Index: src/arm/stub-cache-arm.cc |
diff --git a/src/arm/stub-cache-arm.cc b/src/arm/stub-cache-arm.cc |
index dd5db3054e9bf42db69cd5236a759fd438275d95..a194dfae5b0099a00e3ef77ec7be6c5d7ab7d5b4 100644 |
--- a/src/arm/stub-cache-arm.cc |
+++ b/src/arm/stub-cache-arm.cc |
@@ -1053,6 +1053,42 @@ static void StoreIntAsFloat(MacroAssembler* masm, |
} |
+// Convert unsigned integer with specified number of leading zeroes in binary |
+// representation to IEEE 754 double. |
+// Integer to convert is passed in register hiword. |
+// Resulting double is returned in registers hiword:loword. |
+// This functions does not work correctly for 0. |
+static void GenerateUInt2Double(MacroAssembler* masm, |
+ Register hiword, |
+ Register loword, |
+ Register scratch, |
+ int leading_zeroes) { |
+ const int meaningful_bits = kBitsPerInt - leading_zeroes - 1; |
+ const int biased_exponent = HeapNumber::kExponentBias + meaningful_bits; |
+ |
+ const int mantissa_shift_for_hi_word = |
+ meaningful_bits - HeapNumber::kMantissaBitsInTopWord; |
+ |
+ const int mantissa_shift_for_lo_word = |
+ kBitsPerInt - mantissa_shift_for_hi_word; |
+ |
+ __ mov(scratch, Operand(biased_exponent << HeapNumber::kExponentShift)); |
+ if (mantissa_shift_for_hi_word > 0) { |
+ __ mov(loword, Operand(hiword, LSL, mantissa_shift_for_lo_word)); |
+ __ orr(hiword, scratch, Operand(hiword, LSR, mantissa_shift_for_hi_word)); |
+ } else { |
+ __ mov(loword, Operand(0, RelocInfo::NONE)); |
+ __ orr(hiword, scratch, Operand(hiword, LSL, mantissa_shift_for_hi_word)); |
+ } |
+ |
+ // If least significant bit of biased exponent was not 1 it was corrupted |
+ // by most significant bit of mantissa so we should fix that. |
+ if (!(biased_exponent & 1)) { |
+ __ bic(hiword, hiword, Operand(1 << HeapNumber::kExponentShift)); |
+ } |
+} |
+ |
+ |
#undef __ |
#define __ ACCESS_MASM(masm()) |
@@ -3283,17 +3319,9 @@ Handle<Code> KeyedLoadStubCompiler::CompileLoadElement( |
// -- r1 : receiver |
// ----------------------------------- |
ElementsKind elements_kind = receiver_map->elements_kind(); |
- if (receiver_map->has_fast_elements() || |
- receiver_map->has_external_array_elements()) { |
- Handle<Code> stub = KeyedLoadFastElementStub( |
- receiver_map->instance_type() == JS_ARRAY_TYPE, |
- elements_kind).GetCode(); |
- __ DispatchMap(r1, r2, receiver_map, stub, DO_SMI_CHECK); |
- } else { |
- Handle<Code> stub = |
- KeyedLoadDictionaryElementStub().GetCode(); |
- __ DispatchMap(r1, r2, receiver_map, stub, DO_SMI_CHECK); |
- } |
+ Handle<Code> stub = KeyedLoadElementStub(elements_kind).GetCode(); |
+ |
+ __ DispatchMap(r1, r2, receiver_map, stub, DO_SMI_CHECK); |
Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Miss(); |
__ Jump(ic, RelocInfo::CODE_TARGET); |
@@ -3698,6 +3726,339 @@ static void GenerateSmiKeyCheck(MacroAssembler* masm, |
} |
+void KeyedLoadStubCompiler::GenerateLoadExternalArray( |
+ MacroAssembler* masm, |
+ ElementsKind elements_kind) { |
+ // ---------- S t a t e -------------- |
+ // -- lr : return address |
+ // -- r0 : key |
+ // -- r1 : receiver |
+ // ----------------------------------- |
+ Label miss_force_generic, slow, failed_allocation; |
+ |
