double av_err = (cpi->twopass.total_stats->ssim_weighted_pred_err / |
+ cpi->twopass.total_stats->count); |
+ double this_err = this_frame->ssim_weighted_pred_err; |
+ double modified_err; |
+ |
+ if (this_err > av_err) |
+ modified_err = av_err * pow((this_err / DOUBLE_DIVIDE_CHECK(av_err)), POW1); |
+ else |
+ modified_err = av_err * pow((this_err / DOUBLE_DIVIDE_CHECK(av_err)), POW2); |
+ |
+ return modified_err; |
+} |
+ |
+static const double weight_table[256] = { |
+ 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, |
+ 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, |
+ 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, |
+ 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, |
+ 0.020000, 0.031250, 0.062500, 0.093750, 0.125000, 0.156250, 0.187500, 0.218750, |
+ 0.250000, 0.281250, 0.312500, 0.343750, 0.375000, 0.406250, 0.437500, 0.468750, |
+ 0.500000, 0.531250, 0.562500, 0.593750, 0.625000, 0.656250, 0.687500, 0.718750, |
+ 0.750000, 0.781250, 0.812500, 0.843750, 0.875000, 0.906250, 0.937500, 0.968750, |
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
+ 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000 |
+}; |
+ |
+static double simple_weight(YV12_BUFFER_CONFIG *source) { |
+ int i, j; |
+ |
+ unsigned char *src = source->y_buffer; |
+ double sum_weights = 0.0; |
+ |
+ // Loop throught the Y plane raw examining levels and creating a weight for the image |
+ i = source->y_height; |
+ do { |
+ j = source->y_width; |
+ do { |
+ sum_weights += weight_table[ *src]; |
+ src++; |
+ } while (--j); |
+ src -= source->y_width; |
+ src += source->y_stride; |
+ } while (--i); |
+ |
+ sum_weights /= (source->y_height * source->y_width); |
+ |
+ return sum_weights; |
+} |
+ |
+ |
+// This function returns the current per frame maximum bitrate target |
+static int frame_max_bits(VP9_COMP *cpi) { |
+ // Max allocation for a single frame based on the max section guidelines passed in and how many bits are left |
+ int max_bits; |
+ |
+ // For VBR base this on the bits and frames left plus the two_pass_vbrmax_section rate passed in by the user |
+ max_bits = (int)(((double)cpi->twopass.bits_left / (cpi->twopass.total_stats->count - (double)cpi->common.current_video_frame)) * ((double)cpi->oxcf.two_pass_vbrmax_section / 100.0)); |
+ |
+ // Trap case where we are out of bits |
+ if (max_bits < 0) |
+ max_bits = 0; |
+ |
+ return max_bits; |
+} |
+ |
+void vp9_init_first_pass(VP9_COMP *cpi) { |
+ zero_stats(cpi->twopass.total_stats); |
+} |
+ |
+void vp9_end_first_pass(VP9_COMP *cpi) { |
+ output_stats(cpi, cpi->output_pkt_list, cpi->twopass.total_stats); |
+} |
+ |
+static void zz_motion_search(VP9_COMP *cpi, MACROBLOCK *x, YV12_BUFFER_CONFIG *recon_buffer, int *best_motion_err, int recon_yoffset) { |
+ MACROBLOCKD *const xd = &x->e_mbd; |
+ BLOCK *b = &x->block[0]; |
+ BLOCKD *d = &x->e_mbd.block[0]; |
+ |
+ unsigned char *src_ptr = (*(b->base_src) + b->src); |
+ int src_stride = b->src_stride; |
+ unsigned char *ref_ptr; |
+ int ref_stride = d->pre_stride; |
+ |
+ // Set up pointers for this macro block recon buffer |
+ xd->pre.y_buffer = recon_buffer->y_buffer + recon_yoffset; |
+ |
+ ref_ptr = (unsigned char *)(*(d->base_pre) + d->pre); |
+ |
+ vp9_mse16x16(src_ptr, src_stride, ref_ptr, ref_stride, |
+ (unsigned int *)(best_motion_err)); |
+} |
+ |
+static void first_pass_motion_search(VP9_COMP *cpi, MACROBLOCK *x, |
+ int_mv *ref_mv, MV *best_mv, |
+ YV12_BUFFER_CONFIG *recon_buffer, |
+ int *best_motion_err, int recon_yoffset) { |
+ MACROBLOCKD *const xd = &x->e_mbd; |
+ BLOCK *b = &x->block[0]; |
+ BLOCKD *d = &x->e_mbd.block[0]; |
+ int num00; |
+ |
+ int_mv tmp_mv; |
+ int_mv ref_mv_full; |
+ |
+ int tmp_err; |
+ int step_param = 3; |
+ int further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param; |
+ int n; |
+ vp9_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[BLOCK_16X16]; |
+ int new_mv_mode_penalty = 256; |
+ |
+ // override the default variance function to use MSE |
+ v_fn_ptr.vf = vp9_mse16x16; |
+ |
+ // Set up pointers for this macro block recon buffer |
+ xd->pre.y_buffer = recon_buffer->y_buffer + recon_yoffset; |
+ |
+ // Initial step/diamond search centred on best mv |
+ tmp_mv.as_int = 0; |
+ ref_mv_full.as_mv.col = ref_mv->as_mv.col >> 3; |
+ ref_mv_full.as_mv.row = ref_mv->as_mv.row >> 3; |
+ tmp_err = cpi->diamond_search_sad(x, b, d, &ref_mv_full, &tmp_mv, step_param, |
+ x->sadperbit16, &num00, &v_fn_ptr, |
+ x->nmvjointcost, |
+ x->mvcost, ref_mv); |
+ if (tmp_err < INT_MAX - new_mv_mode_penalty) |
+ tmp_err += new_mv_mode_penalty; |
+ |
+ if (tmp_err < *best_motion_err) { |
+ *best_motion_err = tmp_err; |
+ best_mv->row = tmp_mv.as_mv.row; |
+ best_mv->col = tmp_mv.as_mv.col; |
+ } |
+ |
+ // Further step/diamond searches as necessary |
+ n = num00; |
+ num00 = 0; |
+ |
+ while (n < further_steps) { |
+ n++; |
+ |
+ if (num00) |
+ num00--; |
+ else { |
+ tmp_err = cpi->diamond_search_sad(x, b, d, &ref_mv_full, &tmp_mv, |
+ step_param + n, x->sadperbit16, |
+ &num00, &v_fn_ptr, |
+ x->nmvjointcost, |
+ x->mvcost, ref_mv); |
+ if (tmp_err < INT_MAX - new_mv_mode_penalty) |
+ tmp_err += new_mv_mode_penalty; |
+ |
+ if (tmp_err < *best_motion_err) { |
+ *best_motion_err = tmp_err; |
+ best_mv->row = tmp_mv.as_mv.row; |
+ best_mv->col = tmp_mv.as_mv.col; |
+ } |
+ } |
+ } |
+} |
+ |
+void vp9_first_pass(VP9_COMP *cpi) { |
+ int mb_row, mb_col; |
+ MACROBLOCK *const x = &cpi->mb; |
+ VP9_COMMON *const cm = &cpi->common; |
+ MACROBLOCKD *const xd = &x->e_mbd; |
+ |
+ int recon_yoffset, recon_uvoffset; |
+ YV12_BUFFER_CONFIG *lst_yv12 = &cm->yv12_fb[cm->lst_fb_idx]; |
+ YV12_BUFFER_CONFIG *new_yv12 = &cm->yv12_fb[cm->new_fb_idx]; |
+ YV12_BUFFER_CONFIG *gld_yv12 = &cm->yv12_fb[cm->gld_fb_idx]; |
+ int recon_y_stride = lst_yv12->y_stride; |
+ int recon_uv_stride = lst_yv12->uv_stride; |
+ int64_t intra_error = 0; |
+ int64_t coded_error = 0; |
+ int64_t sr_coded_error = 0; |
+ |
+ int sum_mvr = 0, sum_mvc = 0; |
+ int sum_mvr_abs = 0, sum_mvc_abs = 0; |
+ int sum_mvrs = 0, sum_mvcs = 0; |
+ int mvcount = 0; |
+ int intercount = 0; |
+ int second_ref_count = 0; |
+ int intrapenalty = 256; |
+ int neutral_count = 0; |
+ int new_mv_count = 0; |
+ int sum_in_vectors = 0; |
+ uint32_t lastmv_as_int = 0; |
+ |
+ int_mv zero_ref_mv; |
+ |
+ zero_ref_mv.as_int = 0; |
+ |
+ vp9_clear_system_state(); // __asm emms; |
+ |
+ x->src = * cpi->Source; |
+ xd->pre = *lst_yv12; |
+ xd->dst = *new_yv12; |
+ |
+ x->partition_info = x->pi; |
+ |
+ xd->mode_info_context = cm->mi; |
+ |
+ vp9_build_block_offsets(x); |
+ |
+ vp9_setup_block_dptrs(&x->e_mbd); |
+ |
+ vp9_setup_block_ptrs(x); |
+ |
+ // set up frame new frame for intra coded blocks |
+ vp9_setup_intra_recon(new_yv12); |
+ vp9_frame_init_quantizer(cpi); |
+ |
+ // Initialise the MV cost table to the defaults |
+ // if( cm->current_video_frame == 0) |
+ // if ( 0 ) |
+ { |
+ vp9_init_mv_probs(cm); |
+ vp9_initialize_rd_consts(cpi, cm->base_qindex + cm->y1dc_delta_q); |
+ } |
+ |
+ // for each macroblock row in image |
+ for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) { |
+ int_mv best_ref_mv; |
+ |
+ best_ref_mv.as_int = 0; |
+ |
+ // reset above block coeffs |
+ xd->up_available = (mb_row != 0); |
+ recon_yoffset = (mb_row * recon_y_stride * 16); |
+ recon_uvoffset = (mb_row * recon_uv_stride * 8); |
+ |
+ // Set up limit values for motion vectors to prevent them extending outside the UMV borders |
+ x->mv_row_min = -((mb_row * 16) + (VP9BORDERINPIXELS - 16)); |
+ x->mv_row_max = ((cm->mb_rows - 1 - mb_row) * 16) |
+ + (VP9BORDERINPIXELS - 16); |
+ |
+ |
+ // for each macroblock col in image |
+ for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) { |
+ int this_error; |
+ int gf_motion_error = INT_MAX; |
+ int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row); |
+ |
+ xd->dst.y_buffer = new_yv12->y_buffer + recon_yoffset; |
+ xd->dst.u_buffer = new_yv12->u_buffer + recon_uvoffset; |
+ xd->dst.v_buffer = new_yv12->v_buffer + recon_uvoffset; |
+ xd->left_available = (mb_col != 0); |
+ |
+#if !CONFIG_SUPERBLOCKS |
+ // Copy current mb to a buffer |
+ vp9_copy_mem16x16(x->src.y_buffer, x->src.y_stride, x->thismb, 16); |
+#endif |
+ |
+ // do intra 16x16 prediction |
+ this_error = vp9_encode_intra(cpi, x, use_dc_pred); |
+ |
+ // "intrapenalty" below deals with situations where the intra and inter error scores are very low (eg a plain black frame) |
+ // We do not have special cases in first pass for 0,0 and nearest etc so all inter modes carry an overhead cost estimate fot the mv. |
+ // When the error score is very low this causes us to pick all or lots of INTRA modes and throw lots of key frames. |
+ // This penalty adds a cost matching that of a 0,0 mv to the intra case. |
+ this_error += intrapenalty; |
+ |
+ // Cumulative intra error total |
+ intra_error += (int64_t)this_error; |
+ |
+ // Set up limit values for motion vectors to prevent them extending outside the UMV borders |
+ x->mv_col_min = -((mb_col * 16) + (VP9BORDERINPIXELS - 16)); |
+ x->mv_col_max = ((cm->mb_cols - 1 - mb_col) * 16) |
+ + (VP9BORDERINPIXELS - 16); |
+ |
+ // Other than for the first frame do a motion search |
+ if (cm->current_video_frame > 0) { |
+ int tmp_err; |
+ int motion_error = INT_MAX; |
+ int_mv mv, tmp_mv; |
+ |
+ // Simple 0,0 motion with no mv overhead |
+ zz_motion_search(cpi, x, lst_yv12, &motion_error, recon_yoffset); |
+ mv.as_int = tmp_mv.as_int = 0; |
+ |
+ // Test last reference frame using the previous best mv as the |
+ // starting point (best reference) for the search |
+ first_pass_motion_search(cpi, x, &best_ref_mv, |
+ &mv.as_mv, lst_yv12, |
