| OLD | NEW |
| (Empty) |
| 1 /* | |
| 2 * Copyright (C) 2006-2008 The Android Open Source Project | |
| 3 * | |
| 4 * Licensed under the Apache License, Version 2.0 (the "License"); | |
| 5 * you may not use this file except in compliance with the License. | |
| 6 * You may obtain a copy of the License at | |
| 7 * | |
| 8 * http://www.apache.org/licenses/LICENSE-2.0 | |
| 9 * | |
| 10 * Unless required by applicable law or agreed to in writing, software | |
| 11 * distributed under the License is distributed on an "AS IS" BASIS, | |
| 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| 13 * See the License for the specific language governing permissions and | |
| 14 * limitations under the License. | |
| 15 */ | |
| 16 | |
| 17 #include "SkPathMeasure.h" | |
| 18 #include "SkGeometry.h" | |
| 19 #include "SkPath.h" | |
| 20 #include "SkTSearch.h" | |
| 21 | |
| 22 // these must be 0,1,2 since they are in our 2-bit field | |
| 23 enum { | |
| 24 kLine_SegType, | |
| 25 kCloseLine_SegType, | |
| 26 kQuad_SegType, | |
| 27 kCubic_SegType | |
| 28 }; | |
| 29 | |
| 30 #define kMaxTValue 32767 | |
| 31 | |
| 32 static inline SkScalar tValue2Scalar(int t) { | |
| 33 SkASSERT((unsigned)t <= kMaxTValue); | |
| 34 | |
| 35 #ifdef SK_SCALAR_IS_FLOAT | |
| 36 return t * 3.05185e-5f; // t / 32767 | |
| 37 #else | |
| 38 return (t + (t >> 14)) << 1; | |
| 39 #endif | |
| 40 } | |
| 41 | |
| 42 SkScalar SkPathMeasure::Segment::getScalarT() const { | |
| 43 return tValue2Scalar(fTValue); | |
| 44 } | |
| 45 | |
| 46 const SkPathMeasure::Segment* SkPathMeasure::NextSegment(const Segment* seg) { | |
| 47 unsigned ptIndex = seg->fPtIndex; | |
| 48 | |
| 49 do { | |
| 50 ++seg; | |
| 51 } while (seg->fPtIndex == ptIndex); | |
| 52 return seg; | |
| 53 } | |
| 54 | |
| 55 /////////////////////////////////////////////////////////////////////////////// | |
| 56 | |
| 57 static inline int tspan_big_enough(int tspan) { | |
| 58 SkASSERT((unsigned)tspan <= kMaxTValue); | |
| 59 return tspan >> 10; | |
| 60 } | |
| 61 | |
| 62 #if 0 | |
| 63 static inline bool tangents_too_curvy(const SkVector& tan0, SkVector& tan1) { | |
| 64 static const SkScalar kFlatEnoughTangentDotProd = SK_Scalar1 * 99 / 100; | |
| 65 | |
| 66 SkASSERT(kFlatEnoughTangentDotProd > 0 && | |
| 67 kFlatEnoughTangentDotProd < SK_Scalar1); | |
| 68 | |
| 69 return SkPoint::DotProduct(tan0, tan1) < kFlatEnoughTangentDotProd; | |
| 70 } | |
| 71 #endif | |
| 72 | |
| 73 // can't use tangents, since we need [0..1..................2] to be seen | |
| 74 // as definitely not a line (it is when drawn, but not parametrically) | |
| 75 // so we compare midpoints | |
| 76 #define CHEAP_DIST_LIMIT (SK_Scalar1/2) // just made this value up | |
| 77 | |
| 78 static bool quad_too_curvy(const SkPoint pts[3]) { | |
| 79 // diff = (a/4 + b/2 + c/4) - (a/2 + c/2) | |
| 80 // diff = -a/4 + b/2 - c/4 | |
| 81 SkScalar dx = SkScalarHalf(pts[1].fX) - | |
| 82 SkScalarHalf(SkScalarHalf(pts[0].fX + pts[2].fX)); | |
| 83 SkScalar dy = SkScalarHalf(pts[1].fY) - | |
| 84 SkScalarHalf(SkScalarHalf(pts[0].fY + pts[2].fY)); | |
| 85 | |
| 86 SkScalar dist = SkMaxScalar(SkScalarAbs(dx), SkScalarAbs(dy)); | |
| 87 return dist > CHEAP_DIST_LIMIT; | |
| 88 } | |
| 89 | |
