OLD | NEW |
(Empty) | |
| 1 # Copyright 2015 The Chromium Authors. All rights reserved. |
| 2 # Use of this source code is governed by a BSD-style license that can be |
| 3 # found in the LICENSE file. |
| 4 |
| 5 import cPickle |
| 6 import googledatastore as datastore |
| 7 import logging |
| 8 |
| 9 from future import Future |
| 10 |
| 11 # N.B.: In order to use this module you should have a working cloud development |
| 12 # environment configured with the googledatastore module installed. |
| 13 # |
| 14 # Please see https://cloud.google.com/datastore/docs/getstarted/start_python/ |
| 15 |
| 16 |
| 17 _DATASET_NAME = 'chrome-apps-doc' |
| 18 _PERSISTENT_OBJECT_KIND = 'PersistentObjectStoreItem' |
| 19 _VALUE_PROPERTY_NAME = 'pickled_value' |
| 20 |
| 21 # The max number of entities to include in a single request. This is capped at |
| 22 # 500 by the service. In practice we may send fewer due to _MAX_REQUEST_SIZE |
| 23 _MAX_BATCH_SIZE = 500 |
| 24 |
| 25 |
| 26 # The maximum entity size allowed by Datastore. |
| 27 _MAX_ENTITY_SIZE = 1024*1024 |
| 28 |
| 29 |
| 30 # The maximum request size (in bytes) to send Datastore. This is an approximate |
| 31 # size based on the sum of entity blob_value sizes. |
| 32 _MAX_REQUEST_SIZE = 5*1024*1024 |
| 33 |
| 34 |
| 35 def _CreateEntity(name, value): |
| 36 entity = datastore.Entity() |
| 37 path = entity.key.path_element.add() |
| 38 path.kind = _PERSISTENT_OBJECT_KIND |
| 39 path.name = name |
| 40 pickled_value_property = entity.property.add() |
| 41 pickled_value_property.name = _VALUE_PROPERTY_NAME |
| 42 pickled_value_property.value.indexed = False |
| 43 pickled_value_property.value.blob_value = value |
| 44 return entity |
| 45 |
| 46 |
| 47 def _CreateBatches(data): |
| 48 '''Constructs batches of at most _MAX_BATCH_SIZE entities to cover all |
| 49 entities defined in |data| without exceeding the transaction size limit. |
| 50 This is a generator emitting lists of entities. |
| 51 ''' |
| 52 def get_size(entity): |
| 53 return len(entity.property[0].value.blob_value) |
| 54 |
| 55 entities = [_CreateEntity(name, value) for name, value in data.iteritems()] |
| 56 batch_start = 0 |
| 57 batch_end = 1 |
| 58 batch_size = get_size(entities[0]) |
| 59 while batch_end < len(entities): |
| 60 next_size = get_size(entities[batch_end]) |
| 61 if (batch_size + next_size > _MAX_REQUEST_SIZE or |
| 62 batch_end - batch_start >= _MAX_BATCH_SIZE): |
| 63 yield entities[batch_start:batch_end], batch_end, len(entities) |
| 64 batch_start = batch_end |
| 65 batch_size = 0 |
| 66 else: |
| 67 batch_size += next_size |
| 68 batch_end = batch_end + 1 |
| 69 if batch_end > batch_start and batch_start < len(entities): |
| 70 yield entities[batch_start:batch_end], batch_end, len(entities) |
| 71 |
| 72 |
| 73 def PushData(data, original_data={}): |
| 74 '''Pushes a bunch of data into the datastore. The data should be a dict. Each |
| 75 key is treated as a namespace, and each value is also a dict. A new datastore |
| 76 entry is upserted for every inner key, with the value pickled into the |
| 77 |pickled_value| field. |
| 78 |
| 79 For example, if given the dictionary: |
| 80 |
| 81 { |
| 82 'fruit': { |
| 83 'apple': 1234, |
| 84 'banana': 'yellow', |
| 85 'trolling carrot': { 'arbitrarily complex': ['value', 'goes', 'here'] } |
| 86 }, |
| 87 'animal': { |
| 88 'sheep': 'baaah', |
| 89 'dog': 'woof', |
| 90 'trolling cat': 'moo' |
| 91 } |
| 92 } |
| 93 |
| 94 this would result in a push of 6 keys in total, with the following IDs: |
| 95 |
| 96 Key('PersistentObjectStoreItem', 'fruit/apple') |
| 97 Key('PersistentObjectStoreItem', 'fruit/banana') |
| 98 Key('PersistentObjectStoreItem', 'fruit/trolling carrot') |
| 99 Key('PersistentObjectStoreItem', 'animal/sheep') |
| 100 Key('PersistentObjectStoreItem', 'animal/dog') |
| 101 Key('PersistentObjectStoreItem', 'animal/trolling cat') |
| 102 |
| 103 If given |original_data|, this will only push key-value pairs for entries that |
| 104 are either new or have changed from their original (pickled) value. |
| 105 |
| 106 Caveat: Pickling and unpickling a dictionary can (but does not always) change |
| 107 its key order. This means that objects will often be seen as changed even when |
| 108 they haven't changed. |
| 109 ''' |
| 110 datastore.set_options(dataset=_DATASET_NAME) |
| 111 |
| 112 def flatten(dataset): |
| 113 flat = {} |
| 114 for namespace, items in dataset.iteritems(): |
| 115 for k, v in items.iteritems(): |
| 116 flat['%s/%s' % (namespace, k)] = cPickle.dumps(v) |
| 117 return flat |
| 118 |
| 119 logging.info('Flattening data sets...') |
| 120 data = flatten(data) |
| 121 original_data = flatten(original_data) |
| 122 |
| 123 logging.info('Culling new data...') |
| 124 for k in data.keys(): |
| 125 if ((k in original_data and original_data[k] == data[k]) or |
| 126 (len(data[k]) > _MAX_ENTITY_SIZE)): |
| 127 del data[k] |
| 128 |
| 129 for batch, n, total in _CreateBatches(data): |
| 130 commit_request = datastore.CommitRequest() |
| 131 commit_request.mode = datastore.CommitRequest.NON_TRANSACTIONAL |
| 132 commit_request.mutation.upsert.extend(list(batch)) |
| 133 |
| 134 logging.info('Committing %s/%s entities...' % (n, total)) |
| 135 datastore.commit(commit_request) |
OLD | NEW |