| Index: test/cctest/test-heap.cc
|
| diff --git a/test/cctest/test-heap.cc b/test/cctest/test-heap.cc
|
| index 70a0597821b2c5407373e4b7906006d7982dace8..da19f09f7cc22f6202ade9172d4edefeb943975b 100644
|
| --- a/test/cctest/test-heap.cc
|
| +++ b/test/cctest/test-heap.cc
|
| @@ -1784,6 +1784,161 @@ TEST(TestSizeOfObjects) {
|
| }
|
|
|
|
|
| +TEST(TestAlignmentCalculations) {
|
| + // Maximum fill amounts should be consistent.
|
| + int maximum_double_misalignment = kDoubleSize - kPointerSize;
|
| + int max_word_fill = Heap::GetMaximumFillToAlign(kWordAligned);
|
| + CHECK_EQ(0, max_word_fill);
|
| + int max_double_fill = Heap::GetMaximumFillToAlign(kDoubleAligned);
|
| + CHECK_EQ(maximum_double_misalignment, max_double_fill);
|
| + int max_double_unaligned_fill = Heap::GetMaximumFillToAlign(kDoubleUnaligned);
|
| + CHECK_EQ(maximum_double_misalignment, max_double_unaligned_fill);
|
| +
|
| + Address base = reinterpret_cast<Address>(NULL);
|
| + int fill = 0;
|
| +
|
| + // Word alignment never requires fill.
|
| + fill = Heap::GetFillToAlign(base, kWordAligned);
|
| + CHECK_EQ(0, fill);
|
| + fill = Heap::GetFillToAlign(base + kPointerSize, kWordAligned);
|
| + CHECK_EQ(0, fill);
|
| +
|
| + // No fill is required when address is double aligned.
|
| + fill = Heap::GetFillToAlign(base, kDoubleAligned);
|
| + CHECK_EQ(0, fill);
|
| + // Fill is required if address is not double aligned.
|
| + fill = Heap::GetFillToAlign(base + kPointerSize, kDoubleAligned);
|
| + CHECK_EQ(maximum_double_misalignment, fill);
|
| + // kDoubleUnaligned has the opposite fill amounts.
|
| + fill = Heap::GetFillToAlign(base, kDoubleUnaligned);
|
| + CHECK_EQ(maximum_double_misalignment, fill);
|
| + fill = Heap::GetFillToAlign(base + kPointerSize, kDoubleUnaligned);
|
| + CHECK_EQ(0, fill);
|
| +}
|
| +
|
| +
|
| +static HeapObject* NewSpaceAllocateAligned(int size,
|
| + AllocationAlignment alignment) {
|
| + Heap* heap = CcTest::heap();
|
| + AllocationResult allocation =
|
| + heap->new_space()->AllocateRawAligned(size, alignment);
|
| + HeapObject* obj = NULL;
|
| + allocation.To(&obj);
|
| + heap->CreateFillerObjectAt(obj->address(), size);
|
| + return obj;
|
| +}
|
| +
|
| +
|
| +TEST(TestAlignedAllocation) {
|
| + // Double misalignment is 4 on 32-bit platforms, 0 on 64-bit ones.
|
| + const intptr_t double_misalignment = kDoubleSize - kPointerSize;
|
| + if (double_misalignment) {
|
| + Address* top_addr = CcTest::heap()->new_space()->allocation_top_address();
|
| + // Align the top for the first test.
|
| + if (!IsAddressAligned(*top_addr, kDoubleAlignment))
|
| + NewSpaceAllocateAligned(kPointerSize, kWordAligned);
|
| +
|
| + // Allocate a pointer sized object that must be double aligned.
|
| + Address start = *top_addr;
|
| + HeapObject* obj1 = NewSpaceAllocateAligned(kPointerSize, kDoubleAligned);
|
| + CHECK(IsAddressAligned(obj1->address(), kDoubleAlignment));
|
| + // Only the object was allocated.
|
| + CHECK_EQ(kPointerSize, *top_addr - start);
|
| + // top is now misaligned.
|
| + // Allocate a second pointer sized object that must be double aligned.
|
| + HeapObject* obj2 = NewSpaceAllocateAligned(kPointerSize, kDoubleAligned);
|
| + CHECK(IsAddressAligned(obj2->address(), kDoubleAlignment));
|
| + // There should be a filler object in between the two objects.
|
| + CHECK(HeapObject::FromAddress(start + kPointerSize)->IsFiller());
|
| + // Two objects and a filler object were allocated.
|
| + CHECK_EQ(2 * kPointerSize + double_misalignment, *top_addr - start);
|
| +
|
| + // Similarly for kDoubleUnaligned. top is misaligned.
