| Index: skia/corecg/SkPoint.cpp
|
| ===================================================================
|
| --- skia/corecg/SkPoint.cpp (revision 16859)
|
| +++ skia/corecg/SkPoint.cpp (working copy)
|
| @@ -1,334 +0,0 @@
|
| -/*
|
| - * Copyright (C) 2006-2008 The Android Open Source Project
|
| - *
|
| - * Licensed under the Apache License, Version 2.0 (the "License");
|
| - * you may not use this file except in compliance with the License.
|
| - * You may obtain a copy of the License at
|
| - *
|
| - * http://www.apache.org/licenses/LICENSE-2.0
|
| - *
|
| - * Unless required by applicable law or agreed to in writing, software
|
| - * distributed under the License is distributed on an "AS IS" BASIS,
|
| - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| - * See the License for the specific language governing permissions and
|
| - * limitations under the License.
|
| - */
|
| -
|
| -#include "SkPoint.h"
|
| -
|
| -void SkIPoint::rotateCW(SkIPoint* dst) const {
|
| - SkASSERT(dst);
|
| -
|
| - // use a tmp in case this == dst
|
| - int32_t tmp = fX;
|
| - dst->fX = -fY;
|
| - dst->fY = tmp;
|
| -}
|
| -
|
| -void SkIPoint::rotateCCW(SkIPoint* dst) const {
|
| - SkASSERT(dst);
|
| -
|
| - // use a tmp in case this == dst
|
| - int32_t tmp = fX;
|
| - dst->fX = fY;
|
| - dst->fY = -tmp;
|
| -}
|
| -
|
| -///////////////////////////////////////////////////////////////////////////////
|
| -
|
| -void SkPoint::rotateCW(SkPoint* dst) const {
|
| - SkASSERT(dst);
|
| -
|
| - // use a tmp in case this == dst
|
| - SkScalar tmp = fX;
|
| - dst->fX = -fY;
|
| - dst->fY = tmp;
|
| -}
|
| -
|
| -void SkPoint::rotateCCW(SkPoint* dst) const {
|
| - SkASSERT(dst);
|
| -
|
| - // use a tmp in case this == dst
|
| - SkScalar tmp = fX;
|
| - dst->fX = fY;
|
| - dst->fY = -tmp;
|
| -}
|
| -
|
| -void SkPoint::scale(SkScalar scale, SkPoint* dst) const {
|
| - SkASSERT(dst);
|
| - dst->set(SkScalarMul(fX, scale), SkScalarMul(fY, scale));
|
| -}
|
| -
|
| -#define kNearlyZero (SK_Scalar1 / 8092)
|
| -
|
| -bool SkPoint::normalize() {
|
| - return this->setLength(fX, fY, SK_Scalar1);
|
| -}
|
| -
|
| -bool SkPoint::setNormalize(SkScalar x, SkScalar y) {
|
| - return this->setLength(x, y, SK_Scalar1);
|
| -}
|
| -
|
| -bool SkPoint::setLength(SkScalar length) {
|
| - return this->setLength(fX, fY, length);
|
| -}
|
| -
|
| -#ifdef SK_SCALAR_IS_FLOAT
|
| -
|
| -SkScalar SkPoint::Length(SkScalar dx, SkScalar dy) {
|
| - return sk_float_sqrt(dx * dx + dy * dy);
|
| -}
|
| -
|
| -bool SkPoint::setLength(float x, float y, float length) {
|
| - float mag = sk_float_sqrt(x * x + y * y);
|
| - if (mag > kNearlyZero) {
|
| - length /= mag;
|
| - fX = x * length;
|
| - fY = y * length;
|
| - return true;
|
| - }
|
| - return false;
|
| -}
|
| -
|
| -#else
|
| -
|
| -#include "Sk64.h"
|
| -
|
| -SkScalar SkPoint::Length(SkScalar dx, SkScalar dy) {
|
| - Sk64 tmp1, tmp2;
|
| -
|
| - tmp1.setMul(dx, dx);
|
| - tmp2.setMul(dy, dy);
|
| - tmp1.add(tmp2);
|
| -
|
| - return tmp1.getSqrt();
|
| -}
|
| -
|
| -#ifdef SK_DEBUGx
|
| -static SkFixed fixlen(SkFixed x, SkFixed y) {
|
| - float fx = (float)x;
|
| - float fy = (float)y;
|
| -
|
| - return (int)floorf(sqrtf(fx*fx + fy*fy) + 0.5f);
|
| -}
|
| -#endif
|
| -
|
