| Index: src/arm/stub-cache-arm.cc
|
| diff --git a/src/arm/stub-cache-arm.cc b/src/arm/stub-cache-arm.cc
|
| index e79c520bf0bbb1e5a7b1b38b987d64259828bf5b..4604c33312f7034fb8fc48ded5ca0cbf520fec6a 100644
|
| --- a/src/arm/stub-cache-arm.cc
|
| +++ b/src/arm/stub-cache-arm.cc
|
| @@ -1053,6 +1053,42 @@ static void StoreIntAsFloat(MacroAssembler* masm,
|
| }
|
|
|
|
|
| +// Convert unsigned integer with specified number of leading zeroes in binary
|
| +// representation to IEEE 754 double.
|
| +// Integer to convert is passed in register hiword.
|
| +// Resulting double is returned in registers hiword:loword.
|
| +// This functions does not work correctly for 0.
|
| +static void GenerateUInt2Double(MacroAssembler* masm,
|
| + Register hiword,
|
| + Register loword,
|
| + Register scratch,
|
| + int leading_zeroes) {
|
| + const int meaningful_bits = kBitsPerInt - leading_zeroes - 1;
|
| + const int biased_exponent = HeapNumber::kExponentBias + meaningful_bits;
|
| +
|
| + const int mantissa_shift_for_hi_word =
|
| + meaningful_bits - HeapNumber::kMantissaBitsInTopWord;
|
| +
|
| + const int mantissa_shift_for_lo_word =
|
| + kBitsPerInt - mantissa_shift_for_hi_word;
|
| +
|
| + __ mov(scratch, Operand(biased_exponent << HeapNumber::kExponentShift));
|
| + if (mantissa_shift_for_hi_word > 0) {
|
| + __ mov(loword, Operand(hiword, LSL, mantissa_shift_for_lo_word));
|
| + __ orr(hiword, scratch, Operand(hiword, LSR, mantissa_shift_for_hi_word));
|
| + } else {
|
| + __ mov(loword, Operand(0, RelocInfo::NONE));
|
| + __ orr(hiword, scratch, Operand(hiword, LSL, mantissa_shift_for_hi_word));
|
| + }
|
| +
|
| + // If least significant bit of biased exponent was not 1 it was corrupted
|
| + // by most significant bit of mantissa so we should fix that.
|
| + if (!(biased_exponent & 1)) {
|
| + __ bic(hiword, hiword, Operand(1 << HeapNumber::kExponentShift));
|
| + }
|
| +}
|
| +
|
| +
|
| #undef __
|
| #define __ ACCESS_MASM(masm())
|
|
|
| @@ -3283,17 +3319,9 @@ Handle<Code> KeyedLoadStubCompiler::CompileLoadElement(
|
| // -- r1 : receiver
|
| // -----------------------------------
|
| ElementsKind elements_kind = receiver_map->elements_kind();
|
| - if (receiver_map->has_fast_elements() ||
|
| - receiver_map->has_external_array_elements()) {
|
| - Handle<Code> stub = KeyedLoadFastElementStub(
|
| - receiver_map->instance_type() == JS_ARRAY_TYPE,
|
| - elements_kind).GetCode();
|
| - __ DispatchMap(r1, r2, receiver_map, stub, DO_SMI_CHECK);
|
| - } else {
|
| - Handle<Code> stub =
|
| - KeyedLoadDictionaryElementStub().GetCode();
|
| - __ DispatchMap(r1, r2, receiver_map, stub, DO_SMI_CHECK);
|
| - }
|
| + Handle<Code> stub = KeyedLoadElementStub(elements_kind).GetCode();
|
| +
|
| + __ DispatchMap(r1, r2, receiver_map, stub, DO_SMI_CHECK);
|
|
|
| Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Miss();
|
| __ Jump(ic, RelocInfo::CODE_TARGET);
|
| @@ -3698,6 +3726,339 @@ static void GenerateSmiKeyCheck(MacroAssembler* masm,
|
| }
|
|
|
|
|
| +void KeyedLoadStubCompiler::GenerateLoadExternalArray(
|
| + MacroAssembler* masm,
|
| + ElementsKind elements_kind) {
|
| + // ---------- S t a t e --------------
|
| + // -- lr : return address
|
| + // -- r0 : key
|
| + // -- r1 : receiver
|
| + // -----------------------------------
|
| + Label miss_force_generic, slow, failed_allocation;
|
| +
|
| + Register key = r0;
|
| + Register receiver = r1;
|
| +
|
| + // This stub is meant to be tail-jumped to, the receiver must already
|
| + // have been verified by the caller to not be a smi.