|
| + start = *top_addr;
|
| + obj1 = NewSpaceAllocateAligned(kPointerSize, kDoubleUnaligned);
|
| + CHECK(IsAddressAligned(obj1->address(), kDoubleAlignment, kPointerSize));
|
| + CHECK_EQ(kPointerSize, *top_addr - start);
|
| + obj2 = NewSpaceAllocateAligned(kPointerSize, kDoubleUnaligned);
|
| + CHECK(IsAddressAligned(obj2->address(), kDoubleAlignment, kPointerSize));
|
| + CHECK(HeapObject::FromAddress(start + kPointerSize)->IsFiller());
|
| + CHECK_EQ(2 * kPointerSize + double_misalignment, *top_addr - start);
|
| + }
|
| +}
|
| +
|
| +
|
| +// Force allocation to happen from the free list, at a desired misalignment.
|
| +static Address SetUpFreeListAllocation(int misalignment) {
|
| + Heap* heap = CcTest::heap();
|
| + OldSpace* old_space = heap->old_space();
|
| + Address top = old_space->top();
|
| + // First, allocate enough filler to get the linear area into the desired
|
| + // misalignment.
|
| + const intptr_t maximum_misalignment = 2 * kPointerSize;
|
| + const intptr_t maximum_misalignment_mask = maximum_misalignment - 1;
|
| + intptr_t top_alignment = OffsetFrom(top) & maximum_misalignment_mask;
|
| + int filler_size = misalignment - static_cast<int>(top_alignment);
|
| + if (filler_size < 0) filler_size += maximum_misalignment;
|
| + if (filler_size) {
|
| + // Create the filler object.
|
| + AllocationResult allocation = old_space->AllocateRawUnaligned(filler_size);
|
| + HeapObject* obj = NULL;
|
| + allocation.To(&obj);
|
| + heap->CreateFillerObjectAt(obj->address(), filler_size);
|
| + }
|
| + top = old_space->top();
|
| + old_space->EmptyAllocationInfo();
|
| + return top;
|
| +}
|
| +
|
| +
|
| +static HeapObject* OldSpaceAllocateAligned(int size,
|
| + AllocationAlignment alignment) {
|
| + Heap* heap = CcTest::heap();
|
| + AllocationResult allocation =
|
| + heap->old_space()->AllocateRawAligned(size, alignment);
|
| + HeapObject* obj = NULL;
|
| + allocation.To(&obj);
|
| + heap->CreateFillerObjectAt(obj->address(), size);
|
| + return obj;
|
| +}
|
| +
|
| +
|
| +// Test the case where allocation must be done from the free list, so filler
|
| +// may precede or follow the object.
|
| +TEST(TestAlignedOverAllocation) {
|
| + // Double misalignment is 4 on 32-bit platforms, 0 on 64-bit ones.
|
| + const intptr_t double_misalignment = kDoubleSize - kPointerSize;
|
| + if (double_misalignment) {
|
| + Address start = SetUpFreeListAllocation(0);
|
| + HeapObject* obj1 = OldSpaceAllocateAligned(kPointerSize, kDoubleAligned);
|
| + // The object should be aligned, and a filler object should be created.
|
| + CHECK(IsAddressAligned(obj1->address(), kDoubleAlignment));
|
| + CHECK(HeapObject::FromAddress(start)->IsFiller() &&
|
| + HeapObject::FromAddress(start + kPointerSize)->IsFiller());
|
| + // Try the opposite alignment case.
|
| + start = SetUpFreeListAllocation(kPointerSize);
|
| + HeapObject* obj2 = OldSpaceAllocateAligned(kPointerSize, kDoubleAligned);
|
| + CHECK(IsAddressAligned(obj2->address(), kDoubleAlignment));
|
| + CHECK(HeapObject::FromAddress(start)->IsFiller() &&
|
| + HeapObject::FromAddress(start + kPointerSize)->IsFiller());
|
| +
|
| + // Similarly for kDoubleUnaligned.
|
| + start = SetUpFreeListAllocation(0);
|
| + obj1 = OldSpaceAllocateAligned(kPointerSize, kDoubleUnaligned);
|
| + // The object should be aligned, and a filler object should be created.
|
| + CHECK(IsAddressAligned(obj1->address(), kDoubleAlignment, kPointerSize));
|
| + CHECK(HeapObject::FromAddress(start)->IsFiller() &&
|
| + HeapObject::FromAddress(start + kPointerSize)->IsFiller());
|
| + // Try the opposite alignment case.
|
| + start = SetUpFreeListAllocation(kPointerSize);
|
| + obj2 = OldSpaceAllocateAligned(kPointerSize, kDoubleUnaligned);
|
| + CHECK(IsAddressAligned(obj2->address(), kDoubleAlignment, kPointerSize));
|
| + CHECK(HeapObject::FromAddress(start)->IsFiller() &&
|
| + HeapObject::FromAddress(start + kPointerSize)->IsFiller());
|
| + }
|
| +}
|
| +
|
| +
|
| TEST(TestSizeOfObjectsVsHeapIteratorPrecision) {
|
| CcTest::InitializeVM();
|
| HeapIterator iterator(CcTest::heap());
|
|
|