+ Register key = r0; |
+ Register receiver = r1; |
+ |
+ // This stub is meant to be tail-jumped to, the receiver must already |
+ // have been verified by the caller to not be a smi. |
+ |
+ // Check that the key is a smi or a heap number convertible to a smi. |
+ GenerateSmiKeyCheck(masm, key, r4, r5, d1, d2, &miss_force_generic); |
+ |
+ __ ldr(r3, FieldMemOperand(receiver, JSObject::kElementsOffset)); |
+ // r3: elements array |
+ |
+ // Check that the index is in range. |
+ __ ldr(ip, FieldMemOperand(r3, ExternalArray::kLengthOffset)); |
+ __ cmp(key, ip); |
+ // Unsigned comparison catches both negative and too-large values. |
+ __ b(hs, &miss_force_generic); |
+ |
+ __ ldr(r3, FieldMemOperand(r3, ExternalArray::kExternalPointerOffset)); |
+ // r3: base pointer of external storage |
+ |
+ // We are not untagging smi key and instead work with it |
+ // as if it was premultiplied by 2. |
+ STATIC_ASSERT((kSmiTag == 0) && (kSmiTagSize == 1)); |
+ |
+ Register value = r2; |
+ switch (elements_kind) { |
+ case EXTERNAL_BYTE_ELEMENTS: |
+ __ ldrsb(value, MemOperand(r3, key, LSR, 1)); |
+ break; |
+ case EXTERNAL_PIXEL_ELEMENTS: |
+ case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: |
+ __ ldrb(value, MemOperand(r3, key, LSR, 1)); |
+ break; |
+ case EXTERNAL_SHORT_ELEMENTS: |
+ __ ldrsh(value, MemOperand(r3, key, LSL, 0)); |
+ break; |
+ case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: |
+ __ ldrh(value, MemOperand(r3, key, LSL, 0)); |
+ break; |
+ case EXTERNAL_INT_ELEMENTS: |
+ case EXTERNAL_UNSIGNED_INT_ELEMENTS: |
+ __ ldr(value, MemOperand(r3, key, LSL, 1)); |
+ break; |
+ case EXTERNAL_FLOAT_ELEMENTS: |
+ if (CpuFeatures::IsSupported(VFP2)) { |
+ CpuFeatures::Scope scope(VFP2); |
+ __ add(r2, r3, Operand(key, LSL, 1)); |
+ __ vldr(s0, r2, 0); |
+ } else { |
+ __ ldr(value, MemOperand(r3, key, LSL, 1)); |
+ } |
+ break; |
+ case EXTERNAL_DOUBLE_ELEMENTS: |
+ if (CpuFeatures::IsSupported(VFP2)) { |
+ CpuFeatures::Scope scope(VFP2); |
+ __ add(r2, r3, Operand(key, LSL, 2)); |
+ __ vldr(d0, r2, 0); |
+ } else { |
+ __ add(r4, r3, Operand(key, LSL, 2)); |
+ // r4: pointer to the beginning of the double we want to load. |
+ __ ldr(r2, MemOperand(r4, 0)); |
+ __ ldr(r3, MemOperand(r4, Register::kSizeInBytes)); |
+ } |
+ break; |
+ case FAST_ELEMENTS: |
+ case FAST_SMI_ELEMENTS: |
+ case FAST_DOUBLE_ELEMENTS: |
+ case FAST_HOLEY_ELEMENTS: |
+ case FAST_HOLEY_SMI_ELEMENTS: |
+ case FAST_HOLEY_DOUBLE_ELEMENTS: |
+ case DICTIONARY_ELEMENTS: |
+ case NON_STRICT_ARGUMENTS_ELEMENTS: |
+ UNREACHABLE(); |
+ break; |
+ } |
+ |
+ // For integer array types: |
+ // r2: value |
+ // For float array type: |
+ // s0: value (if VFP3 is supported) |
+ // r2: value (if VFP3 is not supported) |
+ // For double array type: |
+ // d0: value (if VFP3 is supported) |
+ // r2/r3: value (if VFP3 is not supported) |
+ |
+ if (elements_kind == EXTERNAL_INT_ELEMENTS) { |
+ // For the Int and UnsignedInt array types, we need to see whether |
+ // the value can be represented in a Smi. If not, we need to convert |
+ // it to a HeapNumber. |
+ Label box_int; |
+ __ cmp(value, Operand(0xC0000000)); |
+ __ b(mi, &box_int); |