| -static inline uint32_t squarefixed(unsigned x) {
|
| - x >>= 16;
|
| - return x*x;
|
| -}
|
| -
|
| -#if 1 // Newton iter for setLength
|
| -
|
| -static inline unsigned invsqrt_iter(unsigned V, unsigned U) {
|
| - unsigned x = V * U >> 14;
|
| - x = x * U >> 14;
|
| - x = (3 << 14) - x;
|
| - x = (U >> 1) * x >> 14;
|
| - return x;
|
| -}
|
| -
|
| -static const uint16_t gInvSqrt14GuessTable[] = {
|
| - 0x4000, 0x3c57, 0x393e, 0x3695, 0x3441, 0x3235, 0x3061,
|
| - 0x2ebd, 0x2d41, 0x2be7, 0x2aaa, 0x2987, 0x287a, 0x2780,
|
| - 0x2698, 0x25be, 0x24f3, 0x2434, 0x2380, 0x22d6, 0x2235,
|
| - 0x219d, 0x210c, 0x2083, 0x2000, 0x1f82, 0x1f0b, 0x1e99,
|
| - 0x1e2b, 0x1dc2, 0x1d5d, 0x1cfc, 0x1c9f, 0x1c45, 0x1bee,
|
| - 0x1b9b, 0x1b4a, 0x1afc, 0x1ab0, 0x1a67, 0x1a20, 0x19dc,
|
| - 0x1999, 0x1959, 0x191a, 0x18dd, 0x18a2, 0x1868, 0x1830,
|
| - 0x17fa, 0x17c4, 0x1791, 0x175e, 0x172d, 0x16fd, 0x16ce
|
| -};
|
| -
|
| -#define BUILD_INVSQRT_TABLEx
|
| -#ifdef BUILD_INVSQRT_TABLE
|
| -static void build_invsqrt14_guess_table() {
|
| - for (int i = 8; i <= 63; i++) {
|
| - unsigned x = SkToU16((1 << 28) / SkSqrt32(i << 25));
|
| - printf("0x%x, ", x);
|
| - }
|
| - printf("\n");
|
| -}
|
| -#endif
|
| -
|
| -static unsigned fast_invsqrt(uint32_t x) {
|
| -#ifdef BUILD_INVSQRT_TABLE
|
| - unsigned top2 = x >> 25;
|
| - SkASSERT(top2 >= 8 && top2 <= 63);
|
| -
|
| - static bool gOnce;
|
| - if (!gOnce) {
|
| - build_invsqrt14_guess_table();
|
| - gOnce = true;
|
| - }
|
| -#endif
|
| -
|
| - unsigned V = x >> 14; // make V .14
|
| -
|
| - unsigned top = x >> 25;
|
| - SkASSERT(top >= 8 && top <= 63);
|
| - SkASSERT(top - 8 < SK_ARRAY_COUNT(gInvSqrt14GuessTable));
|
| - unsigned U = gInvSqrt14GuessTable[top - 8];
|
| -
|
| - U = invsqrt_iter(V, U);
|
| - return invsqrt_iter(V, U);
|
| -}
|
| -
|
| -/* We "normalize" x,y to be .14 values (so we can square them and stay 32bits.
|
| - Then we Newton-iterate this in .14 space to compute the invser-sqrt, and
|
| - scale by it at the end. The .14 space means we can execute our iterations
|
| - and stay in 32bits as well, making the multiplies much cheaper than calling
|
| - SkFixedMul.
|
| -*/
|
| -bool SkPoint::setLength(SkFixed ox, SkFixed oy, SkFixed length) {
|
| - if (ox == 0) {
|
| - if (oy == 0) {
|
| - return false;
|
| - }
|
| - this->set(0, SkApplySign(length, SkExtractSign(oy)));
|
| - return true;
|
| - }
|
| - if (oy == 0) {
|
| - this->set(SkApplySign(length, SkExtractSign(ox)), 0);
|
| - return true;
|
| - }
|
| -
|
| - unsigned x = SkAbs32(ox);
|
| - unsigned y = SkAbs32(oy);
|
| - int zeros = SkCLZ(x | y);
|
| -
|
| - // make x,y 1.14 values so our fast sqr won't overflow
|
| - if (zeros > 17) {
|
| - x <<= zeros - 17;
|
| - y <<= zeros - 17;
|
| - } else {
|
| - x >>= 17 - zeros;
|
| - y >>= 17 - zeros;
|
| - }
|
| - SkASSERT((x | y) <= 0x7FFF);
|
| -
|
| - unsigned invrt = fast_invsqrt(x*x + y*y);
|
| -
|
| - x = x * invrt >> 12;
|
| - y = y * invrt >> 12;
|
| -
|
| - if (length != SK_Fixed1) {
|
| - x = SkFixedMul(x, length);
|
| - y = SkFixedMul(y, length);
|
| - }
|
| - this->set(SkApplySign(x, SkExtractSign(ox)),
|
| - SkApplySign(y, SkExtractSign(oy)));
|
| - return true;
|
| -}
|
| -#else
|
| -/*
|
| - Normalize x,y, and then scale them by length.