+ &motion_error, recon_yoffset); |
+ |
+ // If the current best reference mv is not centred on 0,0 then do a 0,0 based search as well |
+ if (best_ref_mv.as_int) { |
+ tmp_err = INT_MAX; |
+ first_pass_motion_search(cpi, x, &zero_ref_mv, &tmp_mv.as_mv, |
+ lst_yv12, &tmp_err, recon_yoffset); |
+ |
+ if (tmp_err < motion_error) { |
+ motion_error = tmp_err; |
+ mv.as_int = tmp_mv.as_int; |
+ } |
+ } |
+ |
+ // Experimental search in an older reference frame |
+ if (cm->current_video_frame > 1) { |
+ // Simple 0,0 motion with no mv overhead |
+ zz_motion_search(cpi, x, gld_yv12, |
+ &gf_motion_error, recon_yoffset); |
+ |
+ first_pass_motion_search(cpi, x, &zero_ref_mv, |
+ &tmp_mv.as_mv, gld_yv12, |
+ &gf_motion_error, recon_yoffset); |
+ |
+ if ((gf_motion_error < motion_error) && |
+ (gf_motion_error < this_error)) { |
+ second_ref_count++; |
+ } |
+ |
+ // Reset to last frame as reference buffer |
+ xd->pre.y_buffer = lst_yv12->y_buffer + recon_yoffset; |
+ xd->pre.u_buffer = lst_yv12->u_buffer + recon_uvoffset; |
+ xd->pre.v_buffer = lst_yv12->v_buffer + recon_uvoffset; |
+ |
+ // In accumulating a score for the older reference frame |
+ // take the best of the motion predicted score and |
+ // the intra coded error (just as will be done for) |
+ // accumulation of "coded_error" for the last frame. |
+ if (gf_motion_error < this_error) |
+ sr_coded_error += gf_motion_error; |
+ else |
+ sr_coded_error += this_error; |
+ } else |
+ sr_coded_error += motion_error; |
+ |
+ /* Intra assumed best */ |
+ best_ref_mv.as_int = 0; |
+ |
+ if (motion_error <= this_error) { |
+ // Keep a count of cases where the inter and intra were |
+ // very close and very low. This helps with scene cut |
+ // detection for example in cropped clips with black bars |
+ // at the sides or top and bottom. |
+ if ((((this_error - intrapenalty) * 9) <= |
+ (motion_error * 10)) && |
+ (this_error < (2 * intrapenalty))) { |
+ neutral_count++; |
+ } |
+ |
+ mv.as_mv.row <<= 3; |
+ mv.as_mv.col <<= 3; |
+ this_error = motion_error; |
+ vp9_set_mbmode_and_mvs(x, NEWMV, &mv); |
+ xd->mode_info_context->mbmi.txfm_size = TX_4X4; |
+ vp9_encode_inter16x16y(x); |
+ sum_mvr += mv.as_mv.row; |
+ sum_mvr_abs += abs(mv.as_mv.row); |
+ sum_mvc += mv.as_mv.col; |
+ sum_mvc_abs += abs(mv.as_mv.col); |
+ sum_mvrs += mv.as_mv.row * mv.as_mv.row; |
+ sum_mvcs += mv.as_mv.col * mv.as_mv.col; |
+ intercount++; |
+ |
+ best_ref_mv.as_int = mv.as_int; |
+ |
+ // Was the vector non-zero |
+ if (mv.as_int) { |
+ mvcount++; |
+ |
+ // Was it different from the last non zero vector |
+ if (mv.as_int != lastmv_as_int) |
+ new_mv_count++; |
+ lastmv_as_int = mv.as_int; |
+ |
+ // Does the Row vector point inwards or outwards |
+ if (mb_row < cm->mb_rows / 2) { |
+ if (mv.as_mv.row > 0) |
+ sum_in_vectors--; |
+ else if (mv.as_mv.row < 0) |
+ sum_in_vectors++; |
+ } else if (mb_row > cm->mb_rows / 2) { |
+ if (mv.as_mv.row > 0) |
+ sum_in_vectors++; |
+ else if (mv.as_mv.row < 0) |
+ sum_in_vectors--; |
+ } |
+ |
+ // Does the Row vector point inwards or outwards |
+ if (mb_col < cm->mb_cols / 2) { |
+ if (mv.as_mv.col > 0) |
+ sum_in_vectors--; |
+ else if (mv.as_mv.col < 0) |
+ sum_in_vectors++; |
+ } else if (mb_col > cm->mb_cols / 2) { |
+ if (mv.as_mv.col > 0) |
+ sum_in_vectors++; |
+ else if (mv.as_mv.col < 0) |
+ sum_in_vectors--; |
+ } |
+ } |
+ } |
+ } else |
+ sr_coded_error += (int64_t)this_error; |
+ |
+ coded_error += (int64_t)this_error; |
+ |
+ // adjust to the next column of macroblocks |
+ x->src.y_buffer += 16; |
+ x->src.u_buffer += 8; |
+ x->src.v_buffer += 8; |
+ |
+ recon_yoffset += 16; |
+ recon_uvoffset += 8; |
+ } |
+ |
+ // adjust to the next row of mbs |
+ x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols; |
+ x->src.u_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols; |
+ x->src.v_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols; |
+ |
+ // extend the recon for intra prediction |
+ vp9_extend_mb_row(new_yv12, xd->dst.y_buffer + 16, |
+ xd->dst.u_buffer + 8, xd->dst.v_buffer + 8); |
+ vp9_clear_system_state(); // __asm emms; |
+ } |
+ |
+ vp9_clear_system_state(); // __asm emms; |
+ { |
+ double weight = 0.0; |
+ |
+ FIRSTPASS_STATS fps; |
+ |
+ fps.frame = cm->current_video_frame; |
+ fps.intra_error = (double)(intra_error >> 8); |
+ fps.coded_error = (double)(coded_error >> 8); |
+ fps.sr_coded_error = (double)(sr_coded_error >> 8); |
+ weight = simple_weight(cpi->Source); |
+ |
+ |
+ if (weight < 0.1) |
+ weight = 0.1; |
+ |
+ fps.ssim_weighted_pred_err = fps.coded_error * weight; |
+ |
+ fps.pcnt_inter = 0.0; |
+ fps.pcnt_motion = 0.0; |
+ fps.MVr = 0.0; |
+ fps.mvr_abs = 0.0; |
+ fps.MVc = 0.0; |
+ fps.mvc_abs = 0.0; |
+ fps.MVrv = 0.0; |
+ fps.MVcv = 0.0; |
+ fps.mv_in_out_count = 0.0; |
+ fps.new_mv_count = 0.0; |
+ fps.count = 1.0; |
+ |
+ fps.pcnt_inter = 1.0 * (double)intercount / cm->MBs; |
+ fps.pcnt_second_ref = 1.0 * (double)second_ref_count / cm->MBs; |
+ fps.pcnt_neutral = 1.0 * (double)neutral_count / cm->MBs; |
+ |
+ if (mvcount > 0) { |
+ fps.MVr = (double)sum_mvr / (double)mvcount; |
+ fps.mvr_abs = (double)sum_mvr_abs / (double)mvcount; |
+ fps.MVc = (double)sum_mvc / (double)mvcount; |
+ fps.mvc_abs = (double)sum_mvc_abs / (double)mvcount; |
+ fps.MVrv = ((double)sum_mvrs - (fps.MVr * fps.MVr / (double)mvcount)) / (double)mvcount; |
+ fps.MVcv = ((double)sum_mvcs - (fps.MVc * fps.MVc / (double)mvcount)) / (double)mvcount; |
+ fps.mv_in_out_count = (double)sum_in_vectors / (double)(mvcount * 2); |
+ fps.new_mv_count = new_mv_count; |
+ |
+ fps.pcnt_motion = 1.0 * (double)mvcount / cpi->common.MBs; |
+ } |
+ |
+ // TODO: handle the case when duration is set to 0, or something less |
+ // than the full time between subsequent cpi->source_time_stamp s . |
+ fps.duration = (double)(cpi->source->ts_end |
+ - cpi->source->ts_start); |
+ |
+ // don't want to do output stats with a stack variable! |
+ memcpy(cpi->twopass.this_frame_stats, |
+ &fps, |
+ sizeof(FIRSTPASS_STATS)); |
+ output_stats(cpi, cpi->output_pkt_list, cpi->twopass.this_frame_stats); |
+ accumulate_stats(cpi->twopass.total_stats, &fps); |
+ } |
+ |
+ // Copy the previous Last Frame back into gf and and arf buffers if |
+ // the prediction is good enough... but also dont allow it to lag too far |
+ if ((cpi->twopass.sr_update_lag > 3) || |
+ ((cm->current_video_frame > 0) && |
+ (cpi->twopass.this_frame_stats->pcnt_inter > 0.20) && |
+ ((cpi->twopass.this_frame_stats->intra_error / |
+ cpi->twopass.this_frame_stats->coded_error) > 2.0))) { |
+ vp8_yv12_copy_frame(lst_yv12, gld_yv12); |
+ cpi->twopass.sr_update_lag = 1; |
+ } else |
+ cpi->twopass.sr_update_lag++; |
+ |
+ // swap frame pointers so last frame refers to the frame we just compressed |
+ vp9_swap_yv12_buffer(lst_yv12, new_yv12); |
+ vp8_yv12_extend_frame_borders(lst_yv12); |
+ |
+ // Special case for the first frame. Copy into the GF buffer as a second reference. |
+ if (cm->current_video_frame == 0) { |
+ vp8_yv12_copy_frame(lst_yv12, gld_yv12); |
+ } |
+ |
+ |
+ // use this to see what the first pass reconstruction looks like |
+ if (0) { |
+ char filename[512]; |
+ FILE *recon_file; |
+ sprintf(filename, "enc%04d.yuv", (int) cm->current_video_frame); |
+ |
+ if (cm->current_video_frame == 0) |
+ recon_file = fopen(filename, "wb"); |
+ else |
+ recon_file = fopen(filename, "ab"); |
+ |
+ (void)fwrite(lst_yv12->buffer_alloc, lst_yv12->frame_size, 1, recon_file); |
+ fclose(recon_file); |
+ } |
+ |
+ cm->current_video_frame++; |
+ |
+} |
+ |
+// Estimate a cost per mb attributable to overheads such as the coding of |
+// modes and motion vectors. |
+// Currently simplistic in its assumptions for testing. |
+// |
+ |
+ |
+static double bitcost(double prob) { |
+ return -(log(prob) / log(2.0)); |
+} |
+ |
+static long long estimate_modemvcost(VP9_COMP *cpi, |
+ FIRSTPASS_STATS *fpstats) { |
+ int mv_cost; |
+ int mode_cost; |
+ |
+ double av_pct_inter = fpstats->pcnt_inter / fpstats->count; |
+ double av_pct_motion = fpstats->pcnt_motion / fpstats->count; |
+ double av_intra = (1.0 - av_pct_inter); |
+ |
+ double zz_cost; |
+ double motion_cost; |
+ double intra_cost; |
+ |
+ zz_cost = bitcost(av_pct_inter - av_pct_motion); |
+ motion_cost = bitcost(av_pct_motion); |
+ intra_cost = bitcost(av_intra); |
+ |
+ // Estimate of extra bits per mv overhead for mbs |
+ // << 9 is the normalization to the (bits * 512) used in vp9_bits_per_mb |
+ mv_cost = ((int)(fpstats->new_mv_count / fpstats->count) * 8) << 9; |
+ |
+ // Crude estimate of overhead cost from modes |
+ // << 9 is the normalization to (bits * 512) used in vp9_bits_per_mb |
+ mode_cost = |
+ (int)((((av_pct_inter - av_pct_motion) * zz_cost) + |
+ (av_pct_motion * motion_cost) + |
+ (av_intra * intra_cost)) * cpi->common.MBs) << 9; |
+ |
+ // return mv_cost + mode_cost; |
+ // TODO PGW Fix overhead costs for extended Q range |
+ return 0; |
+} |
+ |
+static double calc_correction_factor(double err_per_mb, |
+ double err_divisor, |
+ double pt_low, |
+ double pt_high, |
+ int Q) { |
+ double power_term; |
+ double error_term = err_per_mb / err_divisor; |
+ double correction_factor; |
+ |
+ // Adjustment based on actual quantizer to power term. |
+ power_term = (vp9_convert_qindex_to_q(Q) * 0.01) + pt_low; |
+ power_term = (power_term > pt_high) ? pt_high : power_term; |
+ |
+ // Adjustments to error term |
+ // TBD |
+ |
+ // Calculate correction factor |
+ correction_factor = pow(error_term, power_term); |
+ |
+ // Clip range |
+ correction_factor = |
+ (correction_factor < 0.05) |
+ ? 0.05 : (correction_factor > 2.0) ? 2.0 : correction_factor; |
+ |