+ // Tag integer as smi and return it. |
+ __ mov(r0, Operand(value, LSL, kSmiTagSize)); |
+ __ Ret(); |
+ |
+ __ bind(&box_int); |
+ if (CpuFeatures::IsSupported(VFP2)) { |
+ CpuFeatures::Scope scope(VFP2); |
+ // Allocate a HeapNumber for the result and perform int-to-double |
+ // conversion. Don't touch r0 or r1 as they are needed if allocation |
+ // fails. |
+ __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex); |
+ |
+ __ AllocateHeapNumber(r5, r3, r4, r6, &slow, DONT_TAG_RESULT); |
+ // Now we can use r0 for the result as key is not needed any more. |
+ __ add(r0, r5, Operand(kHeapObjectTag)); |
+ __ vmov(s0, value); |
+ __ vcvt_f64_s32(d0, s0); |
+ __ vstr(d0, r5, HeapNumber::kValueOffset); |
+ __ Ret(); |
+ } else { |
+ // Allocate a HeapNumber for the result and perform int-to-double |
+ // conversion. Don't touch r0 or r1 as they are needed if allocation |
+ // fails. |
+ __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex); |
+ __ AllocateHeapNumber(r5, r3, r4, r6, &slow, TAG_RESULT); |
+ // Now we can use r0 for the result as key is not needed any more. |
+ __ mov(r0, r5); |
+ Register dst_mantissa = r1; |
+ Register dst_exponent = r3; |
+ FloatingPointHelper::Destination dest = |
+ FloatingPointHelper::kCoreRegisters; |
+ FloatingPointHelper::ConvertIntToDouble(masm, |
+ value, |
+ dest, |
+ d0, |
+ dst_mantissa, |
+ dst_exponent, |
+ r9, |
+ s0); |
+ __ str(dst_mantissa, FieldMemOperand(r0, HeapNumber::kMantissaOffset)); |
+ __ str(dst_exponent, FieldMemOperand(r0, HeapNumber::kExponentOffset)); |
+ __ Ret(); |
+ } |
+ } else if (elements_kind == EXTERNAL_UNSIGNED_INT_ELEMENTS) { |
+ // The test is different for unsigned int values. Since we need |
+ // the value to be in the range of a positive smi, we can't |
+ // handle either of the top two bits being set in the value. |
+ if (CpuFeatures::IsSupported(VFP2)) { |
+ CpuFeatures::Scope scope(VFP2); |
+ Label box_int, done; |
+ __ tst(value, Operand(0xC0000000)); |
+ __ b(ne, &box_int); |
+ // Tag integer as smi and return it. |
+ __ mov(r0, Operand(value, LSL, kSmiTagSize)); |
+ __ Ret(); |
+ |
+ __ bind(&box_int); |
+ __ vmov(s0, value); |
+ // Allocate a HeapNumber for the result and perform int-to-double |
+ // conversion. Don't use r0 and r1 as AllocateHeapNumber clobbers all |
+ // registers - also when jumping due to exhausted young space. |
+ __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex); |
+ __ AllocateHeapNumber(r2, r3, r4, r6, &slow, DONT_TAG_RESULT); |
+ |
+ __ vcvt_f64_u32(d0, s0); |
+ __ vstr(d0, r2, HeapNumber::kValueOffset); |
+ |
+ __ add(r0, r2, Operand(kHeapObjectTag)); |
+ __ Ret(); |
+ } else { |
+ // Check whether unsigned integer fits into smi. |
+ Label box_int_0, box_int_1, done; |
+ __ tst(value, Operand(0x80000000)); |
+ __ b(ne, &box_int_0); |
+ __ tst(value, Operand(0x40000000)); |
+ __ b(ne, &box_int_1); |
+ // Tag integer as smi and return it. |
+ __ mov(r0, Operand(value, LSL, kSmiTagSize)); |
+ __ Ret(); |
+ |
+ Register hiword = value; // r2. |
+ Register loword = r3; |
+ |
+ __ bind(&box_int_0); |
+ // Integer does not have leading zeros. |
+ GenerateUInt2Double(masm, hiword, loword, r4, 0); |
+ __ b(&done); |
