OLD | NEW |
| (Empty) |
1 | |
2 /* | |
3 * Copyright 2014 Google Inc. | |
4 * | |
5 * Use of this source code is governed by a BSD-style license that can be | |
6 * found in the LICENSE file. | |
7 */ | |
8 | |
9 #include "GrGLNameAllocator.h" | |
10 | |
11 /** | |
12 * This is the abstract base class for a nonempty AVL tree that tracks allocated | |
13 * names within the half-open range [fFirst, fEnd). The inner nodes can be | |
14 * sparse (meaning not every name within the range is necessarily allocated), | |
15 * but the bounds are tight, so fFirst *is* guaranteed to be allocated, and so | |
16 * is fEnd - 1. | |
17 */ | |
18 class GrGLNameAllocator::SparseNameRange : public SkRefCnt { | |
19 public: | |
20 virtual ~SparseNameRange() {} | |
21 | |
22 /** | |
23 * Return the beginning of the range. first() is guaranteed to be allocated. | |
24 * | |
25 * @return The first name in the range. | |
26 */ | |
27 GrGLuint first() const { return fFirst; } | |
28 | |
29 /** | |
30 * Return the end of the range. end() - 1 is guaranteed to be allocated. | |
31 * | |
32 * @return One plus the final name in the range. | |
33 */ | |
34 GrGLuint end() const { return fEnd; } | |
35 | |
36 /** | |
37 * Return the height of the tree. This can only be nonzero at an inner node. | |
38 * | |
39 * @return 0 if the implementation is a leaf node, | |
40 * The nonzero height of the tree otherwise. | |
41 */ | |
42 GrGLuint height() const { return fHeight; } | |
43 | |
44 /** | |
45 * Allocate a name from strictly inside this range. The call will fail if | |
46 * there is not a free name within. | |
47 * | |
48 * @param outName A pointer that receives the allocated name. outName will | |
49 * be set to zero if there were no free names within the | |
50 * range [fFirst, fEnd). | |
51 * @return The resulting SparseNameRange after the allocation. Note that | |
52 * this call is destructive, so the original SparseNameRange will no | |
53 * longer be valid afterward. The caller must always update its | |
54 * pointer with the new SparseNameRange. | |
55 */ | |
56 virtual SparseNameRange* SK_WARN_UNUSED_RESULT internalAllocate(GrGLuint* ou
tName) = 0; | |
57 | |
58 /** | |
59 * Remove the leftmost leaf node from this range (or the entire thing if it | |
60 * *is* a leaf node). This is an internal helper method that is used after | |
61 * an allocation if one contiguous range became adjacent to another. (The | |
62 * range gets removed so the one immediately before can be extended, | |
63 * collapsing the two into one.) | |
64 * | |
65 * @param removedCount A pointer that receives the size of the contiguous | |
66 range that was removed. | |
67 * @return The resulting SparseNameRange after the removal (or nullptr if it | |
68 * became empty). Note that this call is destructive, so the | |
69 * original SparseNameRange will no longer be valid afterward. The | |
70 * caller must always update its pointer with the new | |
71 * SparseNameRange. | |
72 */ | |
73 virtual SparseNameRange* SK_WARN_UNUSED_RESULT removeLeftmostContiguousRange
(GrGLuint* removedCount) = 0; | |
74 | |
75 /** | |
76 * Append adjacent allocated names to the end of this range. This operation | |
77 * does not affect the structure of the tree. The caller is responsible for | |
78 * ensuring the new names won't overlap sibling ranges, if any. | |
79 * | |
80 * @param count The number of adjacent names to append. | |