|
| -
|
| - The obvious way to do this would be the following:
|
| - S64 tmp1, tmp2;
|
| - tmp1.setMul(x,x);
|
| - tmp2.setMul(y,y);
|
| - tmp1.add(tmp2);
|
| - len = tmp1.getSqrt();
|
| - x' = SkFixedDiv(x, len);
|
| - y' = SkFixedDiv(y, len);
|
| - This is fine, but slower than what we do below.
|
| -
|
| - The present technique does not compute the starting length, but
|
| - rather fiddles with x,y iteratively, all the while checking its
|
| - magnitude^2 (avoiding a sqrt).
|
| -
|
| - We normalize by first shifting x,y so that at least one of them
|
| - has bit 31 set (after taking the abs of them).
|
| - Then we loop, refining x,y by squaring them and comparing
|
| - against a very large 1.0 (1 << 28), and then adding or subtracting
|
| - a delta (which itself is reduced by half each time through the loop).
|
| - For speed we want the squaring to be with a simple integer mul. To keep
|
| - that from overflowing we shift our coordinates down until we are dealing
|
| - with at most 15 bits (2^15-1)^2 * 2 says withing 32 bits)
|
| - When our square is close to 1.0, we shift x,y down into fixed range.
|
| -*/
|
| -bool SkPoint::setLength(SkFixed ox, SkFixed oy, SkFixed length) {
|
| - if (ox == 0) {
|
| - if (oy == 0)
|
| - return false;
|
| - this->set(0, SkApplySign(length, SkExtractSign(oy)));
|
| - return true;
|
| - }
|
| - if (oy == 0) {
|
| - this->set(SkApplySign(length, SkExtractSign(ox)), 0);
|
| - return true;
|
| - }
|
| -
|
| - SkFixed x = SkAbs32(ox);
|
| - SkFixed y = SkAbs32(oy);
|
| -
|
| - // shift x,y so that the greater of them is 15bits (1.14 fixed point)
|
| - {
|
| - int shift = SkCLZ(x | y);
|
| - // make them .30
|
| - x <<= shift - 1;
|
| - y <<= shift - 1;
|
| - }
|
| -
|
| - SkFixed dx = x;
|
| - SkFixed dy = y;
|
| -
|
| - for (int i = 0; i < 17; i++) {
|
| - dx >>= 1;
|
| - dy >>= 1;
|
| -
|
| - U32 len2 = squarefixed(x) + squarefixed(y);
|
| - if (len2 >> 28) {
|
| - x -= dx;
|
| - y -= dy;
|
| - } else {
|
| - x += dx;
|
| - y += dy;
|
| - }
|
| - }
|
| - x >>= 14;
|
| - y >>= 14;
|
| -
|
| -#ifdef SK_DEBUGx // measure how far we are from unit-length
|
| - {
|
| - static int gMaxError;
|
| - static int gMaxDiff;
|
| -
|
| - SkFixed len = fixlen(x, y);
|
| - int err = len - SK_Fixed1;
|
| - err = SkAbs32(err);
|
| -
|
| - if (err > gMaxError) {
|
| - gMaxError = err;
|
| - SkDebugf("gMaxError %d\n", err);
|
| - }
|
| -
|
| - float fx = SkAbs32(ox)/65536.0f;
|
| - float fy = SkAbs32(oy)/65536.0f;
|
| - float mag = sqrtf(fx*fx + fy*fy);
|
| - fx /= mag;
|
| - fy /= mag;
|
| - SkFixed xx = (int)floorf(fx * 65536 + 0.5f);
|
| - SkFixed yy = (int)floorf(fy * 65536 + 0.5f);
|
| - err = SkMax32(SkAbs32(xx-x), SkAbs32(yy-y));
|
| - if (err > gMaxDiff) {
|
| - gMaxDiff = err;
|
| - SkDebugf("gMaxDiff %d\n", err);
|
| - }
|
| - }
|
| -#endif
|
| -
|
| - x = SkApplySign(x, SkExtractSign(ox));
|
| - y = SkApplySign(y, SkExtractSign(oy));
|
| - if (length != SK_Fixed1) {
|
| - x = SkFixedMul(x, length);
|
| - y = SkFixedMul(y, length);
|
| - }
|
| -
|
| - this->set(x, y);
|
| - return true;
|
| -}
|
| -#endif
|
| -
|
| -#endif
|
| -
|
|
|