|
| +
|
| + // Check that the key is a smi or a heap number convertible to a smi.
|
| + GenerateSmiKeyCheck(masm, key, r4, r5, d1, d2, &miss_force_generic);
|
| +
|
| + __ ldr(r3, FieldMemOperand(receiver, JSObject::kElementsOffset));
|
| + // r3: elements array
|
| +
|
| + // Check that the index is in range.
|
| + __ ldr(ip, FieldMemOperand(r3, ExternalArray::kLengthOffset));
|
| + __ cmp(key, ip);
|
| + // Unsigned comparison catches both negative and too-large values.
|
| + __ b(hs, &miss_force_generic);
|
| +
|
| + __ ldr(r3, FieldMemOperand(r3, ExternalArray::kExternalPointerOffset));
|
| + // r3: base pointer of external storage
|
| +
|
| + // We are not untagging smi key and instead work with it
|
| + // as if it was premultiplied by 2.
|
| + STATIC_ASSERT((kSmiTag == 0) && (kSmiTagSize == 1));
|
| +
|
| + Register value = r2;
|
| + switch (elements_kind) {
|
| + case EXTERNAL_BYTE_ELEMENTS:
|
| + __ ldrsb(value, MemOperand(r3, key, LSR, 1));
|
| + break;
|
| + case EXTERNAL_PIXEL_ELEMENTS:
|
| + case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
|
| + __ ldrb(value, MemOperand(r3, key, LSR, 1));
|
| + break;
|
| + case EXTERNAL_SHORT_ELEMENTS:
|
| + __ ldrsh(value, MemOperand(r3, key, LSL, 0));
|
| + break;
|
| + case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
|
| + __ ldrh(value, MemOperand(r3, key, LSL, 0));
|
| + break;
|
| + case EXTERNAL_INT_ELEMENTS:
|
| + case EXTERNAL_UNSIGNED_INT_ELEMENTS:
|
| + __ ldr(value, MemOperand(r3, key, LSL, 1));
|
| + break;
|
| + case EXTERNAL_FLOAT_ELEMENTS:
|
| + if (CpuFeatures::IsSupported(VFP2)) {
|
| + CpuFeatures::Scope scope(VFP2);
|
| + __ add(r2, r3, Operand(key, LSL, 1));
|
| + __ vldr(s0, r2, 0);
|
| + } else {
|
| + __ ldr(value, MemOperand(r3, key, LSL, 1));
|
| + }
|
| + break;
|
| + case EXTERNAL_DOUBLE_ELEMENTS:
|
| + if (CpuFeatures::IsSupported(VFP2)) {
|
| + CpuFeatures::Scope scope(VFP2);
|
| + __ add(r2, r3, Operand(key, LSL, 2));
|
| + __ vldr(d0, r2, 0);
|
| + } else {
|
| + __ add(r4, r3, Operand(key, LSL, 2));
|
| + // r4: pointer to the beginning of the double we want to load.
|
| + __ ldr(r2, MemOperand(r4, 0));
|
| + __ ldr(r3, MemOperand(r4, Register::kSizeInBytes));
|
| + }
|
| + break;
|
| + case FAST_ELEMENTS:
|
| + case FAST_SMI_ELEMENTS:
|
| + case FAST_DOUBLE_ELEMENTS:
|
| + case FAST_HOLEY_ELEMENTS:
|
| + case FAST_HOLEY_SMI_ELEMENTS:
|
| + case FAST_HOLEY_DOUBLE_ELEMENTS:
|
| + case DICTIONARY_ELEMENTS:
|
| + case NON_STRICT_ARGUMENTS_ELEMENTS:
|
| + UNREACHABLE();
|
| + break;
|
| + }
|
| +
|
| + // For integer array types:
|
| + // r2: value
|
| + // For float array type:
|
| + // s0: value (if VFP3 is supported)
|
| + // r2: value (if VFP3 is not supported)
|
| + // For double array type:
|
| + // d0: value (if VFP3 is supported)
|
| + // r2/r3: value (if VFP3 is not supported)
|
| +
|
| + if (elements_kind == EXTERNAL_INT_ELEMENTS) {
|
| + // For the Int and UnsignedInt array types, we need to see whether
|
| + // the value can be represented in a Smi. If not, we need to convert
|
| + // it to a HeapNumber.