81 * @return The first name appended. | |
82 */ | |
83 virtual GrGLuint appendNames(GrGLuint count) = 0; | |
84 | |
85 /** | |
86 * Prepend adjacent allocated names behind the beginning of this range. This | |
87 * operation does not affect the structure of the tree. The caller is | |
88 * responsible for ensuring the new names won't overlap sibling ranges, if | |
89 * any. | |
90 * | |
91 * @param count The number of adjacent names to prepend. | |
92 * @return The final name prepended (the one with the lowest value). | |
93 */ | |
94 virtual GrGLuint prependNames(GrGLuint count) = 0; | |
95 | |
96 /** | |
97 * Free a name so it is no longer tracked as allocated. If the name is at | |
98 * the very beginning or very end of the range, the boundaries [fFirst, fEnd
) | |
99 * will be tightened. | |
100 * | |
101 * @param name The name to free. Not-allocated names are silently ignored | |
102 * the same way they are in the OpenGL spec. | |
103 * @return The resulting SparseNameRange after the free (or nullptr if it | |
104 * became empty). Note that this call is destructive, so the | |
105 * original SparseNameRange will no longer be valid afterward. The | |
106 * caller must always update its pointer with the new | |
107 * SparseNameRange. | |
108 */ | |
109 virtual SparseNameRange* SK_WARN_UNUSED_RESULT free(GrGLuint name) = 0; | |
110 | |
111 protected: | |
112 SparseNameRange* takeRef() { | |
113 this->ref(); | |
114 return this; | |
115 } | |
116 | |
117 GrGLuint fFirst; | |
118 GrGLuint fEnd; | |
119 GrGLuint fHeight; | |
120 }; | |
121 | |
122 /** | |
123 * This class is the SparseNameRange implementation for an inner node. It is an | |
124 * AVL tree with non-null, non-adjacent left and right children. | |
125 */ | |
126 class GrGLNameAllocator::SparseNameTree : public SparseNameRange { | |
127 public: | |
128 SparseNameTree(SparseNameRange* left, SparseNameRange* right) | |
129 : fLeft(left), | |
130 fRight(right) { | |
131 SkASSERT(fLeft.get()); | |
132 SkASSERT(fRight.get()); | |
133 this->updateStats(); | |
134 } | |
135 | |
136 SparseNameRange* SK_WARN_UNUSED_RESULT internalAllocate(GrGLuint* outName) o
verride { | |
137 // Try allocating the range inside fLeft's internal gaps. | |
138 fLeft.reset(fLeft->internalAllocate(outName)); | |
139 if (0 != *outName) { | |
140 this->updateStats(); | |
141 return this->rebalance(); | |
142 } | |
143 | |
144 if (fLeft->end() + 1 == fRight->first()) { | |
145 // It closed the gap between fLeft and fRight; merge. | |
146 GrGLuint removedCount; | |
147 fRight.reset(fRight->removeLeftmostContiguousRange(&removedCount)); | |
148 *outName = fLeft->appendNames(1 + removedCount); | |
149 if (nullptr == fRight.get()) { | |
150 return fLeft.detach(); | |
151 } | |
152 this->updateStats(); | |
153 return this->rebalance(); | |
154 } | |
155 | |
156 // There is guaranteed to be a gap between fLeft and fRight, and the | |
157 // "size 1" case has already been covered. | |
158 SkASSERT(fLeft->end() + 1 < fRight->first()); | |
159 *outName = fLeft->appendNames(1); | |
160 return this->takeRef(); | |
161 } | |
162 | |
163 SparseNameRange* SK_WARN_UNUSED_RESULT removeLeftmostContiguousRange(GrGLuin
t* removedCount) override { | |
164 fLeft.reset(fLeft->removeLeftmostContiguousRange(removedCount)); | |
165 if (nullptr == fLeft) { | |
166 return fRight.detach(); | |
167 } | |
168 this->updateStats(); | |
169 return this->rebalance(); | |