+ return correction_factor; |
+} |
+ |
+// Given a current maxQ value sets a range for future values. |
+// PGW TODO.. |
+// This code removes direct dependency on QIndex to determin the range |
+// (now uses the actual quantizer) but has not been tuned. |
+static void adjust_maxq_qrange(VP9_COMP *cpi) { |
+ int i; |
+ double q; |
+ |
+ // Set the max corresponding to cpi->avg_q * 2.0 |
+ q = cpi->avg_q * 2.0; |
+ cpi->twopass.maxq_max_limit = cpi->worst_quality; |
+ for (i = cpi->best_quality; i <= cpi->worst_quality; i++) { |
+ cpi->twopass.maxq_max_limit = i; |
+ if (vp9_convert_qindex_to_q(i) >= q) |
+ break; |
+ } |
+ |
+ // Set the min corresponding to cpi->avg_q * 0.5 |
+ q = cpi->avg_q * 0.5; |
+ cpi->twopass.maxq_min_limit = cpi->best_quality; |
+ for (i = cpi->worst_quality; i >= cpi->best_quality; i--) { |
+ cpi->twopass.maxq_min_limit = i; |
+ if (vp9_convert_qindex_to_q(i) <= q) |
+ break; |
+ } |
+} |
+ |
+static int estimate_max_q(VP9_COMP *cpi, |
+ FIRSTPASS_STATS *fpstats, |
+ int section_target_bandwitdh, |
+ int overhead_bits) { |
+ int Q; |
+ int num_mbs = cpi->common.MBs; |
+ int target_norm_bits_per_mb; |
+ |
+ double section_err = (fpstats->coded_error / fpstats->count); |
+ double sr_err_diff; |
+ double sr_correction; |
+ double err_per_mb = section_err / num_mbs; |
+ double err_correction_factor; |
+ double speed_correction = 1.0; |
+ double overhead_bits_per_mb; |
+ |
+ if (section_target_bandwitdh <= 0) |
+ return cpi->twopass.maxq_max_limit; // Highest value allowed |
+ |
+ target_norm_bits_per_mb = |
+ (section_target_bandwitdh < (1 << 20)) |
+ ? (512 * section_target_bandwitdh) / num_mbs |
+ : 512 * (section_target_bandwitdh / num_mbs); |
+ |
+ // Look at the drop in prediction quality between the last frame |
+ // and the GF buffer (which contained an older frame). |
+ sr_err_diff = |
+ (fpstats->sr_coded_error - fpstats->coded_error) / |
+ (fpstats->count * cpi->common.MBs); |
+ sr_correction = (sr_err_diff / 32.0); |
+ sr_correction = pow(sr_correction, 0.25); |
+ if (sr_correction < 0.75) |
+ sr_correction = 0.75; |
+ else if (sr_correction > 1.25) |
+ sr_correction = 1.25; |
+ |
+ // Calculate a corrective factor based on a rolling ratio of bits spent |
+ // vs target bits |
+ if ((cpi->rolling_target_bits > 0) && |
+ (cpi->active_worst_quality < cpi->worst_quality)) { |
+ double rolling_ratio; |
+ |
+ rolling_ratio = (double)cpi->rolling_actual_bits / |
+ (double)cpi->rolling_target_bits; |
+ |
+ if (rolling_ratio < 0.95) |
+ cpi->twopass.est_max_qcorrection_factor -= 0.005; |
+ else if (rolling_ratio > 1.05) |
+ cpi->twopass.est_max_qcorrection_factor += 0.005; |
+ |
+ cpi->twopass.est_max_qcorrection_factor = |
+ (cpi->twopass.est_max_qcorrection_factor < 0.1) |
+ ? 0.1 |
+ : (cpi->twopass.est_max_qcorrection_factor > 10.0) |
+ ? 10.0 : cpi->twopass.est_max_qcorrection_factor; |
+ } |
+ |
+ // Corrections for higher compression speed settings |
+ // (reduced compression expected) |
+ if (cpi->compressor_speed == 1) { |
+ if (cpi->oxcf.cpu_used <= 5) |
+ speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04); |
+ else |
+ speed_correction = 1.25; |
+ } |
+ |
+ // Estimate of overhead bits per mb |
+ // Correction to overhead bits for min allowed Q. |
+ // PGW TODO.. This code is broken for the extended Q range |
+ // for now overhead set to 0. |
+ overhead_bits_per_mb = overhead_bits / num_mbs; |
+ overhead_bits_per_mb *= pow(0.98, (double)cpi->twopass.maxq_min_limit); |
+ |
+ // Try and pick a max Q that will be high enough to encode the |
+ // content at the given rate. |
+ for (Q = cpi->twopass.maxq_min_limit; Q < cpi->twopass.maxq_max_limit; Q++) { |
+ int bits_per_mb_at_this_q; |
+ |
+ err_correction_factor = |
+ calc_correction_factor(err_per_mb, ERR_DIVISOR, 0.4, 0.90, Q) * |
+ sr_correction * speed_correction * |
+ cpi->twopass.est_max_qcorrection_factor; |
+ |
+ if (err_correction_factor < 0.05) |
+ err_correction_factor = 0.05; |
+ else if (err_correction_factor > 5.0) |
+ err_correction_factor = 5.0; |
+ |
+ bits_per_mb_at_this_q = |
+ vp9_bits_per_mb(INTER_FRAME, Q) + (int)overhead_bits_per_mb; |
+ |
+ bits_per_mb_at_this_q = (int)(.5 + err_correction_factor * |
+ (double)bits_per_mb_at_this_q); |
+ |
+ // Mode and motion overhead |
+ // As Q rises in real encode loop rd code will force overhead down |
+ // We make a crude adjustment for this here as *.98 per Q step. |
+ // PGW TODO.. This code is broken for the extended Q range |
+ // for now overhead set to 0. |
+ // overhead_bits_per_mb = (int)((double)overhead_bits_per_mb * 0.98); |
+ |
+ if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) |
+ break; |
+ } |
+ |
+ // Restriction on active max q for constrained quality mode. |
+ if ((cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) && |
+ (Q < cpi->cq_target_quality)) { |
+ Q = cpi->cq_target_quality; |
+ } |
+ |
+ // Adjust maxq_min_limit and maxq_max_limit limits based on |
+ // averaga q observed in clip for non kf/gf/arf frames |
+ // Give average a chance to settle though. |
+ // PGW TODO.. This code is broken for the extended Q range |
+ if ((cpi->ni_frames > |
+ ((int)cpi->twopass.total_stats->count >> 8)) && |
+ (cpi->ni_frames > 150)) { |
+ adjust_maxq_qrange(cpi); |
+ } |
+ |
+ return Q; |
+} |
+ |
+// For cq mode estimate a cq level that matches the observed |
+// complexity and data rate. |
+static int estimate_cq(VP9_COMP *cpi, |
+ FIRSTPASS_STATS *fpstats, |
+ int section_target_bandwitdh, |
+ int overhead_bits) { |
+ int Q; |
+ int num_mbs = cpi->common.MBs; |
+ int target_norm_bits_per_mb; |
+ |
+ double section_err = (fpstats->coded_error / fpstats->count); |
+ double err_per_mb = section_err / num_mbs; |
+ double err_correction_factor; |
+ double sr_err_diff; |
+ double sr_correction; |
+ double speed_correction = 1.0; |
+ double clip_iiratio; |
+ double clip_iifactor; |
+ double overhead_bits_per_mb; |
+ |
+ |
+ target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20)) |
+ ? (512 * section_target_bandwitdh) / num_mbs |
+ : 512 * (section_target_bandwitdh / num_mbs); |
+ |
+ // Estimate of overhead bits per mb |
+ overhead_bits_per_mb = overhead_bits / num_mbs; |
+ |
+ // Corrections for higher compression speed settings |
+ // (reduced compression expected) |
+ if (cpi->compressor_speed == 1) { |
+ if (cpi->oxcf.cpu_used <= 5) |
+ speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04); |
+ else |
+ speed_correction = 1.25; |
+ } |
+ |
+ // Look at the drop in prediction quality between the last frame |
+ // and the GF buffer (which contained an older frame). |
+ sr_err_diff = |
+ (fpstats->sr_coded_error - fpstats->coded_error) / |
+ (fpstats->count * cpi->common.MBs); |
+ sr_correction = (sr_err_diff / 32.0); |
+ sr_correction = pow(sr_correction, 0.25); |
+ if (sr_correction < 0.75) |
+ sr_correction = 0.75; |
+ else if (sr_correction > 1.25) |
+ sr_correction = 1.25; |
+ |
+ // II ratio correction factor for clip as a whole |
+ clip_iiratio = cpi->twopass.total_stats->intra_error / |
+ DOUBLE_DIVIDE_CHECK(cpi->twopass.total_stats->coded_error); |
+ clip_iifactor = 1.0 - ((clip_iiratio - 10.0) * 0.025); |
+ if (clip_iifactor < 0.80) |
+ clip_iifactor = 0.80; |
+ |
+ // Try and pick a Q that can encode the content at the given rate. |
+ for (Q = 0; Q < MAXQ; Q++) { |
+ int bits_per_mb_at_this_q; |
+ |
+ // Error per MB based correction factor |
+ err_correction_factor = |
+ calc_correction_factor(err_per_mb, 100.0, 0.4, 0.90, Q) * |
+ sr_correction * speed_correction * clip_iifactor; |
+ |
+ if (err_correction_factor < 0.05) |
+ err_correction_factor = 0.05; |
+ else if (err_correction_factor > 5.0) |
+ err_correction_factor = 5.0; |
+ |
+ bits_per_mb_at_this_q = |
+ vp9_bits_per_mb(INTER_FRAME, Q) + (int)overhead_bits_per_mb; |
+ |
+ bits_per_mb_at_this_q = (int)(.5 + err_correction_factor * |
+ (double)bits_per_mb_at_this_q); |
+ |
+ // Mode and motion overhead |
+ // As Q rises in real encode loop rd code will force overhead down |
+ // We make a crude adjustment for this here as *.98 per Q step. |
+ // PGW TODO.. This code is broken for the extended Q range |
+ // for now overhead set to 0. |
+ overhead_bits_per_mb = (int)((double)overhead_bits_per_mb * 0.98); |
+ |
+ if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) |
+ break; |
+ } |
+ |
+ // Clip value to range "best allowed to (worst allowed - 1)" |
+ Q = select_cq_level(Q); |
+ if (Q >= cpi->worst_quality) |
+ Q = cpi->worst_quality - 1; |
+ if (Q < cpi->best_quality) |
+ Q = cpi->best_quality; |
+ |
+ return Q; |
+} |
+ |
+ |
+extern void vp9_new_frame_rate(VP9_COMP *cpi, double framerate); |
+ |
+void vp9_init_second_pass(VP9_COMP *cpi) { |
+ FIRSTPASS_STATS this_frame; |
+ FIRSTPASS_STATS *start_pos; |
+ |
+ double lower_bounds_min_rate = FRAME_OVERHEAD_BITS * cpi->oxcf.frame_rate; |
+ double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth |
+ * cpi->oxcf.two_pass_vbrmin_section / 100); |
+ |
+ if (two_pass_min_rate < lower_bounds_min_rate) |
+ two_pass_min_rate = lower_bounds_min_rate; |
+ |
+ zero_stats(cpi->twopass.total_stats); |
+ zero_stats(cpi->twopass.total_left_stats); |
+ |
+ if (!cpi->twopass.stats_in_end) |
+ return; |
+ |
+ *cpi->twopass.total_stats = *cpi->twopass.stats_in_end; |
+ *cpi->twopass.total_left_stats = *cpi->twopass.total_stats; |
+ |
+ // each frame can have a different duration, as the frame rate in the source |
+ // isn't guaranteed to be constant. The frame rate prior to the first frame |
+ // encoded in the second pass is a guess. However the sum duration is not. |
+ // Its calculated based on the actual durations of all frames from the first |
+ // pass. |
