Index: source/libvpx/vp9/encoder/vp9_segmentation.c |
=================================================================== |
--- source/libvpx/vp9/encoder/vp9_segmentation.c (revision 0) |
+++ source/libvpx/vp9/encoder/vp9_segmentation.c (revision 0) |
@@ -0,0 +1,335 @@ |
+/* |
+ * Copyright (c) 2012 The WebM project authors. All Rights Reserved. |
+ * |
+ * Use of this source code is governed by a BSD-style license |
+ * that can be found in the LICENSE file in the root of the source |
+ * tree. An additional intellectual property rights grant can be found |
+ * in the file PATENTS. All contributing project authors may |
+ * be found in the AUTHORS file in the root of the source tree. |
+ */ |
+ |
+ |
+#include "limits.h" |
+#include "vpx_mem/vpx_mem.h" |
+#include "vp9/encoder/vp9_segmentation.h" |
+#include "vp9/common/vp9_pred_common.h" |
+ |
+void vp9_update_gf_useage_maps(VP9_COMP *cpi, VP9_COMMON *cm, MACROBLOCK *x) { |
+ int mb_row, mb_col; |
+ |
+ MODE_INFO *this_mb_mode_info = cm->mi; |
+ |
+ x->gf_active_ptr = (signed char *)cpi->gf_active_flags; |
+ |
+ if ((cm->frame_type == KEY_FRAME) || (cm->refresh_golden_frame)) { |
+ // Reset Gf useage monitors |
+ vpx_memset(cpi->gf_active_flags, 1, (cm->mb_rows * cm->mb_cols)); |
+ cpi->gf_active_count = cm->mb_rows * cm->mb_cols; |
+ } else { |
+ // for each macroblock row in image |
+ for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) { |
+ // for each macroblock col in image |
+ for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) { |
+ |
+ // If using golden then set GF active flag if not already set. |
+ // If using last frame 0,0 mode then leave flag as it is |
+ // else if using non 0,0 motion or intra modes then clear |
+ // flag if it is currently set |
+ if ((this_mb_mode_info->mbmi.ref_frame == GOLDEN_FRAME) || |
+ (this_mb_mode_info->mbmi.ref_frame == ALTREF_FRAME)) { |
+ if (*(x->gf_active_ptr) == 0) { |
+ *(x->gf_active_ptr) = 1; |
+ cpi->gf_active_count++; |
+ } |
+ } else if ((this_mb_mode_info->mbmi.mode != ZEROMV) && |
+ *(x->gf_active_ptr)) { |
+ *(x->gf_active_ptr) = 0; |
+ cpi->gf_active_count--; |
+ } |
+ |
+ x->gf_active_ptr++; // Step onto next entry |
+ this_mb_mode_info++; // skip to next mb |
+ |
+ } |
+ |
+ // this is to account for the border |
+ this_mb_mode_info++; |
+ } |
+ } |
+} |
+ |
+void vp9_enable_segmentation(VP9_PTR ptr) { |
+ VP9_COMP *cpi = (VP9_COMP *)(ptr); |
+ |
+ // Set the appropriate feature bit |
+ cpi->mb.e_mbd.segmentation_enabled = 1; |
+ cpi->mb.e_mbd.update_mb_segmentation_map = 1; |
+ cpi->mb.e_mbd.update_mb_segmentation_data = 1; |
+} |
+ |
+void vp9_disable_segmentation(VP9_PTR ptr) { |
+ VP9_COMP *cpi = (VP9_COMP *)(ptr); |
+ |
+ // Clear the appropriate feature bit |
+ cpi->mb.e_mbd.segmentation_enabled = 0; |
+} |
+ |
+void vp9_set_segmentation_map(VP9_PTR ptr, |