170 } | |
171 | |
172 GrGLuint appendNames(GrGLuint count) override { | |
173 SkASSERT(fEnd + count > fEnd); // Check for integer wrap. | |
174 GrGLuint name = fRight->appendNames(count); | |
175 SkASSERT(fRight->end() == fEnd + count); | |
176 this->updateStats(); | |
177 return name; | |
178 } | |
179 | |
180 GrGLuint prependNames(GrGLuint count) override { | |
181 SkASSERT(fFirst > count); // We can't allocate at or below 0. | |
182 GrGLuint name = fLeft->prependNames(count); | |
183 SkASSERT(fLeft->first() == fFirst - count); | |
184 this->updateStats(); | |
185 return name; | |
186 } | |
187 | |
188 SparseNameRange* SK_WARN_UNUSED_RESULT free(GrGLuint name) override { | |
189 if (name < fLeft->end()) { | |
190 fLeft.reset(fLeft->free(name)); | |
191 if (nullptr == fLeft) { | |
192 // fLeft became empty after the free. | |
193 return fRight.detach(); | |
194 } | |
195 this->updateStats(); | |
196 return this->rebalance(); | |
197 } else { | |
198 fRight.reset(fRight->free(name)); | |
199 if (nullptr == fRight) { | |
200 // fRight became empty after the free. | |
201 return fLeft.detach(); | |
202 } | |
203 this->updateStats(); | |
204 return this->rebalance(); | |
205 } | |
206 } | |
207 | |
208 private: | |
209 typedef SkAutoTUnref<SparseNameRange> SparseNameTree::* ChildRange; | |
210 | |
211 SparseNameRange* SK_WARN_UNUSED_RESULT rebalance() { | |
212 if (fLeft->height() > fRight->height() + 1) { | |
213 return this->rebalanceImpl<&SparseNameTree::fLeft, &SparseNameTree::
fRight>(); | |
214 } | |
215 if (fRight->height() > fLeft->height() + 1) { | |
216 return this->rebalanceImpl<&SparseNameTree::fRight, &SparseNameTree:
:fLeft>(); | |
217 } | |
218 return this->takeRef(); | |
219 } | |
220 | |
221 /** | |
222 * Rebalance the tree using rotations, as described in the AVL algorithm: | |
223 * http://en.wikipedia.org/wiki/AVL_tree#Insertion | |
224 */ | |
225 template<ChildRange Tall, ChildRange Short> | |
226 SparseNameRange* SK_WARN_UNUSED_RESULT rebalanceImpl() { | |
227 // We should be calling rebalance() enough that the tree never gets more | |
228 // than one rotation off balance. | |
229 SkASSERT(2 == (this->*Tall)->height() - (this->*Short)->height()); | |
230 | |
231 // Ensure we are in the 'Left Left' or 'Right Right' case: | |
232 // http://en.wikipedia.org/wiki/AVL_tree#Insertion | |
233 SparseNameTree* tallChild = static_cast<SparseNameTree*>((this->*Tall).g
et()); | |
234 if ((tallChild->*Tall)->height() < (tallChild->*Short)->height()) { | |
235 (this->*Tall).reset(tallChild->rotate<Short, Tall>()); | |
236 } | |
237 | |
238 // Perform a rotation to balance the tree. | |
239 return this->rotate<Tall, Short>(); | |
240 } | |
241 | |
242 /** | |
243 * Perform a node rotation, as described in the AVL algorithm: | |
244 * http://en.wikipedia.org/wiki/AVL_tree#Insertion | |
245 */ | |
246 template<ChildRange Tall, ChildRange Short> | |
247 SparseNameRange* SK_WARN_UNUSED_RESULT rotate() { | |
248 SparseNameTree* newRoot = static_cast<SparseNameTree*>((this->*Tall).det
ach()); | |
249 | |
250 (this->*Tall).reset((newRoot->*Short).detach()); | |
251 this->updateStats(); | |
252 | |
253 (newRoot->*Short).reset(this->takeRef()); | |
254 newRoot->updateStats(); | |
255 | |
256 return newRoot; | |
257 } | |
258 | |
259 void updateStats() { | |
260 SkASSERT(fLeft->end() < fRight->first()); // There must be a gap between
left and right. | |