| 90 static bool cheap_dist_exceeds_limit(const SkPoint& pt, | |
| 91 SkScalar x, SkScalar y) { | |
| 92 SkScalar dist = SkMaxScalar(SkScalarAbs(x - pt.fX), SkScalarAbs(y - pt.fY)); | |
| 93 // just made up the 1/2 | |
| 94 return dist > CHEAP_DIST_LIMIT; | |
| 95 } | |
| 96 | |
| 97 static bool cubic_too_curvy(const SkPoint pts[4]) { | |
| 98 return cheap_dist_exceeds_limit(pts[1], | |
| 99 SkScalarInterp(pts[0].fX, pts[3].fX, SK_Scalar1/3), | |
| 100 SkScalarInterp(pts[0].fY, pts[3].fY, SK_Scalar1/3)) | |
| 101 || | |
| 102 cheap_dist_exceeds_limit(pts[2], | |
| 103 SkScalarInterp(pts[0].fX, pts[3].fX, SK_Scalar1*2/3), | |
| 104 SkScalarInterp(pts[0].fY, pts[3].fY, SK_Scalar1*2/3)); | |
| 105 } | |
| 106 | |
| 107 SkScalar SkPathMeasure::compute_quad_segs(const SkPoint pts[3], | |
| 108 SkScalar distance, int mint, int maxt, int ptIndex) { | |
| 109 if (tspan_big_enough(maxt - mint) && quad_too_curvy(pts)) { | |
| 110 SkPoint tmp[5]; | |
| 111 int halft = (mint + maxt) >> 1; | |
| 112 | |
| 113 SkChopQuadAtHalf(pts, tmp); | |
| 114 distance = this->compute_quad_segs(tmp, distance, mint, halft, ptIndex); | |
| 115 distance = this->compute_quad_segs(&tmp[2], distance, halft, maxt, ptInd
ex); | |
| 116 } else { | |
| 117 SkScalar d = SkPoint::Distance(pts[0], pts[2]); | |
| 118 SkASSERT(d >= 0); | |
| 119 if (!SkScalarNearlyZero(d)) { | |
| 120 distance += d; | |
| 121 Segment* seg = fSegments.append(); | |
| 122 seg->fDistance = distance; | |
| 123 seg->fPtIndex = ptIndex; | |
| 124 seg->fType = kQuad_SegType; | |
| 125 seg->fTValue = maxt; | |
| 126 } | |
| 127 } | |
| 128 return distance; | |
| 129 } | |
| 130 | |
| 131 SkScalar SkPathMeasure::compute_cubic_segs(const SkPoint pts[4], | |
| 132 SkScalar distance, int mint, int maxt, int ptIndex) { | |
| 133 if (tspan_big_enough(maxt - mint) && cubic_too_curvy(pts)) { | |
| 134 SkPoint tmp[7]; | |
| 135 int halft = (mint + maxt) >> 1; | |
| 136 | |
| 137 SkChopCubicAtHalf(pts, tmp); | |
| 138 distance = this->compute_cubic_segs(tmp, distance, mint, halft, ptIndex)
; | |
| 139 distance = this->compute_cubic_segs(&tmp[3], distance, halft, maxt, ptIn
dex); | |
| 140 } else { | |
| 141 SkScalar d = SkPoint::Distance(pts[0], pts[3]); | |
| 142 SkASSERT(d >= 0); | |
| 143 if (!SkScalarNearlyZero(d)) { | |
| 144 distance += d; | |
| 145 Segment* seg = fSegments.append(); | |
| 146 seg->fDistance = distance; | |
| 147 seg->fPtIndex = ptIndex; | |
| 148 seg->fType = kCubic_SegType; | |
| 149 seg->fTValue = maxt; | |
| 150 } | |
| 151 } | |
| 152 return distance; | |
| 153 } | |
| 154 | |
| 155 void SkPathMeasure::buildSegments() { | |
| 156 SkPoint pts[4]; | |
| 157 int ptIndex = fFirstPtIndex; | |
| 158 SkScalar d, distance = 0; | |
| 159 bool isClosed = fForceClosed; | |
| 160 bool firstMoveTo = ptIndex < 0; | |
| 161 Segment* seg; | |
| 162 | |
| 163 fSegments.reset(); | |
| 164 for (;;) { | |
| 165 switch (fIter.next(pts)) { | |
| 166 case SkPath::kMove_Verb: | |
| 167 if (!firstMoveTo) { | |
| 168 goto DONE; | |
| 169 } | |
| 170 ptIndex += 1; | |
| 171 firstMoveTo = false; | |
| 172 break; | |
| 173 | |
| 174 case SkPath::kLine_Verb: | |
| 175 d = SkPoint::Distance(pts[0], pts[1]); | |
| 176 SkASSERT(d >= 0); | |
| 177 if (!SkScalarNearlyZero(d)) { | |