|
| + Label box_int;
|
| + __ cmp(value, Operand(0xC0000000));
|
| + __ b(mi, &box_int);
|
| + // Tag integer as smi and return it.
|
| + __ mov(r0, Operand(value, LSL, kSmiTagSize));
|
| + __ Ret();
|
| +
|
| + __ bind(&box_int);
|
| + if (CpuFeatures::IsSupported(VFP2)) {
|
| + CpuFeatures::Scope scope(VFP2);
|
| + // Allocate a HeapNumber for the result and perform int-to-double
|
| + // conversion. Don't touch r0 or r1 as they are needed if allocation
|
| + // fails.
|
| + __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
|
| +
|
| + __ AllocateHeapNumber(r5, r3, r4, r6, &slow, DONT_TAG_RESULT);
|
| + // Now we can use r0 for the result as key is not needed any more.
|
| + __ add(r0, r5, Operand(kHeapObjectTag));
|
| + __ vmov(s0, value);
|
| + __ vcvt_f64_s32(d0, s0);
|
| + __ vstr(d0, r5, HeapNumber::kValueOffset);
|
| + __ Ret();
|
| + } else {
|
| + // Allocate a HeapNumber for the result and perform int-to-double
|
| + // conversion. Don't touch r0 or r1 as they are needed if allocation
|
| + // fails.
|
| + __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
|
| + __ AllocateHeapNumber(r5, r3, r4, r6, &slow, TAG_RESULT);
|
| + // Now we can use r0 for the result as key is not needed any more.
|
| + __ mov(r0, r5);
|
| + Register dst_mantissa = r1;
|
| + Register dst_exponent = r3;
|
| + FloatingPointHelper::Destination dest =
|
| + FloatingPointHelper::kCoreRegisters;
|
| + FloatingPointHelper::ConvertIntToDouble(masm,
|
| + value,
|
| + dest,
|
| + d0,
|
| + dst_mantissa,
|
| + dst_exponent,
|
| + r9,
|
| + s0);
|
| + __ str(dst_mantissa, FieldMemOperand(r0, HeapNumber::kMantissaOffset));
|
| + __ str(dst_exponent, FieldMemOperand(r0, HeapNumber::kExponentOffset));
|
| + __ Ret();
|
| + }
|
| + } else if (elements_kind == EXTERNAL_UNSIGNED_INT_ELEMENTS) {
|
| + // The test is different for unsigned int values. Since we need
|
| + // the value to be in the range of a positive smi, we can't
|
| + // handle either of the top two bits being set in the value.
|
| + if (CpuFeatures::IsSupported(VFP2)) {
|
| + CpuFeatures::Scope scope(VFP2);
|
| + Label box_int, done;
|
| + __ tst(value, Operand(0xC0000000));
|
| + __ b(ne, &box_int);
|
| + // Tag integer as smi and return it.
|
| + __ mov(r0, Operand(value, LSL, kSmiTagSize));
|
| + __ Ret();
|
| +
|
| + __ bind(&box_int);
|
| + __ vmov(s0, value);
|
| + // Allocate a HeapNumber for the result and perform int-to-double
|
| + // conversion. Don't use r0 and r1 as AllocateHeapNumber clobbers all
|
| + // registers - also when jumping due to exhausted young space.
|
| + __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
|
| + __ AllocateHeapNumber(r2, r3, r4, r6, &slow, DONT_TAG_RESULT);
|
| +
|
| + __ vcvt_f64_u32(d0, s0);
|
| + __ vstr(d0, r2, HeapNumber::kValueOffset);
|
| +
|
| + __ add(r0, r2, Operand(kHeapObjectTag));
|
| + __ Ret();
|
| + } else {
|
| + // Check whether unsigned integer fits into smi.
|
| + Label box_int_0, box_int_1, done;
|
| + __ tst(value, Operand(0x80000000));
|
| + __ b(ne, &box_int_0);
|
| + __ tst(value, Operand(0x40000000));
|
| + __ b(ne, &box_int_1);
|
| + // Tag integer as smi and return it.
|
| + __ mov(r0, Operand(value, LSL, kSmiTagSize));
|
| + __ Ret();
|
| +
|
| + Register hiword = value; // r2.
|
| + Register loword = r3;
|
| +
|
| + __ bind(&box_int_0);
|
| + // Integer does not have leading zeros.