+ vp9_new_frame_rate(cpi, |
+ 10000000.0 * cpi->twopass.total_stats->count / |
+ cpi->twopass.total_stats->duration); |
+ |
+ cpi->output_frame_rate = cpi->oxcf.frame_rate; |
+ cpi->twopass.bits_left = (int64_t)(cpi->twopass.total_stats->duration * |
+ cpi->oxcf.target_bandwidth / 10000000.0); |
+ cpi->twopass.bits_left -= (int64_t)(cpi->twopass.total_stats->duration * |
+ two_pass_min_rate / 10000000.0); |
+ |
+ // Calculate a minimum intra value to be used in determining the IIratio |
+ // scores used in the second pass. We have this minimum to make sure |
+ // that clips that are static but "low complexity" in the intra domain |
+ // are still boosted appropriately for KF/GF/ARF |
+ cpi->twopass.kf_intra_err_min = KF_MB_INTRA_MIN * cpi->common.MBs; |
+ cpi->twopass.gf_intra_err_min = GF_MB_INTRA_MIN * cpi->common.MBs; |
+ |
+ // This variable monitors how far behind the second ref update is lagging |
+ cpi->twopass.sr_update_lag = 1; |
+ |
+ // Scan the first pass file and calculate an average Intra / Inter error score ratio for the sequence |
+ { |
+ double sum_iiratio = 0.0; |
+ double IIRatio; |
+ |
+ start_pos = cpi->twopass.stats_in; // Note starting "file" position |
+ |
+ while (input_stats(cpi, &this_frame) != EOF) { |
+ IIRatio = this_frame.intra_error / DOUBLE_DIVIDE_CHECK(this_frame.coded_error); |
+ IIRatio = (IIRatio < 1.0) ? 1.0 : (IIRatio > 20.0) ? 20.0 : IIRatio; |
+ sum_iiratio += IIRatio; |
+ } |
+ |
+ cpi->twopass.avg_iiratio = sum_iiratio / DOUBLE_DIVIDE_CHECK((double)cpi->twopass.total_stats->count); |
+ |
+ // Reset file position |
+ reset_fpf_position(cpi, start_pos); |
+ } |
+ |
+ // Scan the first pass file and calculate a modified total error based upon the bias/power function |
+ // used to allocate bits |
+ { |
+ start_pos = cpi->twopass.stats_in; // Note starting "file" position |
+ |
+ cpi->twopass.modified_error_total = 0.0; |
+ cpi->twopass.modified_error_used = 0.0; |
+ |
+ while (input_stats(cpi, &this_frame) != EOF) { |
+ cpi->twopass.modified_error_total += calculate_modified_err(cpi, &this_frame); |
+ } |
+ cpi->twopass.modified_error_left = cpi->twopass.modified_error_total; |
+ |
+ reset_fpf_position(cpi, start_pos); // Reset file position |
+ |
+ } |
+} |
+ |
+void vp9_end_second_pass(VP9_COMP *cpi) { |
+} |
+ |
+// This function gives and estimate of how badly we believe |
+// the prediction quality is decaying from frame to frame. |
+static double get_prediction_decay_rate(VP9_COMP *cpi, |
+ FIRSTPASS_STATS *next_frame) { |
+ double prediction_decay_rate; |
+ double second_ref_decay; |
+ double mb_sr_err_diff; |
+ |
+ // Initial basis is the % mbs inter coded |
+ prediction_decay_rate = next_frame->pcnt_inter; |
+ |
+ // Look at the observed drop in prediction quality between the last frame |
+ // and the GF buffer (which contains an older frame). |
+ mb_sr_err_diff = |
+ (next_frame->sr_coded_error - next_frame->coded_error) / |
+ (cpi->common.MBs); |
+ second_ref_decay = 1.0 - (mb_sr_err_diff / 512.0); |
+ second_ref_decay = pow(second_ref_decay, 0.5); |
+ if (second_ref_decay < 0.85) |
+ second_ref_decay = 0.85; |
+ else if (second_ref_decay > 1.0) |
+ second_ref_decay = 1.0; |
+ |
+ if (second_ref_decay < prediction_decay_rate) |
+ prediction_decay_rate = second_ref_decay; |
+ |
+ return prediction_decay_rate; |
+} |
+ |
+// Function to test for a condition where a complex transition is followed |
+// by a static section. For example in slide shows where there is a fade |
+// between slides. This is to help with more optimal kf and gf positioning. |
+static int detect_transition_to_still( |
+ VP9_COMP *cpi, |
+ int frame_interval, |
+ int still_interval, |
+ double loop_decay_rate, |
+ double last_decay_rate) { |
+ BOOL trans_to_still = FALSE; |
+ |
+ // Break clause to detect very still sections after motion |
+ // For example a static image after a fade or other transition |
+ // instead of a clean scene cut. |
+ if ((frame_interval > MIN_GF_INTERVAL) && |
+ (loop_decay_rate >= 0.999) && |
+ (last_decay_rate < 0.9)) { |
+ int j; |
+ FIRSTPASS_STATS *position = cpi->twopass.stats_in; |
+ FIRSTPASS_STATS tmp_next_frame; |
+ double zz_inter; |
+ |
+ // Look ahead a few frames to see if static condition |
+ // persists... |
+ for (j = 0; j < still_interval; j++) { |
+ if (EOF == input_stats(cpi, &tmp_next_frame)) |
+ break; |
+ |
+ zz_inter = |
+ (tmp_next_frame.pcnt_inter - tmp_next_frame.pcnt_motion); |
+ if (zz_inter < 0.999) |
+ break; |
+ } |
+ // Reset file position |
+ reset_fpf_position(cpi, position); |
+ |
+ // Only if it does do we signal a transition to still |
+ if (j == still_interval) |
+ trans_to_still = TRUE; |
+ } |
+ |
+ return trans_to_still; |
+} |
+ |
+// This function detects a flash through the high relative pcnt_second_ref |
+// score in the frame following a flash frame. The offset passed in should |
+// reflect this |
+static BOOL detect_flash(VP9_COMP *cpi, int offset) { |
+ FIRSTPASS_STATS next_frame; |
+ |
+ BOOL flash_detected = FALSE; |
+ |
+ // Read the frame data. |
+ // The return is FALSE (no flash detected) if not a valid frame |
+ if (read_frame_stats(cpi, &next_frame, offset) != EOF) { |
+ // What we are looking for here is a situation where there is a |
+ // brief break in prediction (such as a flash) but subsequent frames |
+ // are reasonably well predicted by an earlier (pre flash) frame. |
+ // The recovery after a flash is indicated by a high pcnt_second_ref |
+ // comapred to pcnt_inter. |
+ if ((next_frame.pcnt_second_ref > next_frame.pcnt_inter) && |
+ (next_frame.pcnt_second_ref >= 0.5)) { |
+ flash_detected = TRUE; |
+ } |
+ } |
+ |
+ return flash_detected; |
+} |
+ |
+// Update the motion related elements to the GF arf boost calculation |
+static void accumulate_frame_motion_stats( |
+ VP9_COMP *cpi, |
+ FIRSTPASS_STATS *this_frame, |
+ double *this_frame_mv_in_out, |
+ double *mv_in_out_accumulator, |
+ double *abs_mv_in_out_accumulator, |
+ double *mv_ratio_accumulator) { |
+ // double this_frame_mv_in_out; |
+ double this_frame_mvr_ratio; |
+ double this_frame_mvc_ratio; |
+ double motion_pct; |
+ |
+ // Accumulate motion stats. |
+ motion_pct = this_frame->pcnt_motion; |
+ |
+ // Accumulate Motion In/Out of frame stats |
+ *this_frame_mv_in_out = this_frame->mv_in_out_count * motion_pct; |
+ *mv_in_out_accumulator += this_frame->mv_in_out_count * motion_pct; |
+ *abs_mv_in_out_accumulator += |
+ fabs(this_frame->mv_in_out_count * motion_pct); |
+ |
+ // Accumulate a measure of how uniform (or conversely how random) |
+ // the motion field is. (A ratio of absmv / mv) |
+ if (motion_pct > 0.05) { |
+ this_frame_mvr_ratio = fabs(this_frame->mvr_abs) / |
+ DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVr)); |
+ |
+ this_frame_mvc_ratio = fabs(this_frame->mvc_abs) / |
+ DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVc)); |
+ |
+ *mv_ratio_accumulator += |
+ (this_frame_mvr_ratio < this_frame->mvr_abs) |
+ ? (this_frame_mvr_ratio * motion_pct) |
+ : this_frame->mvr_abs * motion_pct; |
+ |
+ *mv_ratio_accumulator += |
+ (this_frame_mvc_ratio < this_frame->mvc_abs) |
+ ? (this_frame_mvc_ratio * motion_pct) |
+ : this_frame->mvc_abs * motion_pct; |
+ |
+ } |
+} |
+ |
+// Calculate a baseline boost number for the current frame. |
+static double calc_frame_boost( |
+ VP9_COMP *cpi, |
+ FIRSTPASS_STATS *this_frame, |
+ double this_frame_mv_in_out) { |
+ double frame_boost; |
+ |
+ // Underlying boost factor is based on inter intra error ratio |
+ if (this_frame->intra_error > cpi->twopass.gf_intra_err_min) |
+ frame_boost = (IIFACTOR * this_frame->intra_error / |
+ DOUBLE_DIVIDE_CHECK(this_frame->coded_error)); |
+ else |
+ frame_boost = (IIFACTOR * cpi->twopass.gf_intra_err_min / |
+ DOUBLE_DIVIDE_CHECK(this_frame->coded_error)); |
+ |
+ // Increase boost for frames where new data coming into frame |
+ // (eg zoom out). Slightly reduce boost if there is a net balance |
+ // of motion out of the frame (zoom in). |
+ // The range for this_frame_mv_in_out is -1.0 to +1.0 |
+ if (this_frame_mv_in_out > 0.0) |
+ frame_boost += frame_boost * (this_frame_mv_in_out * 2.0); |
+ // In extreme case boost is halved |
+ else |
+ frame_boost += frame_boost * (this_frame_mv_in_out / 2.0); |
+ |
+ // Clip to maximum |
+ if (frame_boost > GF_RMAX) |
+ frame_boost = GF_RMAX; |
+ |
+ return frame_boost; |
+} |
+ |
+static int calc_arf_boost( |
+ VP9_COMP *cpi, |
+ int offset, |
+ int f_frames, |
+ int b_frames, |
+ int *f_boost, |
+ int *b_boost) { |
+ FIRSTPASS_STATS this_frame; |
+ |
+ int i; |
+ double boost_score = 0.0; |
+ double mv_ratio_accumulator = 0.0; |
+ double decay_accumulator = 1.0; |
+ double this_frame_mv_in_out = 0.0; |
+ double mv_in_out_accumulator = 0.0; |
+ double abs_mv_in_out_accumulator = 0.0; |
+ int arf_boost; |
+ BOOL flash_detected = FALSE; |
+ |
+ // Search forward from the proposed arf/next gf position |
+ for (i = 0; i < f_frames; i++) { |
+ if (read_frame_stats(cpi, &this_frame, (i + offset)) == EOF) |
+ break; |
+ |
+ // Update the motion related elements to the boost calculation |
+ accumulate_frame_motion_stats(cpi, &this_frame, |
+ &this_frame_mv_in_out, &mv_in_out_accumulator, |
+ &abs_mv_in_out_accumulator, &mv_ratio_accumulator); |
+ |
+ // We want to discount the the flash frame itself and the recovery |
+ // frame that follows as both will have poor scores. |
+ flash_detected = detect_flash(cpi, (i + offset)) || |
+ detect_flash(cpi, (i + offset + 1)); |
+ |
+ // Cumulative effect of prediction quality decay |
+ if (!flash_detected) { |
+ decay_accumulator = |
+ decay_accumulator * |
+ get_prediction_decay_rate(cpi, &this_frame); |