+ |
+ __ bind(&box_int_1); |
+ // Integer has one leading zero. |
+ GenerateUInt2Double(masm, hiword, loword, r4, 1); |
+ |
+ |
+ __ bind(&done); |
+ // Integer was converted to double in registers hiword:loword. |
+ // Wrap it into a HeapNumber. Don't use r0 and r1 as AllocateHeapNumber |
+ // clobbers all registers - also when jumping due to exhausted young |
+ // space. |
+ __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex); |
+ __ AllocateHeapNumber(r4, r5, r7, r6, &slow, TAG_RESULT); |
+ |
+ __ str(hiword, FieldMemOperand(r4, HeapNumber::kExponentOffset)); |
+ __ str(loword, FieldMemOperand(r4, HeapNumber::kMantissaOffset)); |
+ |
+ __ mov(r0, r4); |
+ __ Ret(); |
+ } |
+ } else if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) { |
+ // For the floating-point array type, we need to always allocate a |
+ // HeapNumber. |
+ if (CpuFeatures::IsSupported(VFP2)) { |
+ CpuFeatures::Scope scope(VFP2); |
+ // Allocate a HeapNumber for the result. Don't use r0 and r1 as |
+ // AllocateHeapNumber clobbers all registers - also when jumping due to |
+ // exhausted young space. |
+ __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex); |
+ __ AllocateHeapNumber(r2, r3, r4, r6, &slow, DONT_TAG_RESULT); |
+ __ vcvt_f64_f32(d0, s0); |
+ __ vstr(d0, r2, HeapNumber::kValueOffset); |
+ |
+ __ add(r0, r2, Operand(kHeapObjectTag)); |
+ __ Ret(); |
+ } else { |
+ // Allocate a HeapNumber for the result. Don't use r0 and r1 as |
+ // AllocateHeapNumber clobbers all registers - also when jumping due to |
+ // exhausted young space. |
+ __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex); |
+ __ AllocateHeapNumber(r3, r4, r5, r6, &slow, TAG_RESULT); |
+ // VFP is not available, do manual single to double conversion. |
+ |
+ // r2: floating point value (binary32) |
+ // r3: heap number for result |
+ |
+ // Extract mantissa to r0. OK to clobber r0 now as there are no jumps to |
+ // the slow case from here. |
+ __ and_(r0, value, Operand(kBinary32MantissaMask)); |
+ |
+ // Extract exponent to r1. OK to clobber r1 now as there are no jumps to |
+ // the slow case from here. |
+ __ mov(r1, Operand(value, LSR, kBinary32MantissaBits)); |
+ __ and_(r1, r1, Operand(kBinary32ExponentMask >> kBinary32MantissaBits)); |
+ |
+ Label exponent_rebiased; |
+ __ teq(r1, Operand(0x00)); |
+ __ b(eq, &exponent_rebiased); |
+ |
+ __ teq(r1, Operand(0xff)); |
+ __ mov(r1, Operand(0x7ff), LeaveCC, eq); |
+ __ b(eq, &exponent_rebiased); |
+ |
+ // Rebias exponent. |
+ __ add(r1, |
+ r1, |
+ Operand(-kBinary32ExponentBias + HeapNumber::kExponentBias)); |
+ |
+ __ bind(&exponent_rebiased); |
+ __ and_(r2, value, Operand(kBinary32SignMask)); |
+ value = no_reg; |
+ __ orr(r2, r2, Operand(r1, LSL, HeapNumber::kMantissaBitsInTopWord)); |
+ |
+ // Shift mantissa. |
+ static const int kMantissaShiftForHiWord = |
+ kBinary32MantissaBits - HeapNumber::kMantissaBitsInTopWord; |
+ |
+ static const int kMantissaShiftForLoWord = |
+ kBitsPerInt - kMantissaShiftForHiWord; |
+ |
+ __ orr(r2, r2, Operand(r0, LSR, kMantissaShiftForHiWord)); |
+ __ mov(r0, Operand(r0, LSL, kMantissaShiftForLoWord)); |
+ |
+ __ str(r2, FieldMemOperand(r3, HeapNumber::kExponentOffset)); |