+ unsigned char *segmentation_map) { |
+ VP9_COMP *cpi = (VP9_COMP *)(ptr); |
+ |
+ // Copy in the new segmentation map |
+ vpx_memcpy(cpi->segmentation_map, segmentation_map, |
+ (cpi->common.mb_rows * cpi->common.mb_cols)); |
+ |
+ // Signal that the map should be updated. |
+ cpi->mb.e_mbd.update_mb_segmentation_map = 1; |
+ cpi->mb.e_mbd.update_mb_segmentation_data = 1; |
+} |
+ |
+void vp9_set_segment_data(VP9_PTR ptr, |
+ signed char *feature_data, |
+ unsigned char abs_delta) { |
+ VP9_COMP *cpi = (VP9_COMP *)(ptr); |
+ |
+ cpi->mb.e_mbd.mb_segment_abs_delta = abs_delta; |
+ |
+ vpx_memcpy(cpi->mb.e_mbd.segment_feature_data, feature_data, |
+ sizeof(cpi->mb.e_mbd.segment_feature_data)); |
+ |
+ // TBD ?? Set the feature mask |
+ // vpx_memcpy(cpi->mb.e_mbd.segment_feature_mask, 0, |
+ // sizeof(cpi->mb.e_mbd.segment_feature_mask)); |
+} |
+ |
+// Based on set of segment counts calculate a probability tree |
+static void calc_segtree_probs(MACROBLOCKD *xd, |
+ int *segcounts, |
+ vp9_prob *segment_tree_probs) { |
+ int count1, count2; |
+ int tot_count; |
+ int i; |
+ |
+ // Blank the strtucture to start with |
+ vpx_memset(segment_tree_probs, 0, |
+ MB_FEATURE_TREE_PROBS * sizeof(*segment_tree_probs)); |
+ |
+ // Total count for all segments |
+ count1 = segcounts[0] + segcounts[1]; |
+ count2 = segcounts[2] + segcounts[3]; |
+ tot_count = count1 + count2; |
+ |
+ // Work out probabilities of each segment |
+ if (tot_count) |
+ segment_tree_probs[0] = (count1 * 255) / tot_count; |
+ if (count1 > 0) |
+ segment_tree_probs[1] = (segcounts[0] * 255) / count1; |
+ if (count2 > 0) |
+ segment_tree_probs[2] = (segcounts[2] * 255) / count2; |
+ |
+ // Clamp probabilities to minimum allowed value |
+ for (i = 0; i < MB_FEATURE_TREE_PROBS; i++) { |
+ if (segment_tree_probs[i] == 0) |
+ segment_tree_probs[i] = 1; |
+ } |
+} |
+ |
+// Based on set of segment counts and probabilities calculate a cost estimate |
+static int cost_segmap(MACROBLOCKD *xd, |
+ int *segcounts, |
+ vp9_prob *probs) { |
+ int cost; |
+ int count1, count2; |
+ |
+ // Cost the top node of the tree |
+ count1 = segcounts[0] + segcounts[1]; |
+ count2 = segcounts[2] + segcounts[3]; |
+ cost = count1 * vp9_cost_zero(probs[0]) + |
+ count2 * vp9_cost_one(probs[0]); |
+ |
+ // Now add the cost of each individual segment branch |
+ if (count1 > 0) |
+ cost += segcounts[0] * vp9_cost_zero(probs[1]) + |
+ segcounts[1] * vp9_cost_one(probs[1]); |
+ |
+ if (count2 > 0) |
+ cost += segcounts[2] * vp9_cost_zero(probs[2]) + |
+ segcounts[3] * vp9_cost_one(probs[2]); |
+ |
+ return cost; |
+ |
+} |
+ |
+void vp9_choose_segmap_coding_method(VP9_COMP *cpi) { |
+ VP9_COMMON *const cm = &cpi->common; |
+ MACROBLOCKD *const xd = &cpi->mb.e_mbd; |
+ |
+ int i; |
+ int tot_count; |
+ int no_pred_cost; |
+ int t_pred_cost = INT_MAX; |
+ int pred_context; |