+ decay_accumulator = |
+ decay_accumulator < 0.1 ? 0.1 : decay_accumulator; |
+ } |
+ |
+ boost_score += (decay_accumulator * |
+ calc_frame_boost(cpi, &this_frame, this_frame_mv_in_out)); |
+ } |
+ |
+ *f_boost = (int)boost_score; |
+ |
+ // Reset for backward looking loop |
+ boost_score = 0.0; |
+ mv_ratio_accumulator = 0.0; |
+ decay_accumulator = 1.0; |
+ this_frame_mv_in_out = 0.0; |
+ mv_in_out_accumulator = 0.0; |
+ abs_mv_in_out_accumulator = 0.0; |
+ |
+ // Search backward towards last gf position |
+ for (i = -1; i >= -b_frames; i--) { |
+ if (read_frame_stats(cpi, &this_frame, (i + offset)) == EOF) |
+ break; |
+ |
+ // Update the motion related elements to the boost calculation |
+ accumulate_frame_motion_stats(cpi, &this_frame, |
+ &this_frame_mv_in_out, &mv_in_out_accumulator, |
+ &abs_mv_in_out_accumulator, &mv_ratio_accumulator); |
+ |
+ // We want to discount the the flash frame itself and the recovery |
+ // frame that follows as both will have poor scores. |
+ flash_detected = detect_flash(cpi, (i + offset)) || |
+ detect_flash(cpi, (i + offset + 1)); |
+ |
+ // Cumulative effect of prediction quality decay |
+ if (!flash_detected) { |
+ decay_accumulator = |
+ decay_accumulator * |
+ get_prediction_decay_rate(cpi, &this_frame); |
+ decay_accumulator = |
+ decay_accumulator < 0.1 ? 0.1 : decay_accumulator; |
+ } |
+ |
+ boost_score += (decay_accumulator * |
+ calc_frame_boost(cpi, &this_frame, this_frame_mv_in_out)); |
+ |
+ } |
+ *b_boost = (int)boost_score; |
+ |
+ arf_boost = (*f_boost + *b_boost); |
+ if (arf_boost < ((b_frames + f_frames) * 20)) |
+ arf_boost = ((b_frames + f_frames) * 20); |
+ |
+ return arf_boost; |
+} |
+ |
+static void configure_arnr_filter(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) { |
+ int half_gf_int; |
+ int frames_after_arf; |
+ int frames_bwd = cpi->oxcf.arnr_max_frames - 1; |
+ int frames_fwd = cpi->oxcf.arnr_max_frames - 1; |
+ |
+ // Define the arnr filter width for this group of frames: |
+ // We only filter frames that lie within a distance of half |
+ // the GF interval from the ARF frame. We also have to trap |
+ // cases where the filter extends beyond the end of clip. |
+ // Note: this_frame->frame has been updated in the loop |
+ // so it now points at the ARF frame. |
+ half_gf_int = cpi->baseline_gf_interval >> 1; |
+ frames_after_arf = (int)(cpi->twopass.total_stats->count - |
+ this_frame->frame - 1); |
+ |
+ switch (cpi->oxcf.arnr_type) { |
+ case 1: // Backward filter |
+ frames_fwd = 0; |
+ if (frames_bwd > half_gf_int) |
+ frames_bwd = half_gf_int; |
+ break; |
+ |
+ case 2: // Forward filter |
+ if (frames_fwd > half_gf_int) |
+ frames_fwd = half_gf_int; |
+ if (frames_fwd > frames_after_arf) |
+ frames_fwd = frames_after_arf; |
+ frames_bwd = 0; |
+ break; |
+ |
+ case 3: // Centered filter |
+ default: |
+ frames_fwd >>= 1; |
+ if (frames_fwd > frames_after_arf) |
+ frames_fwd = frames_after_arf; |
+ if (frames_fwd > half_gf_int) |
+ frames_fwd = half_gf_int; |
+ |
+ frames_bwd = frames_fwd; |
+ |
+ // For even length filter there is one more frame backward |
+ // than forward: e.g. len=6 ==> bbbAff, len=7 ==> bbbAfff. |
+ if (frames_bwd < half_gf_int) |
+ frames_bwd += (cpi->oxcf.arnr_max_frames + 1) & 0x1; |
+ break; |
+ } |
+ |
+ cpi->active_arnr_frames = frames_bwd + 1 + frames_fwd; |
+} |
+ |
+// Analyse and define a gf/arf group . |
+static void define_gf_group(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) { |
+ FIRSTPASS_STATS next_frame; |
+ FIRSTPASS_STATS *start_pos; |
+ int i; |
+ double boost_score = 0.0; |
+ double old_boost_score = 0.0; |
+ double gf_group_err = 0.0; |
+ double gf_first_frame_err = 0.0; |
+ double mod_frame_err = 0.0; |
+ |
+ double mv_ratio_accumulator = 0.0; |
+ double decay_accumulator = 1.0; |
+ double zero_motion_accumulator = 1.0; |
+ |
+ double loop_decay_rate = 1.00; // Starting decay rate |
+ double last_loop_decay_rate = 1.00; |
+ |
+ double this_frame_mv_in_out = 0.0; |
+ double mv_in_out_accumulator = 0.0; |
+ double abs_mv_in_out_accumulator = 0.0; |
+ |
+ int max_bits = frame_max_bits(cpi); // Max for a single frame |
+ |
+ unsigned int allow_alt_ref = |
+ cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames; |
+ |
+ int f_boost = 0; |
+ int b_boost = 0; |
+ BOOL flash_detected; |
+ |
+ cpi->twopass.gf_group_bits = 0; |
+ |
+ vp9_clear_system_state(); // __asm emms; |
+ |
+ start_pos = cpi->twopass.stats_in; |
+ |
+ vpx_memset(&next_frame, 0, sizeof(next_frame)); // assure clean |
+ |
+ // Load stats for the current frame. |
+ mod_frame_err = calculate_modified_err(cpi, this_frame); |
+ |
+ // Note the error of the frame at the start of the group (this will be |
+ // the GF frame error if we code a normal gf |
+ gf_first_frame_err = mod_frame_err; |
+ |
+ // Special treatment if the current frame is a key frame (which is also |
+ // a gf). If it is then its error score (and hence bit allocation) need |
+ // to be subtracted out from the calculation for the GF group |
+ if (cpi->common.frame_type == KEY_FRAME) |
+ gf_group_err -= gf_first_frame_err; |
+ |
+ // Scan forward to try and work out how many frames the next gf group |
+ // should contain and what level of boost is appropriate for the GF |
+ // or ARF that will be coded with the group |
+ i = 0; |
+ |
+ while (((i < cpi->twopass.static_scene_max_gf_interval) || |
+ ((cpi->twopass.frames_to_key - i) < MIN_GF_INTERVAL)) && |
+ (i < cpi->twopass.frames_to_key)) { |
+ i++; // Increment the loop counter |
+ |
+ // Accumulate error score of frames in this gf group |
+ mod_frame_err = calculate_modified_err(cpi, this_frame); |
+ gf_group_err += mod_frame_err; |
+ |
+ if (EOF == input_stats(cpi, &next_frame)) |
+ break; |
+ |
+ // Test for the case where there is a brief flash but the prediction |
+ // quality back to an earlier frame is then restored. |
+ flash_detected = detect_flash(cpi, 0); |
+ |
+ // Update the motion related elements to the boost calculation |
+ accumulate_frame_motion_stats(cpi, &next_frame, |
+ &this_frame_mv_in_out, &mv_in_out_accumulator, |
+ &abs_mv_in_out_accumulator, &mv_ratio_accumulator); |
+ |
+ // Cumulative effect of prediction quality decay |
+ if (!flash_detected) { |
+ last_loop_decay_rate = loop_decay_rate; |
+ loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame); |
+ decay_accumulator = decay_accumulator * loop_decay_rate; |
+ |
+ // Monitor for static sections. |
+ if ((next_frame.pcnt_inter - next_frame.pcnt_motion) < |
+ zero_motion_accumulator) { |
+ zero_motion_accumulator = |
+ (next_frame.pcnt_inter - next_frame.pcnt_motion); |
+ } |
+ |
+ // Break clause to detect very still sections after motion |
+ // (for example a staic image after a fade or other transition). |
+ if (detect_transition_to_still(cpi, i, 5, loop_decay_rate, |
+ last_loop_decay_rate)) { |
+ allow_alt_ref = FALSE; |
+ break; |
+ } |
+ } |
+ |
+ // Calculate a boost number for this frame |
+ boost_score += |
+ (decay_accumulator * |
+ calc_frame_boost(cpi, &next_frame, this_frame_mv_in_out)); |
+ |
+ // Break out conditions. |
+ if ( |
+ // Break at cpi->max_gf_interval unless almost totally static |
+ (i >= cpi->max_gf_interval && (zero_motion_accumulator < 0.995)) || |
+ ( |
+ // Dont break out with a very short interval |
+ (i > MIN_GF_INTERVAL) && |
+ // Dont break out very close to a key frame |
+ ((cpi->twopass.frames_to_key - i) >= MIN_GF_INTERVAL) && |
+ ((boost_score > 125.0) || (next_frame.pcnt_inter < 0.75)) && |
+ (!flash_detected) && |
+ ((mv_ratio_accumulator > 100.0) || |
+ (abs_mv_in_out_accumulator > 3.0) || |
+ (mv_in_out_accumulator < -2.0) || |
+ ((boost_score - old_boost_score) < 12.5)) |
+ )) { |
+ boost_score = old_boost_score; |
+ break; |
+ } |
+ |
+ vpx_memcpy(this_frame, &next_frame, sizeof(*this_frame)); |
+ |
+ old_boost_score = boost_score; |
+ } |
+ |
+ // Dont allow a gf too near the next kf |
+ if ((cpi->twopass.frames_to_key - i) < MIN_GF_INTERVAL) { |
+ while (i < cpi->twopass.frames_to_key) { |
+ i++; |
+ |
+ if (EOF == input_stats(cpi, this_frame)) |
+ break; |
+ |
+ if (i < cpi->twopass.frames_to_key) { |
+ mod_frame_err = calculate_modified_err(cpi, this_frame); |
+ gf_group_err += mod_frame_err; |
+ } |
+ } |
+ } |
+ |
+ // Set the interval till the next gf or arf. |
+ cpi->baseline_gf_interval = i; |
+ |
+ // Should we use the alternate refernce frame |
+ if (allow_alt_ref && |
+ (i < cpi->oxcf.lag_in_frames) && |
+ (i >= MIN_GF_INTERVAL) && |
+ // dont use ARF very near next kf |
+ (i <= (cpi->twopass.frames_to_key - MIN_GF_INTERVAL)) && |
+ ((next_frame.pcnt_inter > 0.75) || |
+ (next_frame.pcnt_second_ref > 0.5)) && |
+ ((mv_in_out_accumulator / (double)i > -0.2) || |
+ (mv_in_out_accumulator > -2.0)) && |
+ (boost_score > 100)) { |
+ // Alterrnative boost calculation for alt ref |
+ cpi->gfu_boost = calc_arf_boost(cpi, 0, (i - 1), (i - 1), &f_boost, &b_boost); |
+ cpi->source_alt_ref_pending = TRUE; |
+ |
+ configure_arnr_filter(cpi, this_frame); |
+ } else { |
+ cpi->gfu_boost = (int)boost_score; |
+ cpi->source_alt_ref_pending = FALSE; |
+ } |
+ |
+ // Now decide how many bits should be allocated to the GF group as a |
+ // proportion of those remaining in the kf group. |
+ // The final key frame group in the clip is treated as a special case |
+ // where cpi->twopass.kf_group_bits is tied to cpi->twopass.bits_left. |
+ // This is also important for short clips where there may only be one |
+ // key frame. |
+ if (cpi->twopass.frames_to_key >= (int)(cpi->twopass.total_stats->count - |
+ cpi->common.current_video_frame)) { |
+ cpi->twopass.kf_group_bits = |
+ (cpi->twopass.bits_left > 0) ? cpi->twopass.bits_left : 0; |