+ __ str(r0, FieldMemOperand(r3, HeapNumber::kMantissaOffset)); |
+ |
+ __ mov(r0, r3); |
+ __ Ret(); |
+ } |
+ } else if (elements_kind == EXTERNAL_DOUBLE_ELEMENTS) { |
+ if (CpuFeatures::IsSupported(VFP2)) { |
+ CpuFeatures::Scope scope(VFP2); |
+ // Allocate a HeapNumber for the result. Don't use r0 and r1 as |
+ // AllocateHeapNumber clobbers all registers - also when jumping due to |
+ // exhausted young space. |
+ __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex); |
+ __ AllocateHeapNumber(r2, r3, r4, r6, &slow, DONT_TAG_RESULT); |
+ __ vstr(d0, r2, HeapNumber::kValueOffset); |
+ |
+ __ add(r0, r2, Operand(kHeapObjectTag)); |
+ __ Ret(); |
+ } else { |
+ // Allocate a HeapNumber for the result. Don't use r0 and r1 as |
+ // AllocateHeapNumber clobbers all registers - also when jumping due to |
+ // exhausted young space. |
+ __ LoadRoot(r7, Heap::kHeapNumberMapRootIndex); |
+ __ AllocateHeapNumber(r4, r5, r6, r7, &slow, TAG_RESULT); |
+ |
+ __ str(r2, FieldMemOperand(r4, HeapNumber::kMantissaOffset)); |
+ __ str(r3, FieldMemOperand(r4, HeapNumber::kExponentOffset)); |
+ __ mov(r0, r4); |
+ __ Ret(); |
+ } |
+ |
+ } else { |
+ // Tag integer as smi and return it. |
+ __ mov(r0, Operand(value, LSL, kSmiTagSize)); |
+ __ Ret(); |
+ } |
+ |
+ // Slow case, key and receiver still in r0 and r1. |
+ __ bind(&slow); |
+ __ IncrementCounter( |
+ masm->isolate()->counters()->keyed_load_external_array_slow(), |
+ 1, r2, r3); |
+ |
+ // ---------- S t a t e -------------- |
+ // -- lr : return address |
+ // -- r0 : key |
+ // -- r1 : receiver |
+ // ----------------------------------- |
+ |
+ __ Push(r1, r0); |
+ |
+ __ TailCallRuntime(Runtime::kKeyedGetProperty, 2, 1); |
+ |
+ __ bind(&miss_force_generic); |
+ Handle<Code> stub = |
+ masm->isolate()->builtins()->KeyedLoadIC_MissForceGeneric(); |
+ __ Jump(stub, RelocInfo::CODE_TARGET); |
+} |
+ |
+ |
void KeyedStoreStubCompiler::GenerateStoreExternalArray( |
MacroAssembler* masm, |
ElementsKind elements_kind) { |
@@ -4042,6 +4403,118 @@ void KeyedStoreStubCompiler::GenerateStoreExternalArray( |
} |
+void KeyedLoadStubCompiler::GenerateLoadFastElement(MacroAssembler* masm) { |
+ // ----------- S t a t e ------------- |
+ // -- lr : return address |
+ // -- r0 : key |
+ // -- r1 : receiver |
+ // ----------------------------------- |
+ Label miss_force_generic; |
+ |
+ // This stub is meant to be tail-jumped to, the receiver must already |
+ // have been verified by the caller to not be a smi. |
+ |
+ // Check that the key is a smi or a heap number convertible to a smi. |
+ GenerateSmiKeyCheck(masm, r0, r4, r5, d1, d2, &miss_force_generic); |
+ |
+ // Get the elements array. |
+ __ ldr(r2, FieldMemOperand(r1, JSObject::kElementsOffset)); |
+ __ AssertFastElements(r2); |
+ |
+ // Check that the key is within bounds. |
+ __ ldr(r3, FieldMemOperand(r2, FixedArray::kLengthOffset)); |
+ __ cmp(r0, Operand(r3)); |
+ __ b(hs, &miss_force_generic); |
+ |
+ // Load the result and make sure it's not the hole. |
+ __ add(r3, r2, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
+ STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2); |
+ __ ldr(r4, |