|
| + GenerateUInt2Double(masm, hiword, loword, r4, 0);
|
| + __ b(&done);
|
| +
|
| + __ bind(&box_int_1);
|
| + // Integer has one leading zero.
|
| + GenerateUInt2Double(masm, hiword, loword, r4, 1);
|
| +
|
| +
|
| + __ bind(&done);
|
| + // Integer was converted to double in registers hiword:loword.
|
| + // Wrap it into a HeapNumber. Don't use r0 and r1 as AllocateHeapNumber
|
| + // clobbers all registers - also when jumping due to exhausted young
|
| + // space.
|
| + __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
|
| + __ AllocateHeapNumber(r4, r5, r7, r6, &slow, TAG_RESULT);
|
| +
|
| + __ str(hiword, FieldMemOperand(r4, HeapNumber::kExponentOffset));
|
| + __ str(loword, FieldMemOperand(r4, HeapNumber::kMantissaOffset));
|
| +
|
| + __ mov(r0, r4);
|
| + __ Ret();
|
| + }
|
| + } else if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) {
|
| + // For the floating-point array type, we need to always allocate a
|
| + // HeapNumber.
|
| + if (CpuFeatures::IsSupported(VFP2)) {
|
| + CpuFeatures::Scope scope(VFP2);
|
| + // Allocate a HeapNumber for the result. Don't use r0 and r1 as
|
| + // AllocateHeapNumber clobbers all registers - also when jumping due to
|
| + // exhausted young space.
|
| + __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
|
| + __ AllocateHeapNumber(r2, r3, r4, r6, &slow, DONT_TAG_RESULT);
|
| + __ vcvt_f64_f32(d0, s0);
|
| + __ vstr(d0, r2, HeapNumber::kValueOffset);
|
| +
|
| + __ add(r0, r2, Operand(kHeapObjectTag));
|
| + __ Ret();
|
| + } else {
|
| + // Allocate a HeapNumber for the result. Don't use r0 and r1 as
|
| + // AllocateHeapNumber clobbers all registers - also when jumping due to
|
| + // exhausted young space.
|
| + __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
|
| + __ AllocateHeapNumber(r3, r4, r5, r6, &slow, TAG_RESULT);
|
| + // VFP is not available, do manual single to double conversion.
|
| +
|
| + // r2: floating point value (binary32)
|
| + // r3: heap number for result
|
| +
|
| + // Extract mantissa to r0. OK to clobber r0 now as there are no jumps to
|
| + // the slow case from here.
|
| + __ and_(r0, value, Operand(kBinary32MantissaMask));
|
| +
|
| + // Extract exponent to r1. OK to clobber r1 now as there are no jumps to
|
| + // the slow case from here.
|
| + __ mov(r1, Operand(value, LSR, kBinary32MantissaBits));
|
| + __ and_(r1, r1, Operand(kBinary32ExponentMask >> kBinary32MantissaBits));
|
| +
|
| + Label exponent_rebiased;
|
| + __ teq(r1, Operand(0x00));
|
| + __ b(eq, &exponent_rebiased);
|
| +
|
| + __ teq(r1, Operand(0xff));
|
| + __ mov(r1, Operand(0x7ff), LeaveCC, eq);
|
| + __ b(eq, &exponent_rebiased);
|
| +
|
| + // Rebias exponent.
|
| + __ add(r1,
|
| + r1,
|
| + Operand(-kBinary32ExponentBias + HeapNumber::kExponentBias));
|
| +
|
| + __ bind(&exponent_rebiased);
|
| + __ and_(r2, value, Operand(kBinary32SignMask));
|
| + value = no_reg;
|
| + __ orr(r2, r2, Operand(r1, LSL, HeapNumber::kMantissaBitsInTopWord));
|
| +
|
| + // Shift mantissa.
