Index: pkg/collection_helpers/lib/algorithms.dart |
diff --git a/pkg/collection_helpers/lib/algorithms.dart b/pkg/collection_helpers/lib/algorithms.dart |
index 057111a664625e3d4ab28a0f9421f03b340c73bb..85d15ba08e94745d0d48147d8cf119acdc70faf2 100644 |
--- a/pkg/collection_helpers/lib/algorithms.dart |
+++ b/pkg/collection_helpers/lib/algorithms.dart |
@@ -2,300 +2,7 @@ |
// for details. All rights reserved. Use of this source code is governed by a |
// BSD-style license that can be found in the LICENSE file. |
-/** |
- * Operations on collections. |
- */ |
+@deprecated |
library dart.collection_helpers.algorithms; |
-import "dart:math" show Random; |
- |
-/** Version of [binarySearch] optimized for comparable keys */ |
-int _comparableBinarySearch(List<Comparable> list, Comparable key) { |
- int min = 0; |
- int max = list.length; |
- while (min < max) { |
- int mid = min + ((max - min) >> 1); |
- var element = list[mid]; |
- int comp = element.compareTo(key); |
- if (comp == 0) return mid; |
- if (comp < 0) { |
- min = mid + 1; |
- } else { |
- max = mid; |
- } |
- } |
- return -1; |
-} |
- |
-/** |
- * Returns a position of the [key] in [sortedList], if it is there. |
- * |
- * If the list isn't sorted according to the [compare] function, the result |
- * is unpredictable. |
- * |
- * If [compare] is omitted, it defaults to calling [Comparable.compareTo] on |
- * the objects. |
- * |
- * Returns -1 if [key] is not in the list by default. |
- */ |
-int binarySearch(List sortedList, var key, |
- { int compare(var a, var b) }) { |
- if (compare == null) { |
- return _comparableBinarySearch(sortedList, key); |
- } |
- int min = 0; |
- int max = sortedList.length; |
- while (min < max) { |
- int mid = min + ((max - min) >> 1); |
- var element = sortedList[mid]; |
- int comp = compare(element, key); |
- if (comp == 0) return mid; |
- if (comp < 0) { |
- min = mid + 1; |
- } else { |
- max = mid; |
- } |
- } |
- return -1; |
-} |
- |
- |
-/** |
- * Shuffles a list randomly. |
- * |
- * A sub-range of a list can be shuffled by providing [start] and [end]. |
- */ |
-void shuffle(List list, [int start = 0, int end = null]) { |
- Random random = new Random(); |
- if (end == null) end = list.length; |
- int length = end - start; |
- while (length > 1) { |
- int pos = random.nextInt(length); |
- length--; |
- var tmp1 = list[start + pos]; |
- list[start + pos] = list[start + length]; |
- list[start + length] = tmp1; |
- } |
-} |
- |
- |
-/** |
- * Reverses a list, or a part of a list, in-place. |
- */ |
-void reverse(List list, [int start = 0, int end = null]) { |
- if (end == null) end = list.length; |
- _reverse(list, start, end); |
-} |
- |
-// Internal helper function that assumes valid arguments. |
-void _reverse(List list, int start, int end) { |
- for (int i = start, j = end - 1; i < j; i++, j--) { |
- var tmp = list[i]; |
- list[i] = list[j]; |
- list[j] = tmp; |
- } |
-} |
- |
-/** |
- * Sort a list using insertion sort. |
- * |
- * Insertion sort is a simple sorting algorithm. For `n` elements it does on |
- * the order of `n * log(n)` comparisons but up to `n` squared moves. The |
- * sorting is performed in-place, without using extra memory. |
- * |
- * For short lists the many moves have less impact than the simple algorithm, |
- * and it is often the favored sorting algorithm for short lists. |
- * |
- * This insertion sort is stable: Equal elements end up in the same order |
- * as they started in. |
- */ |
-void insertionSort(List list, |
- { int compare(a, b), |
- int start: 0, |
- int end: null }) { |
- // If the same method could have both positional and named optional |
- // parameters, this should be (list, [start, end], {compare}). |
- if (end == null) end = list.length; |
- if (compare == null) compare = Comparable.compare; |
- _insertionSort(list, compare, start, end, start + 1); |
-} |
- |
-/** |
- * Internal helper function that assumes arguments correct. |
- * |
- * Assumes that the elements up to [sortedUntil] (not inclusive) are |
- * already sorted. The [sortedUntil] values should always be at least |
- * `start + 1`. |
- */ |
-void _insertionSort(List list, int compare(a, b), int start, int end, |
- int sortedUntil) { |
- for (int pos = sortedUntil; pos < end; pos++) { |
- int min = start; |
- int max = pos; |
- var element = list[pos]; |
- while (min < max) { |
- int mid = min + ((max - min) >> 1); |
- int comparison = compare(element, list[mid]); |
- if (comparison < 0) { |
- max = mid; |
- } else { |
- min = mid + 1; |
- } |
- } |
- list.setRange(min + 1, pos + 1, list, min); |
- list[min] = element; |
- } |
-} |
- |
-/** Limit below which merge sort defaults to insertion sort. */ |
-const int _MERGE_SORT_LIMIT = 32; |
- |
-/** |
- * Sorts a list, or a range of a list, using the merge sort algorithm. |
- * |
- * Merge-sorting works by splitting the job into two parts, sorting each |
- * recursively, and then merging the two sorted parts. |
- * |
- * This takes on the order of `n * log(n)` comparisons and moves to sort |
- * `n` elements, but requires extra space of about the same size as the list |