+ MemOperand(r3, r0, LSL, kPointerSizeLog2 - kSmiTagSize)); |
+ __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); |
+ __ cmp(r4, ip); |
+ __ b(eq, &miss_force_generic); |
+ __ mov(r0, r4); |
+ __ Ret(); |
+ |
+ __ bind(&miss_force_generic); |
+ Handle<Code> stub = |
+ masm->isolate()->builtins()->KeyedLoadIC_MissForceGeneric(); |
+ __ Jump(stub, RelocInfo::CODE_TARGET); |
+} |
+ |
+ |
+void KeyedLoadStubCompiler::GenerateLoadFastDoubleElement( |
+ MacroAssembler* masm) { |
+ // ----------- S t a t e ------------- |
+ // -- lr : return address |
+ // -- r0 : key |
+ // -- r1 : receiver |
+ // ----------------------------------- |
+ Label miss_force_generic, slow_allocate_heapnumber; |
+ |
+ Register key_reg = r0; |
+ Register receiver_reg = r1; |
+ Register elements_reg = r2; |
+ Register heap_number_reg = r2; |
+ Register indexed_double_offset = r3; |
+ Register scratch = r4; |
+ Register scratch2 = r5; |
+ Register scratch3 = r6; |
+ Register heap_number_map = r7; |
+ |
+ // This stub is meant to be tail-jumped to, the receiver must already |
+ // have been verified by the caller to not be a smi. |
+ |
+ // Check that the key is a smi or a heap number convertible to a smi. |
+ GenerateSmiKeyCheck(masm, key_reg, r4, r5, d1, d2, &miss_force_generic); |
+ |
+ // Get the elements array. |
+ __ ldr(elements_reg, |
+ FieldMemOperand(receiver_reg, JSObject::kElementsOffset)); |
+ |
+ // Check that the key is within bounds. |
+ __ ldr(scratch, FieldMemOperand(elements_reg, FixedArray::kLengthOffset)); |
+ __ cmp(key_reg, Operand(scratch)); |
+ __ b(hs, &miss_force_generic); |
+ |
+ // Load the upper word of the double in the fixed array and test for NaN. |
+ __ add(indexed_double_offset, elements_reg, |
+ Operand(key_reg, LSL, kDoubleSizeLog2 - kSmiTagSize)); |
+ uint32_t upper_32_offset = FixedArray::kHeaderSize + sizeof(kHoleNanLower32); |
+ __ ldr(scratch, FieldMemOperand(indexed_double_offset, upper_32_offset)); |
+ __ cmp(scratch, Operand(kHoleNanUpper32)); |
+ __ b(&miss_force_generic, eq); |
+ |
+ // Non-NaN. Allocate a new heap number and copy the double value into it. |
+ __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
+ __ AllocateHeapNumber(heap_number_reg, scratch2, scratch3, |
+ heap_number_map, &slow_allocate_heapnumber, TAG_RESULT); |
+ |
+ // Don't need to reload the upper 32 bits of the double, it's already in |
+ // scratch. |
+ __ str(scratch, FieldMemOperand(heap_number_reg, |
+ HeapNumber::kExponentOffset)); |
+ __ ldr(scratch, FieldMemOperand(indexed_double_offset, |
+ FixedArray::kHeaderSize)); |
+ __ str(scratch, FieldMemOperand(heap_number_reg, |
+ HeapNumber::kMantissaOffset)); |
+ |
+ __ mov(r0, heap_number_reg); |
+ __ Ret(); |
+ |
+ __ bind(&slow_allocate_heapnumber); |
+ Handle<Code> slow_ic = |
+ masm->isolate()->builtins()->KeyedLoadIC_Slow(); |
+ __ Jump(slow_ic, RelocInfo::CODE_TARGET); |
+ |
+ __ bind(&miss_force_generic); |
+ Handle<Code> miss_ic = |
+ masm->isolate()->builtins()->KeyedLoadIC_MissForceGeneric(); |
+ __ Jump(miss_ic, RelocInfo::CODE_TARGET); |
+} |
+ |
+ |
void KeyedStoreStubCompiler::GenerateStoreFastElement( |
MacroAssembler* masm, |
bool is_js_array, |