261 fFirst = fLeft->first(); | |
262 fEnd = fRight->end(); | |
263 fHeight = 1 + SkMax32(fLeft->height(), fRight->height()); | |
264 } | |
265 | |
266 SkAutoTUnref<SparseNameRange> fLeft; | |
267 SkAutoTUnref<SparseNameRange> fRight; | |
268 }; | |
269 | |
270 /** | |
271 * This class is the SparseNameRange implementation for a leaf node. It just a | |
272 * contiguous range of allocated names. | |
273 */ | |
274 class GrGLNameAllocator::ContiguousNameRange : public SparseNameRange { | |
275 public: | |
276 ContiguousNameRange(GrGLuint first, GrGLuint end) { | |
277 SkASSERT(first < end); | |
278 fFirst = first; | |
279 fEnd = end; | |
280 fHeight = 0; | |
281 } | |
282 | |
283 SparseNameRange* SK_WARN_UNUSED_RESULT internalAllocate(GrGLuint* outName) o
verride { | |
284 *outName = 0; // No internal gaps, we are contiguous. | |
285 return this->takeRef(); | |
286 } | |
287 | |
288 SparseNameRange* SK_WARN_UNUSED_RESULT removeLeftmostContiguousRange(GrGLuin
t* removedCount) override { | |
289 *removedCount = fEnd - fFirst; | |
290 return nullptr; | |
291 } | |
292 | |
293 GrGLuint appendNames(GrGLuint count) override { | |
294 SkASSERT(fEnd + count > fEnd); // Check for integer wrap. | |
295 GrGLuint name = fEnd; | |
296 fEnd += count; | |
297 return name; | |
298 } | |
299 | |
300 GrGLuint prependNames(GrGLuint count) override { | |
301 SkASSERT(fFirst > count); // We can't allocate at or below 0. | |
302 fFirst -= count; | |
303 return fFirst; | |
304 } | |
305 | |
306 SparseNameRange* SK_WARN_UNUSED_RESULT free(GrGLuint name) override { | |
307 if (name < fFirst || name >= fEnd) { | |
308 // Not-allocated names are silently ignored. | |
309 return this->takeRef(); | |
310 } | |
311 | |
312 if (fFirst == name) { | |
313 ++fFirst; | |
314 return (fEnd == fFirst) ? nullptr : this->takeRef(); | |
315 } | |
316 | |
317 if (fEnd == name + 1) { | |
318 --fEnd; | |
319 return this->takeRef(); | |
320 } | |
321 | |
322 SparseNameRange* left = new ContiguousNameRange(fFirst, name); | |
323 SparseNameRange* right = this->takeRef(); | |
324 fFirst = name + 1; | |
325 return new SparseNameTree(left, right); | |
326 } | |
327 }; | |
328 | |
329 GrGLNameAllocator::GrGLNameAllocator(GrGLuint firstName, GrGLuint endName) | |
330 : fFirstName(firstName), | |
331 fEndName(endName) { | |
332 SkASSERT(firstName > 0); | |
333 SkASSERT(endName > firstName); | |
334 } | |
335 | |
336 GrGLNameAllocator::~GrGLNameAllocator() { | |
337 } | |
338 | |
339 GrGLuint GrGLNameAllocator::allocateName() { | |
340 if (nullptr == fAllocatedNames.get()) { | |
341 fAllocatedNames.reset(new ContiguousNameRange(fFirstName, fFirstName + 1
)); | |
342 return fFirstName; | |
343 } | |
344 | |
345 if (fAllocatedNames->first() > fFirstName) { | |
346 return fAllocatedNames->prependNames(1); | |
347 } | |
348 | |
349 GrGLuint name; | |
350 fAllocatedNames.reset(fAllocatedNames->internalAllocate(&name)); | |
351 if (0 != name) { | |
352 return name; | |
353 } | |
354 | |
355 if (fAllocatedNames->end() < fEndName) { | |
356 return fAllocatedNames->appendNames(1); | |
357 } | |
358 | |
359 // Out of names. | |
360 return 0; | |
361 } | |
362 | |
363 void GrGLNameAllocator::free(GrGLuint name) { | |
364 if (!fAllocatedNames.get()) { | |
365 // Not-allocated names are silently ignored. | |
366 return; | |
367 } | |
368 | |
369 fAllocatedNames.reset(fAllocatedNames->free(name)); | |
370 } | |
OLD | NEW |