- * being sorted. |
- * |
- * This merge sort is stable: Equal elements end up in the same order |
- * as they started in. |
- */ |
-void mergeSort(List list, {int start: 0, int end: null, int compare(a, b)}) { |
- if (end == null) end = list.length; |
- if (compare == null) compare = Comparable.compare; |
- int length = end - start; |
- if (length < 2) return; |
- if (length < _MERGE_SORT_LIMIT) { |
- _insertionSort(list, compare, start, end, start + 1); |
- return; |
- } |
- // Special case the first split instead of directly calling |
- // _mergeSort, because the _mergeSort requires its target to |
- // be different from its source, and it requires extra space |
- // of the same size as the list to sort. |
- // This split allows us to have only half as much extra space, |
- // and it ends up in the original place. |
- int middle = start + ((end - start) >> 1); |
- int firstLength = middle - start; |
- int secondLength = end - middle; |
- // secondLength is always the same as firstLength, or one greater. |
- List scratchSpace = new List(secondLength); |
- _mergeSort(list, compare, middle, end, scratchSpace, 0); |
- int firstTarget = end - firstLength; |
- _mergeSort(list, compare, start, middle, list, firstTarget); |
- _merge(compare, |
- list, firstTarget, end, |
- scratchSpace, 0, secondLength, |
- list, start); |
-} |
- |
-/** |
- * Performs an insertion sort into a potentially different list than the |
- * one containing the original values. |
- * |
- * It will work in-place as well. |
- */ |
-void _movingInsertionSort(List list, int compare(a, b), int start, int end, |
- List target, int targetOffset) { |
- int length = end - start; |
- if (length == 0) return; |
- target[targetOffset] = list[start]; |
- for (int i = 1; i < length; i++) { |
- var element = list[start + i]; |
- int min = targetOffset; |
- int max = targetOffset + i; |
- while (min < max) { |
- int mid = min + ((max - min) >> 1); |
- if (compare(element, target[mid]) < 0) { |
- max = mid; |
- } else { |
- min = mid + 1; |
- } |
- } |
- target.setRange(min + 1, targetOffset + i + 1, |
- target, min); |
- target[min] = element; |
- } |
-} |
- |
-/** |
- * Sorts [list] from [start] to [end] into [target] at [targetOffset]. |
- * |
- * The `target` list must be able to contain the range from `start` to `end` |
- * after `targetOffset`. |
- * |
- * Allows target to be the same list as [list], as long as it's not |
- * overlapping the `start..end` range. |
- */ |
-void _mergeSort(List list, int compare(a, b), int start, int end, |
- List target, int targetOffset) { |
- int length = end - start; |
- if (length < _MERGE_SORT_LIMIT) { |
- _movingInsertionSort(list, compare, start, end, target, targetOffset); |
- return; |
- } |
- int middle = start + (length >> 1); |
- int firstLength = middle - start; |
- int secondLength = end - middle; |
- // Here secondLength >= firstLength (differs by at most one). |
- int targetMiddle = targetOffset + firstLength; |
- // Sort the second half into the end of the target area. |
- _mergeSort(list, compare, middle, end, |
- target, targetMiddle); |
- // Sort the first half into the end of the source area. |
- _mergeSort(list, compare, start, middle, |
- list, middle); |
- // Merge the two parts into the target area. |
- _merge(compare, |
- list, middle, middle + firstLength, |
- target, targetMiddle, targetMiddle + secondLength, |
- target, targetOffset); |
-} |
- |
-/** |
- * Merges two lists into a target list. |
- * |
- * One of the input lists may be positioned at the end of the target |
- * list. |
- * |
- * For equal object, elements from [firstList] are always preferred. |
- * This allows the merge to be stable if the first list contains elements |
- * that started out earlier than the ones in [secondList] |
- */ |
-void _merge(int compare(a, b), |
- List firstList, int firstStart, int firstEnd, |
- List secondList, int secondStart, int secondEnd, |
- List target, int targetOffset) { |
- // No empty lists reaches here. |
- assert(firstStart < firstEnd); |
- assert(secondStart < secondEnd); |
- int cursor1 = firstStart; |
- int cursor2 = secondStart; |
- var firstElement = firstList[cursor1++]; |
- var secondElement = secondList[cursor2++]; |
- while (true) { |
- if (compare(firstElement, secondElement) <= 0) { |
- target[targetOffset++] = firstElement; |
- if (cursor1 == firstEnd) break; // Flushing second list after loop. |
- firstElement = firstList[cursor1++]; |
- } else { |
- target[targetOffset++] = secondElement; |
- if (cursor2 != secondEnd) { |
- secondElement = secondList[cursor2++]; |
- continue; |
- } |
- // Second list empties first. Flushing first list here. |
- target[targetOffset++] = firstElement; |
- target.setRange(targetOffset, targetOffset + (firstEnd - cursor1), |
- firstList, cursor1); |
- return; |
- } |
- } |
- // First list empties first. Reached by break above. |
- target[targetOffset++] = secondElement; |
- target.setRange(targetOffset, targetOffset + (secondEnd - cursor2), |
- secondList, cursor2); |
-} |
+export "package:collection/algorithms.dart"; |