+ |
+ int mb_row, mb_col; |
+ int segmap_index = 0; |
+ unsigned char segment_id; |
+ |
+ int temporal_predictor_count[PREDICTION_PROBS][2]; |
+ int no_pred_segcounts[MAX_MB_SEGMENTS]; |
+ int t_unpred_seg_counts[MAX_MB_SEGMENTS]; |
+ |
+ vp9_prob no_pred_tree[MB_FEATURE_TREE_PROBS]; |
+ vp9_prob t_pred_tree[MB_FEATURE_TREE_PROBS]; |
+ vp9_prob t_nopred_prob[PREDICTION_PROBS]; |
+ |
+#if CONFIG_SUPERBLOCKS |
+ const int mis = cm->mode_info_stride; |
+#endif |
+ |
+ // Set default state for the segment tree probabilities and the |
+ // temporal coding probabilities |
+ vpx_memset(xd->mb_segment_tree_probs, 255, |
+ sizeof(xd->mb_segment_tree_probs)); |
+ vpx_memset(cm->segment_pred_probs, 255, |
+ sizeof(cm->segment_pred_probs)); |
+ |
+ vpx_memset(no_pred_segcounts, 0, sizeof(no_pred_segcounts)); |
+ vpx_memset(t_unpred_seg_counts, 0, sizeof(t_unpred_seg_counts)); |
+ vpx_memset(temporal_predictor_count, 0, sizeof(temporal_predictor_count)); |
+ |
+ // First of all generate stats regarding how well the last segment map |
+ // predicts this one |
+ |
+ // Initialize macroblock decoder mode info context for the first mb |
+ // in the frame |
+ xd->mode_info_context = cm->mi; |
+ |
+ for (mb_row = 0; mb_row < cm->mb_rows; mb_row += 2) { |
+ for (mb_col = 0; mb_col < cm->mb_cols; mb_col += 2) { |
+ for (i = 0; i < 4; i++) { |
+ static const int dx[4] = { +1, -1, +1, +1 }; |
+ static const int dy[4] = { 0, +1, 0, -1 }; |
+ int x_idx = i & 1, y_idx = i >> 1; |
+ |
+ if (mb_col + x_idx >= cm->mb_cols || |
+ mb_row + y_idx >= cm->mb_rows) { |
+ goto end; |
+ } |
+ |
+ xd->mb_to_top_edge = -((mb_row * 16) << 3); |
+ xd->mb_to_left_edge = -((mb_col * 16) << 3); |
+ |
+ segmap_index = (mb_row + y_idx) * cm->mb_cols + mb_col + x_idx; |
+ segment_id = xd->mode_info_context->mbmi.segment_id; |
+#if CONFIG_SUPERBLOCKS |
+ if (xd->mode_info_context->mbmi.encoded_as_sb) { |
+ if (mb_col + 1 < cm->mb_cols) |
+ segment_id = segment_id && |
+ xd->mode_info_context[1].mbmi.segment_id; |
+ if (mb_row + 1 < cm->mb_rows) { |
+ segment_id = segment_id && |
+ xd->mode_info_context[mis].mbmi.segment_id; |
+ if (mb_col + 1 < cm->mb_cols) |
+ segment_id = segment_id && |
+ xd->mode_info_context[mis + 1].mbmi.segment_id; |
+ } |
+ xd->mb_to_bottom_edge = ((cm->mb_rows - 2 - mb_row) * 16) << 3; |
+ xd->mb_to_right_edge = ((cm->mb_cols - 2 - mb_col) * 16) << 3; |
+ } else { |
+#endif |
+ xd->mb_to_bottom_edge = ((cm->mb_rows - 1 - mb_row) * 16) << 3; |
+ xd->mb_to_right_edge = ((cm->mb_cols - 1 - mb_col) * 16) << 3; |
+#if CONFIG_SUPERBLOCKS |
+ } |
+#endif |
+ |
+ // Count the number of hits on each segment with no prediction |
+ no_pred_segcounts[segment_id]++; |
+ |
+ // Temporal prediction not allowed on key frames |
+ if (cm->frame_type != KEY_FRAME) { |
+ // Test to see if the segment id matches the predicted value. |