+ } |
+ |
+ // Calculate the bits to be allocated to the group as a whole |
+ if ((cpi->twopass.kf_group_bits > 0) && |
+ (cpi->twopass.kf_group_error_left > 0)) { |
+ cpi->twopass.gf_group_bits = |
+ (int)((double)cpi->twopass.kf_group_bits * |
+ (gf_group_err / cpi->twopass.kf_group_error_left)); |
+ } else |
+ cpi->twopass.gf_group_bits = 0; |
+ |
+ cpi->twopass.gf_group_bits = |
+ (cpi->twopass.gf_group_bits < 0) |
+ ? 0 |
+ : (cpi->twopass.gf_group_bits > cpi->twopass.kf_group_bits) |
+ ? cpi->twopass.kf_group_bits : cpi->twopass.gf_group_bits; |
+ |
+ // Clip cpi->twopass.gf_group_bits based on user supplied data rate |
+ // variability limit (cpi->oxcf.two_pass_vbrmax_section) |
+ if (cpi->twopass.gf_group_bits > max_bits * cpi->baseline_gf_interval) |
+ cpi->twopass.gf_group_bits = max_bits * cpi->baseline_gf_interval; |
+ |
+ // Reset the file position |
+ reset_fpf_position(cpi, start_pos); |
+ |
+ // Update the record of error used so far (only done once per gf group) |
+ cpi->twopass.modified_error_used += gf_group_err; |
+ |
+ // Assign bits to the arf or gf. |
+ for (i = 0; i <= (cpi->source_alt_ref_pending && cpi->common.frame_type != KEY_FRAME); i++) { |
+ int boost; |
+ int allocation_chunks; |
+ int Q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q; |
+ int gf_bits; |
+ |
+ boost = (cpi->gfu_boost * vp9_gfboost_qadjust(Q)) / 100; |
+ |
+ // Set max and minimum boost and hence minimum allocation |
+ if (boost > ((cpi->baseline_gf_interval + 1) * 200)) |
+ boost = ((cpi->baseline_gf_interval + 1) * 200); |
+ else if (boost < 125) |
+ boost = 125; |
+ |
+ if (cpi->source_alt_ref_pending && i == 0) |
+ allocation_chunks = |
+ ((cpi->baseline_gf_interval + 1) * 100) + boost; |
+ else |
+ allocation_chunks = |
+ (cpi->baseline_gf_interval * 100) + (boost - 100); |
+ |
+ // Prevent overflow |
+ if (boost > 1028) { |
+ int divisor = boost >> 10; |
+ boost /= divisor; |
+ allocation_chunks /= divisor; |
+ } |
+ |
+ // Calculate the number of bits to be spent on the gf or arf based on |
+ // the boost number |
+ gf_bits = (int)((double)boost * |
+ (cpi->twopass.gf_group_bits / |
+ (double)allocation_chunks)); |
+ |
+ // If the frame that is to be boosted is simpler than the average for |
+ // the gf/arf group then use an alternative calculation |
+ // based on the error score of the frame itself |
+ if (mod_frame_err < gf_group_err / (double)cpi->baseline_gf_interval) { |
+ double alt_gf_grp_bits; |
+ int alt_gf_bits; |
+ |
+ alt_gf_grp_bits = |
+ (double)cpi->twopass.kf_group_bits * |
+ (mod_frame_err * (double)cpi->baseline_gf_interval) / |
+ DOUBLE_DIVIDE_CHECK(cpi->twopass.kf_group_error_left); |
+ |
+ alt_gf_bits = (int)((double)boost * (alt_gf_grp_bits / |
+ (double)allocation_chunks)); |
+ |
+ if (gf_bits > alt_gf_bits) { |
+ gf_bits = alt_gf_bits; |
+ } |
+ } |
+ // Else if it is harder than other frames in the group make sure it at |
+ // least receives an allocation in keeping with its relative error |
+ // score, otherwise it may be worse off than an "un-boosted" frame |
+ else { |
+ int alt_gf_bits = |
+ (int)((double)cpi->twopass.kf_group_bits * |
+ mod_frame_err / |
+ DOUBLE_DIVIDE_CHECK(cpi->twopass.kf_group_error_left)); |
+ |
+ if (alt_gf_bits > gf_bits) { |
+ gf_bits = alt_gf_bits; |
+ } |
+ } |
+ |
+ // Dont allow a negative value for gf_bits |
+ if (gf_bits < 0) |
+ gf_bits = 0; |
+ |
+ gf_bits += cpi->min_frame_bandwidth; // Add in minimum for a frame |
+ |
+ if (i == 0) { |
+ cpi->twopass.gf_bits = gf_bits; |
+ } |
+ if (i == 1 || (!cpi->source_alt_ref_pending && (cpi->common.frame_type != KEY_FRAME))) { |
+ cpi->per_frame_bandwidth = gf_bits; // Per frame bit target for this frame |
+ } |
+ } |
+ |
+ { |
+ // Adjust KF group bits and error remainin |
+ cpi->twopass.kf_group_error_left -= (int64_t)gf_group_err; |
+ cpi->twopass.kf_group_bits -= cpi->twopass.gf_group_bits; |
+ |
+ if (cpi->twopass.kf_group_bits < 0) |
+ cpi->twopass.kf_group_bits = 0; |
+ |
+ // Note the error score left in the remaining frames of the group. |
+ // For normal GFs we want to remove the error score for the first frame |
+ // of the group (except in Key frame case where this has already |
+ // happened) |
+ if (!cpi->source_alt_ref_pending && cpi->common.frame_type != KEY_FRAME) |
+ cpi->twopass.gf_group_error_left = (int64_t)(gf_group_err |
+ - gf_first_frame_err); |
+ else |
+ cpi->twopass.gf_group_error_left = (int64_t)gf_group_err; |
+ |
+ cpi->twopass.gf_group_bits -= cpi->twopass.gf_bits - cpi->min_frame_bandwidth; |
+ |
+ if (cpi->twopass.gf_group_bits < 0) |
+ cpi->twopass.gf_group_bits = 0; |
+ |
+ // This condition could fail if there are two kfs very close together |
+ // despite (MIN_GF_INTERVAL) and would cause a devide by 0 in the |
+ // calculation of cpi->twopass.alt_extra_bits. |
+ if (cpi->baseline_gf_interval >= 3) { |
+ int boost = (cpi->source_alt_ref_pending) |
+ ? b_boost : cpi->gfu_boost; |
+ |
+ if (boost >= 150) { |
+ int pct_extra; |
+ |
+ pct_extra = (boost - 100) / 50; |
+ pct_extra = (pct_extra > 20) ? 20 : pct_extra; |
+ |
+ cpi->twopass.alt_extra_bits = (int) |
+ ((cpi->twopass.gf_group_bits * pct_extra) / 100); |
+ cpi->twopass.gf_group_bits -= cpi->twopass.alt_extra_bits; |
+ cpi->twopass.alt_extra_bits /= |
+ ((cpi->baseline_gf_interval - 1) >> 1); |
+ } else |
+ cpi->twopass.alt_extra_bits = 0; |
+ } else |
+ cpi->twopass.alt_extra_bits = 0; |
+ } |
+ |
+ if (cpi->common.frame_type != KEY_FRAME) { |
+ FIRSTPASS_STATS sectionstats; |
+ |
+ zero_stats(§ionstats); |
+ reset_fpf_position(cpi, start_pos); |
+ |
+ for (i = 0; i < cpi->baseline_gf_interval; i++) { |
+ input_stats(cpi, &next_frame); |
+ accumulate_stats(§ionstats, &next_frame); |
+ } |
+ |
+ avg_stats(§ionstats); |
+ |
+ cpi->twopass.section_intra_rating = (int) |
+ (sectionstats.intra_error / |
+ DOUBLE_DIVIDE_CHECK(sectionstats.coded_error)); |
+ |
+ reset_fpf_position(cpi, start_pos); |
+ } |
+} |
+ |
+// Allocate bits to a normal frame that is neither a gf an arf or a key frame. |
+static void assign_std_frame_bits(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) { |
+ int target_frame_size; // gf_group_error_left |
+ |
+ double modified_err; |
+ double err_fraction; // What portion of the remaining GF group error is used by this frame |
+ |
+ int max_bits = frame_max_bits(cpi); // Max for a single frame |
+ |
+ // Calculate modified prediction error used in bit allocation |
+ modified_err = calculate_modified_err(cpi, this_frame); |
+ |
+ if (cpi->twopass.gf_group_error_left > 0) |
+ err_fraction = modified_err / cpi->twopass.gf_group_error_left; // What portion of the remaining GF group error is used by this frame |
+ else |
+ err_fraction = 0.0; |
+ |
+ target_frame_size = (int)((double)cpi->twopass.gf_group_bits * err_fraction); // How many of those bits available for allocation should we give it? |
+ |
+ // Clip to target size to 0 - max_bits (or cpi->twopass.gf_group_bits) at the top end. |
+ if (target_frame_size < 0) |
+ target_frame_size = 0; |
+ else { |
+ if (target_frame_size > max_bits) |
+ target_frame_size = max_bits; |
+ |
+ if (target_frame_size > cpi->twopass.gf_group_bits) |
+ target_frame_size = (int)cpi->twopass.gf_group_bits; |
+ } |
+ |
+ // Adjust error remaining |
+ cpi->twopass.gf_group_error_left -= (int64_t)modified_err; |
+ cpi->twopass.gf_group_bits -= target_frame_size; // Adjust bits remaining |
+ |
+ if (cpi->twopass.gf_group_bits < 0) |
+ cpi->twopass.gf_group_bits = 0; |
+ |
+ target_frame_size += cpi->min_frame_bandwidth; // Add in the minimum number of bits that is set aside for every frame. |
+ |
+ |
+ cpi->per_frame_bandwidth = target_frame_size; // Per frame bit target for this frame |
+} |
+ |
+// Make a damped adjustment to the active max q. |
+static int adjust_active_maxq(int old_maxqi, int new_maxqi) { |
+ int i; |
+ int ret_val = new_maxqi; |
+ double old_q; |
+ double new_q; |
+ double target_q; |
+ |
+ old_q = vp9_convert_qindex_to_q(old_maxqi); |
+ new_q = vp9_convert_qindex_to_q(new_maxqi); |
+ |
+ target_q = ((old_q * 7.0) + new_q) / 8.0; |
+ |
+ if (target_q > old_q) { |
+ for (i = old_maxqi; i <= new_maxqi; i++) { |
+ if (vp9_convert_qindex_to_q(i) >= target_q) { |
+ ret_val = i; |
+ break; |
+ } |
+ } |
+ } else { |
+ for (i = old_maxqi; i >= new_maxqi; i--) { |
+ if (vp9_convert_qindex_to_q(i) <= target_q) { |
+ ret_val = i; |
+ break; |
+ } |
+ } |
+ } |
+ |
+ return ret_val; |
+} |
+ |
+void vp9_second_pass(VP9_COMP *cpi) { |
+ int tmp_q; |
+ int frames_left = (int)(cpi->twopass.total_stats->count - cpi->common.current_video_frame); |
+ |
+ FIRSTPASS_STATS this_frame; |
+ FIRSTPASS_STATS this_frame_copy; |
+ |
+ double this_frame_error; |
+ double this_frame_intra_error; |
+ double this_frame_coded_error; |
+ |
+ FIRSTPASS_STATS *start_pos; |
+ |
+ int overhead_bits; |
+ |
+ if (!cpi->twopass.stats_in) { |
+ return; |
+ } |
+ |
+ vp9_clear_system_state(); |
+ |
+ vpx_memset(&this_frame, 0, sizeof(FIRSTPASS_STATS)); |
+ |
+ if (EOF == input_stats(cpi, &this_frame)) |
+ return; |
+ |
+ this_frame_error = this_frame.ssim_weighted_pred_err; |
+ this_frame_intra_error = this_frame.intra_error; |
+ this_frame_coded_error = this_frame.coded_error; |
+ |
+ start_pos = cpi->twopass.stats_in; |
+ |
+ // keyframe and section processing ! |
+ if (cpi->twopass.frames_to_key == 0) { |
+ // Define next KF group and assign bits to it |
+ vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); |
+ find_next_key_frame(cpi, &this_frame_copy); |
+ } |
+ |
+ // Is this a GF / ARF (Note that a KF is always also a GF) |
+ if (cpi->frames_till_gf_update_due == 0) { |