|
| + static const int kMantissaShiftForHiWord =
|
| + kBinary32MantissaBits - HeapNumber::kMantissaBitsInTopWord;
|
| +
|
| + static const int kMantissaShiftForLoWord =
|
| + kBitsPerInt - kMantissaShiftForHiWord;
|
| +
|
| + __ orr(r2, r2, Operand(r0, LSR, kMantissaShiftForHiWord));
|
| + __ mov(r0, Operand(r0, LSL, kMantissaShiftForLoWord));
|
| +
|
| + __ str(r2, FieldMemOperand(r3, HeapNumber::kExponentOffset));
|
| + __ str(r0, FieldMemOperand(r3, HeapNumber::kMantissaOffset));
|
| +
|
| + __ mov(r0, r3);
|
| + __ Ret();
|
| + }
|
| + } else if (elements_kind == EXTERNAL_DOUBLE_ELEMENTS) {
|
| + if (CpuFeatures::IsSupported(VFP2)) {
|
| + CpuFeatures::Scope scope(VFP2);
|
| + // Allocate a HeapNumber for the result. Don't use r0 and r1 as
|
| + // AllocateHeapNumber clobbers all registers - also when jumping due to
|
| + // exhausted young space.
|
| + __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
|
| + __ AllocateHeapNumber(r2, r3, r4, r6, &slow, DONT_TAG_RESULT);
|
| + __ vstr(d0, r2, HeapNumber::kValueOffset);
|
| +
|
| + __ add(r0, r2, Operand(kHeapObjectTag));
|
| + __ Ret();
|
| + } else {
|
| + // Allocate a HeapNumber for the result. Don't use r0 and r1 as
|
| + // AllocateHeapNumber clobbers all registers - also when jumping due to
|
| + // exhausted young space.
|
| + __ LoadRoot(r7, Heap::kHeapNumberMapRootIndex);
|
| + __ AllocateHeapNumber(r4, r5, r6, r7, &slow, TAG_RESULT);
|
| +
|
| + __ str(r2, FieldMemOperand(r4, HeapNumber::kMantissaOffset));
|
| + __ str(r3, FieldMemOperand(r4, HeapNumber::kExponentOffset));
|
| + __ mov(r0, r4);
|
| + __ Ret();
|
| + }
|
| +
|
| + } else {
|
| + // Tag integer as smi and return it.
|
| + __ mov(r0, Operand(value, LSL, kSmiTagSize));
|
| + __ Ret();
|
| + }
|
| +
|
| + // Slow case, key and receiver still in r0 and r1.
|
| + __ bind(&slow);
|
| + __ IncrementCounter(
|
| + masm->isolate()->counters()->keyed_load_external_array_slow(),
|
| + 1, r2, r3);
|
| +
|
| + // ---------- S t a t e --------------
|
| + // -- lr : return address
|
| + // -- r0 : key
|
| + // -- r1 : receiver
|
| + // -----------------------------------
|
| +
|
| + __ Push(r1, r0);
|
| +
|
| + __ TailCallRuntime(Runtime::kKeyedGetProperty, 2, 1);
|
| +
|
| + __ bind(&miss_force_generic);
|
| + Handle<Code> stub =
|
| + masm->isolate()->builtins()->KeyedLoadIC_MissForceGeneric();
|
| + __ Jump(stub, RelocInfo::CODE_TARGET);
|
| +}
|
| +
|
| +
|
| void KeyedStoreStubCompiler::GenerateStoreExternalArray(
|
| MacroAssembler* masm,
|
| ElementsKind elements_kind) {
|
| @@ -4042,6 +4403,118 @@ void KeyedStoreStubCompiler::GenerateStoreExternalArray(
|
| }
|
|
|
|
|
| +void KeyedLoadStubCompiler::GenerateLoadFastElement(MacroAssembler* masm) {
|
| + // ----------- S t a t e -------------
|
| + // -- lr : return address
|
| + // -- r0 : key
|
| + // -- r1 : receiver
|
| + // -----------------------------------
|
| + Label miss_force_generic;
|
| +
|
| + // This stub is meant to be tail-jumped to, the receiver must already
|
| + // have been verified by the caller to not be a smi.
|
| +
|
| + // Check that the key is a smi or a heap number convertible to a smi.
|
| + GenerateSmiKeyCheck(masm, r0, r4, r5, d1, d2, &miss_force_generic);
|
| +
|
| + // Get the elements array.
|
| + __ ldr(r2, FieldMemOperand(r1, JSObject::kElementsOffset));
|
| + __ AssertFastElements(r2);
|
| +
|
| + // Check that the key is within bounds.
|
| + __ ldr(r3, FieldMemOperand(r2, FixedArray::kLengthOffset));
|
| + __ cmp(r0, Operand(r3));
|
| + __ b(hs, &miss_force_generic);
|
| +
|
| + // Load the result and make sure it's not the hole.