+ int seg_predicted = |
+ (segment_id == vp9_get_pred_mb_segid(cm, xd, segmap_index)); |
+ |
+ // Get the segment id prediction context |
+ pred_context = |
+ vp9_get_pred_context(cm, xd, PRED_SEG_ID); |
+ |
+ // Store the prediction status for this mb and update counts |
+ // as appropriate |
+ vp9_set_pred_flag(xd, PRED_SEG_ID, seg_predicted); |
+ temporal_predictor_count[pred_context][seg_predicted]++; |
+ |
+ if (!seg_predicted) |
+ // Update the "unpredicted" segment count |
+ t_unpred_seg_counts[segment_id]++; |
+ } |
+ |
+#if CONFIG_SUPERBLOCKS |
+ if (xd->mode_info_context->mbmi.encoded_as_sb) { |
+ assert(!i); |
+ xd->mode_info_context += 2; |
+ break; |
+ } |
+#endif |
+ end: |
+ xd->mode_info_context += dx[i] + dy[i] * cm->mode_info_stride; |
+ } |
+ } |
+ |
+ // this is to account for the border in mode_info_context |
+ xd->mode_info_context -= mb_col; |
+ xd->mode_info_context += cm->mode_info_stride * 2; |
+ } |
+ |
+ // Work out probability tree for coding segments without prediction |
+ // and the cost. |
+ calc_segtree_probs(xd, no_pred_segcounts, no_pred_tree); |
+ no_pred_cost = cost_segmap(xd, no_pred_segcounts, no_pred_tree); |
+ |
+ // Key frames cannot use temporal prediction |
+ if (cm->frame_type != KEY_FRAME) { |
+ // Work out probability tree for coding those segments not |
+ // predicted using the temporal method and the cost. |
+ calc_segtree_probs(xd, t_unpred_seg_counts, t_pred_tree); |
+ t_pred_cost = cost_segmap(xd, t_unpred_seg_counts, t_pred_tree); |
+ |
+ // Add in the cost of the signalling for each prediction context |
+ for (i = 0; i < PREDICTION_PROBS; i++) { |
+ tot_count = temporal_predictor_count[i][0] + |
+ temporal_predictor_count[i][1]; |
+ |
+ // Work out the context probabilities for the segment |
+ // prediction flag |
+ if (tot_count) { |
+ t_nopred_prob[i] = (temporal_predictor_count[i][0] * 255) / |
+ tot_count; |
+ |
+ // Clamp to minimum allowed value |
+ if (t_nopred_prob[i] < 1) |
+ t_nopred_prob[i] = 1; |
+ } else |
+ t_nopred_prob[i] = 1; |
+ |
+ // Add in the predictor signaling cost |
+ t_pred_cost += (temporal_predictor_count[i][0] * |
+ vp9_cost_zero(t_nopred_prob[i])) + |
+ (temporal_predictor_count[i][1] * |
+ vp9_cost_one(t_nopred_prob[i])); |
+ } |
+ } |
+ |
+ // Now choose which coding method to use. |
+ if (t_pred_cost < no_pred_cost) { |
+ cm->temporal_update = 1; |
+ vpx_memcpy(xd->mb_segment_tree_probs, |
+ t_pred_tree, sizeof(t_pred_tree)); |
+ vpx_memcpy(&cm->segment_pred_probs, |
+ t_nopred_prob, sizeof(t_nopred_prob)); |
+ } else { |
+ cm->temporal_update = 0; |
+ vpx_memcpy(xd->mb_segment_tree_probs, |
+ no_pred_tree, sizeof(no_pred_tree)); |
+ } |
+} |
Property changes on: source/libvpx/vp9/encoder/vp9_segmentation.c |
___________________________________________________________________ |
Added: svn:eol-style |
+ LF |