+ // Define next gf group and assign bits to it |
+ vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); |
+ define_gf_group(cpi, &this_frame_copy); |
+ |
+ // If we are going to code an altref frame at the end of the group and the current frame is not a key frame.... |
+ // If the previous group used an arf this frame has already benefited from that arf boost and it should not be given extra bits |
+ // If the previous group was NOT coded using arf we may want to apply some boost to this GF as well |
+ if (cpi->source_alt_ref_pending && (cpi->common.frame_type != KEY_FRAME)) { |
+ // Assign a standard frames worth of bits from those allocated to the GF group |
+ int bak = cpi->per_frame_bandwidth; |
+ vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); |
+ assign_std_frame_bits(cpi, &this_frame_copy); |
+ cpi->per_frame_bandwidth = bak; |
+ } |
+ } |
+ |
+ // Otherwise this is an ordinary frame |
+ else { |
+ // Assign bits from those allocated to the GF group |
+ vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); |
+ assign_std_frame_bits(cpi, &this_frame_copy); |
+ } |
+ |
+ // Keep a globally available copy of this and the next frame's iiratio. |
+ cpi->twopass.this_iiratio = (int)(this_frame_intra_error / |
+ DOUBLE_DIVIDE_CHECK(this_frame_coded_error)); |
+ { |
+ FIRSTPASS_STATS next_frame; |
+ if (lookup_next_frame_stats(cpi, &next_frame) != EOF) { |
+ cpi->twopass.next_iiratio = (int)(next_frame.intra_error / |
+ DOUBLE_DIVIDE_CHECK(next_frame.coded_error)); |
+ } |
+ } |
+ |
+ // Set nominal per second bandwidth for this frame |
+ cpi->target_bandwidth = (int)(cpi->per_frame_bandwidth |
+ * cpi->output_frame_rate); |
+ if (cpi->target_bandwidth < 0) |
+ cpi->target_bandwidth = 0; |
+ |
+ |
+ // Account for mv, mode and other overheads. |
+ overhead_bits = (int)estimate_modemvcost( |
+ cpi, cpi->twopass.total_left_stats); |
+ |
+ // Special case code for first frame. |
+ if (cpi->common.current_video_frame == 0) { |
+ cpi->twopass.est_max_qcorrection_factor = 1.0; |
+ |
+ // Set a cq_level in constrained quality mode. |
+ if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) { |
+ int est_cq; |
+ |
+ est_cq = |
+ estimate_cq(cpi, |
+ cpi->twopass.total_left_stats, |
+ (int)(cpi->twopass.bits_left / frames_left), |
+ overhead_bits); |
+ |
+ cpi->cq_target_quality = cpi->oxcf.cq_level; |
+ if (est_cq > cpi->cq_target_quality) |
+ cpi->cq_target_quality = est_cq; |
+ } |
+ |
+ // guess at maxq needed in 2nd pass |
+ cpi->twopass.maxq_max_limit = cpi->worst_quality; |
+ cpi->twopass.maxq_min_limit = cpi->best_quality; |
+ |
+ tmp_q = estimate_max_q( |
+ cpi, |
+ cpi->twopass.total_left_stats, |
+ (int)(cpi->twopass.bits_left / frames_left), |
+ overhead_bits); |
+ |
+ cpi->active_worst_quality = tmp_q; |
+ cpi->ni_av_qi = tmp_q; |
+ cpi->avg_q = vp9_convert_qindex_to_q(tmp_q); |
+ |
+ // Limit the maxq value returned subsequently. |
+ // This increases the risk of overspend or underspend if the initial |
+ // estimate for the clip is bad, but helps prevent excessive |
+ // variation in Q, especially near the end of a clip |
+ // where for example a small overspend may cause Q to crash |
+ adjust_maxq_qrange(cpi); |
+ } |
+ |
+ // The last few frames of a clip almost always have to few or too many |
+ // bits and for the sake of over exact rate control we dont want to make |
+ // radical adjustments to the allowed quantizer range just to use up a |
+ // few surplus bits or get beneath the target rate. |
+ else if ((cpi->common.current_video_frame < |
+ (((unsigned int)cpi->twopass.total_stats->count * 255) >> 8)) && |
+ ((cpi->common.current_video_frame + cpi->baseline_gf_interval) < |
+ (unsigned int)cpi->twopass.total_stats->count)) { |
+ if (frames_left < 1) |
+ frames_left = 1; |
+ |
+ tmp_q = estimate_max_q( |
+ cpi, |
+ cpi->twopass.total_left_stats, |
+ (int)(cpi->twopass.bits_left / frames_left), |
+ overhead_bits); |
+ |
+ // Make a damped adjustment to active max Q |
+ cpi->active_worst_quality = |
+ adjust_active_maxq(cpi->active_worst_quality, tmp_q); |
+ } |
+ |
+ cpi->twopass.frames_to_key--; |
+ |
+ // Update the total stats remaining sturcture |
+ subtract_stats(cpi->twopass.total_left_stats, &this_frame); |
+} |
+ |
+ |
+static BOOL test_candidate_kf(VP9_COMP *cpi, FIRSTPASS_STATS *last_frame, FIRSTPASS_STATS *this_frame, FIRSTPASS_STATS *next_frame) { |
+ BOOL is_viable_kf = FALSE; |
+ |
+ // Does the frame satisfy the primary criteria of a key frame |
+ // If so, then examine how well it predicts subsequent frames |
+ if ((this_frame->pcnt_second_ref < 0.10) && |
+ (next_frame->pcnt_second_ref < 0.10) && |
+ ((this_frame->pcnt_inter < 0.05) || |
+ ( |
+ ((this_frame->pcnt_inter - this_frame->pcnt_neutral) < .35) && |
+ ((this_frame->intra_error / DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) < 2.5) && |
+ ((fabs(last_frame->coded_error - this_frame->coded_error) / DOUBLE_DIVIDE_CHECK(this_frame->coded_error) > .40) || |
+ (fabs(last_frame->intra_error - this_frame->intra_error) / DOUBLE_DIVIDE_CHECK(this_frame->intra_error) > .40) || |
+ ((next_frame->intra_error / DOUBLE_DIVIDE_CHECK(next_frame->coded_error)) > 3.5) |
+ ) |
+ ) |
+ ) |
+ ) { |
+ int i; |
+ FIRSTPASS_STATS *start_pos; |
+ |
+ FIRSTPASS_STATS local_next_frame; |
+ |
+ double boost_score = 0.0; |
+ double old_boost_score = 0.0; |
+ double decay_accumulator = 1.0; |
+ double next_iiratio; |
+ |
+ vpx_memcpy(&local_next_frame, next_frame, sizeof(*next_frame)); |
+ |
+ // Note the starting file position so we can reset to it |
+ start_pos = cpi->twopass.stats_in; |
+ |
+ // Examine how well the key frame predicts subsequent frames |
+ for (i = 0; i < 16; i++) { |
+ next_iiratio = (IIKFACTOR1 * local_next_frame.intra_error / DOUBLE_DIVIDE_CHECK(local_next_frame.coded_error)); |
+ |
+ if (next_iiratio > RMAX) |
+ next_iiratio = RMAX; |
+ |
+ // Cumulative effect of decay in prediction quality |
+ if (local_next_frame.pcnt_inter > 0.85) |
+ decay_accumulator = decay_accumulator * local_next_frame.pcnt_inter; |
+ else |
+ decay_accumulator = decay_accumulator * ((0.85 + local_next_frame.pcnt_inter) / 2.0); |
+ |
+ // decay_accumulator = decay_accumulator * local_next_frame.pcnt_inter; |
+ |
+ // Keep a running total |
+ boost_score += (decay_accumulator * next_iiratio); |
+ |
+ // Test various breakout clauses |
+ if ((local_next_frame.pcnt_inter < 0.05) || |
+ (next_iiratio < 1.5) || |
+ (((local_next_frame.pcnt_inter - |
+ local_next_frame.pcnt_neutral) < 0.20) && |
+ (next_iiratio < 3.0)) || |
+ ((boost_score - old_boost_score) < 3.0) || |
+ (local_next_frame.intra_error < 200) |
+ ) { |
+ break; |
+ } |
+ |
+ old_boost_score = boost_score; |
+ |
+ // Get the next frame details |
+ if (EOF == input_stats(cpi, &local_next_frame)) |
+ break; |
+ } |
+ |
+ // If there is tolerable prediction for at least the next 3 frames then break out else discard this pottential key frame and move on |
+ if (boost_score > 30.0 && (i > 3)) |
+ is_viable_kf = TRUE; |
+ else { |
+ // Reset the file position |
+ reset_fpf_position(cpi, start_pos); |
+ |
+ is_viable_kf = FALSE; |
+ } |
+ } |
+ |
+ return is_viable_kf; |
+} |
+static void find_next_key_frame(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) { |
+ int i, j; |
+ FIRSTPASS_STATS last_frame; |
+ FIRSTPASS_STATS first_frame; |
+ FIRSTPASS_STATS next_frame; |
+ FIRSTPASS_STATS *start_position; |
+ |
+ double decay_accumulator = 1.0; |
+ double zero_motion_accumulator = 1.0; |
+ double boost_score = 0; |
+ double old_boost_score = 0.0; |
+ double loop_decay_rate; |
+ |
+ double kf_mod_err = 0.0; |
+ double kf_group_err = 0.0; |
+ double kf_group_intra_err = 0.0; |
+ double kf_group_coded_err = 0.0; |
+ double recent_loop_decay[8] = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0}; |
+ |
+ vpx_memset(&next_frame, 0, sizeof(next_frame)); // assure clean |
+ |
+ vp9_clear_system_state(); // __asm emms; |
+ start_position = cpi->twopass.stats_in; |
+ |
+ cpi->common.frame_type = KEY_FRAME; |
+ |
+ // is this a forced key frame by interval |
+ cpi->this_key_frame_forced = cpi->next_key_frame_forced; |
+ |
+ // Clear the alt ref active flag as this can never be active on a key frame |
+ cpi->source_alt_ref_active = FALSE; |
+ |
+ // Kf is always a gf so clear frames till next gf counter |
+ cpi->frames_till_gf_update_due = 0; |
+ |
+ cpi->twopass.frames_to_key = 1; |
+ |
+ // Take a copy of the initial frame details |
+ vpx_memcpy(&first_frame, this_frame, sizeof(*this_frame)); |
+ |
+ cpi->twopass.kf_group_bits = 0; // Total bits avaialable to kf group |
+ cpi->twopass.kf_group_error_left = 0; // Group modified error score. |
+ |
+ kf_mod_err = calculate_modified_err(cpi, this_frame); |
+ |
+ // find the next keyframe |
+ i = 0; |
+ while (cpi->twopass.stats_in < cpi->twopass.stats_in_end) { |
+ // Accumulate kf group error |
+ kf_group_err += calculate_modified_err(cpi, this_frame); |
+ |
+ // These figures keep intra and coded error counts for all frames including key frames in the group. |
+ // The effect of the key frame itself can be subtracted out using the first_frame data collected above |
+ kf_group_intra_err += this_frame->intra_error; |
+ kf_group_coded_err += this_frame->coded_error; |
+ |
+ // load a the next frame's stats |
+ vpx_memcpy(&last_frame, this_frame, sizeof(*this_frame)); |
+ input_stats(cpi, this_frame); |
+ |
+ // Provided that we are not at the end of the file... |
+ if (cpi->oxcf.auto_key |
+ && lookup_next_frame_stats(cpi, &next_frame) != EOF) { |
+ // Normal scene cut check |
+ if (test_candidate_kf(cpi, &last_frame, this_frame, &next_frame)) { |
+ break; |
+ } |
+ |
