Index: ui/gfx/transform.cc |
diff --git a/ui/gfx/transform.cc b/ui/gfx/transform.cc |
index b75bb7fb419113197228c69c6e699521fb904188..e65592dd03381364fcf1327f581eaf123fd46fe0 100644 |
--- a/ui/gfx/transform.cc |
+++ b/ui/gfx/transform.cc |
@@ -270,25 +270,41 @@ bool Transform::IsInvertible() const { |
} |
bool Transform::IsBackFaceVisible() const { |
- // Compute whether a layer with a forward-facing normal of (0, 0, 1) would |
- // have its back face visible after applying the transform. |
+ // Compute whether a layer with a forward-facing normal of (0, 0, 1, 0) |
+ // would have its back face visible after applying the transform. |
// |
// This is done by transforming the normal and seeing if the resulting z |
// value is positive or negative. However, note that transforming a normal |
// actually requires using the inverse-transpose of the original transform. |
+ // |
+ // We can avoid inverting and transposing the matrix since we know we want |
+ // to transform only the specific normal vector (0, 0, 1, 0). In this case, |
+ // we only need the 3rd row, 3rd column of the inverse-transpose. We can |
+ // calculate only the 3rd row 3rd column element of the inverse, skipping |
+ // everything else. |
+ // |
+ // For more information, refer to: |
+ // http://en.wikipedia.org/wiki/Invertible_matrix#Analytic_solution |
+ // |
- // TODO (shawnsingh) make this perform more efficiently - we do not |
- // actually need to instantiate/invert/transpose any matrices, exploiting the |
- // fact that we only need to transform (0, 0, 1, 0). |
- SkMatrix44 inverse; |
- bool invertible = matrix_.invert(&inverse); |
+ double determinant = matrix_.determinant(); |
- // Assume the transform does not apply if it's not invertible, so it's |
- // front face remains visible. |
- if (!invertible) |
+ // If matrix was not invertible, then just assume back face is not visible. |
+ if (std::abs(determinant) <= kTooSmallForDeterminant) |
return false; |
- return inverse.getDouble(2, 2) < 0; |
+ double cofactor33 = |
+ matrix_.getDouble(0,0) * matrix_.getDouble(1,1) * matrix_.getDouble(3,3) + |
sky
2012/11/29 23:58:35
It should be 4 space indented and spaces after the
|
+ matrix_.getDouble(0,1) * matrix_.getDouble(1,3) * matrix_.getDouble(3,0) + |
+ matrix_.getDouble(0,3) * matrix_.getDouble(1,0) * matrix_.getDouble(3,1) - |
+ matrix_.getDouble(0,0) * matrix_.getDouble(1,3) * matrix_.getDouble(3,1) - |
+ matrix_.getDouble(0,1) * matrix_.getDouble(1,0) * matrix_.getDouble(3,3) - |
+ matrix_.getDouble(0,3) * matrix_.getDouble(1,1) * matrix_.getDouble(3,0); |
+ |
+ // Technically the transformed z component is cofactor33 / determinant. But |
+ // we can avoid the costly division because we only care about the resulting |
+ // +/- sign; we can check this equivalently by multiplication. |
+ return cofactor33 * determinant < 0; |
} |
bool Transform::GetInverse(Transform* transform) const { |