|
| + __ add(r3, r2, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
|
| + STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2);
|
| + __ ldr(r4,
|
| + MemOperand(r3, r0, LSL, kPointerSizeLog2 - kSmiTagSize));
|
| + __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
|
| + __ cmp(r4, ip);
|
| + __ b(eq, &miss_force_generic);
|
| + __ mov(r0, r4);
|
| + __ Ret();
|
| +
|
| + __ bind(&miss_force_generic);
|
| + Handle<Code> stub =
|
| + masm->isolate()->builtins()->KeyedLoadIC_MissForceGeneric();
|
| + __ Jump(stub, RelocInfo::CODE_TARGET);
|
| +}
|
| +
|
| +
|
| +void KeyedLoadStubCompiler::GenerateLoadFastDoubleElement(
|
| + MacroAssembler* masm) {
|
| + // ----------- S t a t e -------------
|
| + // -- lr : return address
|
| + // -- r0 : key
|
| + // -- r1 : receiver
|
| + // -----------------------------------
|
| + Label miss_force_generic, slow_allocate_heapnumber;
|
| +
|
| + Register key_reg = r0;
|
| + Register receiver_reg = r1;
|
| + Register elements_reg = r2;
|
| + Register heap_number_reg = r2;
|
| + Register indexed_double_offset = r3;
|
| + Register scratch = r4;
|
| + Register scratch2 = r5;
|
| + Register scratch3 = r6;
|
| + Register heap_number_map = r7;
|
| +
|
| + // This stub is meant to be tail-jumped to, the receiver must already
|
| + // have been verified by the caller to not be a smi.
|
| +
|
| + // Check that the key is a smi or a heap number convertible to a smi.
|
| + GenerateSmiKeyCheck(masm, key_reg, r4, r5, d1, d2, &miss_force_generic);
|
| +
|
| + // Get the elements array.
|
| + __ ldr(elements_reg,
|
| + FieldMemOperand(receiver_reg, JSObject::kElementsOffset));
|
| +
|
| + // Check that the key is within bounds.
|
| + __ ldr(scratch, FieldMemOperand(elements_reg, FixedArray::kLengthOffset));
|
| + __ cmp(key_reg, Operand(scratch));
|
| + __ b(hs, &miss_force_generic);
|
| +
|
| + // Load the upper word of the double in the fixed array and test for NaN.
|
| + __ add(indexed_double_offset, elements_reg,
|
| + Operand(key_reg, LSL, kDoubleSizeLog2 - kSmiTagSize));
|
| + uint32_t upper_32_offset = FixedArray::kHeaderSize + sizeof(kHoleNanLower32);
|
| + __ ldr(scratch, FieldMemOperand(indexed_double_offset, upper_32_offset));
|
| + __ cmp(scratch, Operand(kHoleNanUpper32));
|
| + __ b(&miss_force_generic, eq);
|
| +
|
| + // Non-NaN. Allocate a new heap number and copy the double value into it.
|
| + __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
|
| + __ AllocateHeapNumber(heap_number_reg, scratch2, scratch3,
|
| + heap_number_map, &slow_allocate_heapnumber, TAG_RESULT);
|
| +
|
| + // Don't need to reload the upper 32 bits of the double, it's already in
|
| + // scratch.
|
| + __ str(scratch, FieldMemOperand(heap_number_reg,
|
| + HeapNumber::kExponentOffset));
|
| + __ ldr(scratch, FieldMemOperand(indexed_double_offset,
|
| + FixedArray::kHeaderSize));
|
| + __ str(scratch, FieldMemOperand(heap_number_reg,
|
| + HeapNumber::kMantissaOffset));
|
| +
|
| + __ mov(r0, heap_number_reg);
|
| + __ Ret();
|
| +
|
| + __ bind(&slow_allocate_heapnumber);
|
| + Handle<Code> slow_ic =
|
| + masm->isolate()->builtins()->KeyedLoadIC_Slow();
|
| + __ Jump(slow_ic, RelocInfo::CODE_TARGET);
|
| +
|
| + __ bind(&miss_force_generic);
|
| + Handle<Code> miss_ic =
|
| + masm->isolate()->builtins()->KeyedLoadIC_MissForceGeneric();
|
| + __ Jump(miss_ic, RelocInfo::CODE_TARGET);
|
| +}
|
| +
|
| +
|
| void KeyedStoreStubCompiler::GenerateStoreFastElement(
|
| MacroAssembler* masm,
|
| bool is_js_array,
|
|
|