+ // How fast is prediction quality decaying |
+ loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame); |
+ |
+ // We want to know something about the recent past... rather than |
+ // as used elsewhere where we are concened with decay in prediction |
+ // quality since the last GF or KF. |
+ recent_loop_decay[i % 8] = loop_decay_rate; |
+ decay_accumulator = 1.0; |
+ for (j = 0; j < 8; j++) { |
+ decay_accumulator = decay_accumulator * recent_loop_decay[j]; |
+ } |
+ |
+ // Special check for transition or high motion followed by a |
+ // to a static scene. |
+ if (detect_transition_to_still(cpi, i, |
+ (cpi->key_frame_frequency - i), |
+ loop_decay_rate, |
+ decay_accumulator)) { |
+ break; |
+ } |
+ |
+ |
+ // Step on to the next frame |
+ cpi->twopass.frames_to_key++; |
+ |
+ // If we don't have a real key frame within the next two |
+ // forcekeyframeevery intervals then break out of the loop. |
+ if (cpi->twopass.frames_to_key >= 2 * (int)cpi->key_frame_frequency) |
+ break; |
+ } else |
+ cpi->twopass.frames_to_key++; |
+ |
+ i++; |
+ } |
+ |
+ // If there is a max kf interval set by the user we must obey it. |
+ // We already breakout of the loop above at 2x max. |
+ // This code centers the extra kf if the actual natural |
+ // interval is between 1x and 2x |
+ if (cpi->oxcf.auto_key |
+ && cpi->twopass.frames_to_key > (int)cpi->key_frame_frequency) { |
+ FIRSTPASS_STATS *current_pos = cpi->twopass.stats_in; |
+ FIRSTPASS_STATS tmp_frame; |
+ |
+ cpi->twopass.frames_to_key /= 2; |
+ |
+ // Copy first frame details |
+ vpx_memcpy(&tmp_frame, &first_frame, sizeof(first_frame)); |
+ |
+ // Reset to the start of the group |
+ reset_fpf_position(cpi, start_position); |
+ |
+ kf_group_err = 0; |
+ kf_group_intra_err = 0; |
+ kf_group_coded_err = 0; |
+ |
+ // Rescan to get the correct error data for the forced kf group |
+ for (i = 0; i < cpi->twopass.frames_to_key; i++) { |
+ // Accumulate kf group errors |
+ kf_group_err += calculate_modified_err(cpi, &tmp_frame); |
+ kf_group_intra_err += tmp_frame.intra_error; |
+ kf_group_coded_err += tmp_frame.coded_error; |
+ |
+ // Load a the next frame's stats |
+ input_stats(cpi, &tmp_frame); |
+ } |
+ |
+ // Reset to the start of the group |
+ reset_fpf_position(cpi, current_pos); |
+ |
+ cpi->next_key_frame_forced = TRUE; |
+ } else |
+ cpi->next_key_frame_forced = FALSE; |
+ |
+ // Special case for the last frame of the file |
+ if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) { |
+ // Accumulate kf group error |
+ kf_group_err += calculate_modified_err(cpi, this_frame); |
+ |
+ // These figures keep intra and coded error counts for all frames including key frames in the group. |
+ // The effect of the key frame itself can be subtracted out using the first_frame data collected above |
+ kf_group_intra_err += this_frame->intra_error; |
+ kf_group_coded_err += this_frame->coded_error; |
+ } |
+ |
+ // Calculate the number of bits that should be assigned to the kf group. |
+ if ((cpi->twopass.bits_left > 0) && (cpi->twopass.modified_error_left > 0.0)) { |
+ // Max for a single normal frame (not key frame) |
+ int max_bits = frame_max_bits(cpi); |
+ |
+ // Maximum bits for the kf group |
+ int64_t max_grp_bits; |
+ |
+ // Default allocation based on bits left and relative |
+ // complexity of the section |
+ cpi->twopass.kf_group_bits = (int64_t)(cpi->twopass.bits_left * |
+ (kf_group_err / |
+ cpi->twopass.modified_error_left)); |
+ |
+ // Clip based on maximum per frame rate defined by the user. |
+ max_grp_bits = (int64_t)max_bits * (int64_t)cpi->twopass.frames_to_key; |
+ if (cpi->twopass.kf_group_bits > max_grp_bits) |
+ cpi->twopass.kf_group_bits = max_grp_bits; |
+ } else |
+ cpi->twopass.kf_group_bits = 0; |
+ |
+ // Reset the first pass file position |
+ reset_fpf_position(cpi, start_position); |
+ |
+ // determine how big to make this keyframe based on how well the subsequent frames use inter blocks |
+ decay_accumulator = 1.0; |
+ boost_score = 0.0; |
+ loop_decay_rate = 1.00; // Starting decay rate |
+ |
+ for (i = 0; i < cpi->twopass.frames_to_key; i++) { |
+ double r; |
+ |
+ if (EOF == input_stats(cpi, &next_frame)) |
+ break; |
+ |
+ if (next_frame.intra_error > cpi->twopass.kf_intra_err_min) |
+ r = (IIKFACTOR2 * next_frame.intra_error / |
+ DOUBLE_DIVIDE_CHECK(next_frame.coded_error)); |
+ else |
+ r = (IIKFACTOR2 * cpi->twopass.kf_intra_err_min / |
+ DOUBLE_DIVIDE_CHECK(next_frame.coded_error)); |
+ |
+ if (r > RMAX) |
+ r = RMAX; |
+ |
+ // Monitor for static sections. |
+ if ((next_frame.pcnt_inter - next_frame.pcnt_motion) < |
+ zero_motion_accumulator) { |
+ zero_motion_accumulator = |
+ (next_frame.pcnt_inter - next_frame.pcnt_motion); |
+ } |
+ |
+ // How fast is prediction quality decaying |
+ if (!detect_flash(cpi, 0)) { |
+ loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame); |
+ decay_accumulator = decay_accumulator * loop_decay_rate; |
+ decay_accumulator = decay_accumulator < 0.1 ? 0.1 : decay_accumulator; |
+ } |
+ |
+ boost_score += (decay_accumulator * r); |
+ |
+ if ((i > MIN_GF_INTERVAL) && |
+ ((boost_score - old_boost_score) < 6.25)) { |
+ break; |
+ } |
+ |
+ old_boost_score = boost_score; |
+ } |
+ |
+ { |
+ FIRSTPASS_STATS sectionstats; |
+ |
+ zero_stats(§ionstats); |
+ reset_fpf_position(cpi, start_position); |
+ |
+ for (i = 0; i < cpi->twopass.frames_to_key; i++) { |
+ input_stats(cpi, &next_frame); |
+ accumulate_stats(§ionstats, &next_frame); |
+ } |
+ |
+ avg_stats(§ionstats); |
+ |
+ cpi->twopass.section_intra_rating = (int) |
+ (sectionstats.intra_error |
+ / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error)); |
+ } |
+ |
+ // Reset the first pass file position |
+ reset_fpf_position(cpi, start_position); |
+ |
+ // Work out how many bits to allocate for the key frame itself |
+ if (1) { |
+ int kf_boost = (int)boost_score; |
+ int allocation_chunks; |
+ int alt_kf_bits; |
+ |
+ if (kf_boost < 300) { |
+ kf_boost += (cpi->twopass.frames_to_key * 3); |
+ if (kf_boost > 300) |
+ kf_boost = 300; |
+ } |
+ |
+ if (kf_boost < 250) // Min KF boost |
+ kf_boost = 250; |
+ |
+ // Make a note of baseline boost and the zero motion |
+ // accumulator value for use elsewhere. |
+ cpi->kf_boost = kf_boost; |
+ cpi->kf_zeromotion_pct = (int)(zero_motion_accumulator * 100.0); |
+ |
+ // We do three calculations for kf size. |
+ // The first is based on the error score for the whole kf group. |
+ // The second (optionaly) on the key frames own error if this is |
+ // smaller than the average for the group. |
+ // The final one insures that the frame receives at least the |
+ // allocation it would have received based on its own error score vs |
+ // the error score remaining |
+ // Special case if the sequence appears almost totaly static |
+ // In this case we want to spend almost all of the bits on the |
+ // key frame. |
+ // cpi->twopass.frames_to_key-1 because key frame itself is taken |
+ // care of by kf_boost. |
+ if (zero_motion_accumulator >= 0.99) { |
+ allocation_chunks = |
+ ((cpi->twopass.frames_to_key - 1) * 10) + kf_boost; |
+ } else { |
+ allocation_chunks = |
+ ((cpi->twopass.frames_to_key - 1) * 100) + kf_boost; |
+ } |
+ |
+ // Prevent overflow |
+ if (kf_boost > 1028) { |
+ int divisor = kf_boost >> 10; |
+ kf_boost /= divisor; |
+ allocation_chunks /= divisor; |
+ } |
+ |
+ cpi->twopass.kf_group_bits = (cpi->twopass.kf_group_bits < 0) ? 0 : cpi->twopass.kf_group_bits; |
+ |
+ // Calculate the number of bits to be spent on the key frame |
+ cpi->twopass.kf_bits = (int)((double)kf_boost * ((double)cpi->twopass.kf_group_bits / (double)allocation_chunks)); |
+ |
+ // If the key frame is actually easier than the average for the |
+ // kf group (which does sometimes happen... eg a blank intro frame) |
+ // Then use an alternate calculation based on the kf error score |
+ // which should give a smaller key frame. |
+ if (kf_mod_err < kf_group_err / cpi->twopass.frames_to_key) { |
+ double alt_kf_grp_bits = |
+ ((double)cpi->twopass.bits_left * |
+ (kf_mod_err * (double)cpi->twopass.frames_to_key) / |
+ DOUBLE_DIVIDE_CHECK(cpi->twopass.modified_error_left)); |
+ |
+ alt_kf_bits = (int)((double)kf_boost * |
+ (alt_kf_grp_bits / (double)allocation_chunks)); |
+ |
+ if (cpi->twopass.kf_bits > alt_kf_bits) { |
+ cpi->twopass.kf_bits = alt_kf_bits; |
+ } |
+ } |
+ // Else if it is much harder than other frames in the group make sure |
+ // it at least receives an allocation in keeping with its relative |
+ // error score |
+ else { |
+ alt_kf_bits = |
+ (int)((double)cpi->twopass.bits_left * |
+ (kf_mod_err / |
+ DOUBLE_DIVIDE_CHECK(cpi->twopass.modified_error_left))); |
+ |
+ if (alt_kf_bits > cpi->twopass.kf_bits) { |
+ cpi->twopass.kf_bits = alt_kf_bits; |
+ } |
+ } |
+ |
+ cpi->twopass.kf_group_bits -= cpi->twopass.kf_bits; |
+ // Add in the minimum frame allowance |
+ cpi->twopass.kf_bits += cpi->min_frame_bandwidth; |
+ |
+ // Peer frame bit target for this frame |
+ cpi->per_frame_bandwidth = cpi->twopass.kf_bits; |
+ // Convert to a per second bitrate |
+ cpi->target_bandwidth = (int)(cpi->twopass.kf_bits * |
+ cpi->output_frame_rate); |
+ } |
+ |
+ // Note the total error score of the kf group minus the key frame itself |
+ cpi->twopass.kf_group_error_left = (int)(kf_group_err - kf_mod_err); |
+ |
+ // Adjust the count of total modified error left. |
+ // The count of bits left is adjusted elsewhere based on real coded frame sizes |
+ cpi->twopass.modified_error_left -= kf_group_err; |
+} |
Property changes on: source/libvpx/vp9/encoder/vp9_firstpass.c |
___________________________________________________________________ |
Added: svn:eol-style |
+ LF |