| 178 distance += d; | |
| 179 seg = fSegments.append(); | |
| 180 seg->fDistance = distance; | |
| 181 seg->fPtIndex = ptIndex; | |
| 182 seg->fType = fIter.isCloseLine() ? | |
| 183 kCloseLine_SegType : kLine_SegType; | |
| 184 seg->fTValue = kMaxTValue; | |
| 185 } | |
| 186 ptIndex += !fIter.isCloseLine(); | |
| 187 break; | |
| 188 | |
| 189 case SkPath::kQuad_Verb: | |
| 190 distance = this->compute_quad_segs(pts, distance, 0, | |
| 191 kMaxTValue, ptIndex); | |
| 192 ptIndex += 2; | |
| 193 break; | |
| 194 | |
| 195 case SkPath::kCubic_Verb: | |
| 196 distance = this->compute_cubic_segs(pts, distance, 0, | |
| 197 kMaxTValue, ptIndex); | |
| 198 ptIndex += 3; | |
| 199 break; | |
| 200 | |
| 201 case SkPath::kClose_Verb: | |
| 202 isClosed = true; | |
| 203 break; | |
| 204 | |
| 205 case SkPath::kDone_Verb: | |
| 206 goto DONE; | |
| 207 } | |
| 208 } | |
| 209 DONE: | |
| 210 fLength = distance; | |
| 211 fIsClosed = isClosed; | |
| 212 fFirstPtIndex = ptIndex + 1; | |
| 213 | |
| 214 #ifdef SK_DEBUG | |
| 215 { | |
| 216 const Segment* seg = fSegments.begin(); | |
| 217 const Segment* stop = fSegments.end(); | |
| 218 unsigned ptIndex = 0; | |
| 219 SkScalar distance = 0; | |
| 220 | |
| 221 while (seg < stop) { | |
| 222 SkASSERT(seg->fDistance > distance); | |
| 223 SkASSERT(seg->fPtIndex >= ptIndex); | |
| 224 SkASSERT(seg->fTValue > 0); | |
| 225 | |
| 226 const Segment* s = seg; | |
| 227 while (s < stop - 1 && s[0].fPtIndex == s[1].fPtIndex) { | |
| 228 SkASSERT(s[0].fType == s[1].fType); | |
| 229 SkASSERT(s[0].fTValue < s[1].fTValue); | |
| 230 s += 1; | |
| 231 } | |
| 232 | |
| 233 distance = seg->fDistance; | |
| 234 ptIndex = seg->fPtIndex; | |
| 235 seg += 1; | |
| 236 } | |
| 237 // SkDebugf("\n"); | |
| 238 } | |
| 239 #endif | |
| 240 } | |
| 241 | |
| 242 // marked as a friend in SkPath.h | |
| 243 const SkPoint* sk_get_path_points(const SkPath& path, int index) { | |
| 244 return &path.fPts[index]; | |
| 245 } | |
| 246 | |
| 247 static void compute_pos_tan(const SkPath& path, int firstPtIndex, int ptIndex, | |
| 248 int segType, SkScalar t, SkPoint* pos, SkVector* tangent) { | |
| 249 const SkPoint* pts = sk_get_path_points(path, ptIndex); | |
| 250 | |
| 251 switch (segType) { | |
| 252 case kLine_SegType: | |
| 253 case kCloseLine_SegType: { | |
| 254 const SkPoint* endp = (segType == kLine_SegType) ? | |
| 255 &pts[1] : | |
| 256 sk_get_path_points(path, firstPtIndex); | |
| 257 | |
| 258 if (pos) { | |
| 259 pos->set(SkScalarInterp(pts[0].fX, endp->fX, t), | |
| 260 SkScalarInterp(pts[0].fY, endp->fY, t)); | |
| 261 } | |
| 262 if (tangent) { | |
| 263 tangent->setNormalize(endp->fX - pts[0].fX, endp->fY - pts[0].fY
); | |
| 264 } | |
| 265 break; | |
| 266 } | |
| 267 case kQuad_SegType: | |
| 268 SkEvalQuadAt(pts, t, pos, tangent); | |
| 269 if (tangent) { | |
| 270 tangent->normalize(); | |
| 271 } | |
| 272 break; | |
| 273 case kCubic_SegType: | |
| 274 SkEvalCubicAt(pts, t, pos, tangent, NULL); | |
| 275 if (tangent) { | |
| 276 tangent->normalize(); | |
| 277 } | |
| 278 break; | |
| 279 default: | |
| 280 SkASSERT(!"unknown segType"); | |
| 281 } | |
| 282 } | |
| 283 | |
| 284 static void seg_to(const SkPath& src, int firstPtIndex, int ptIndex, | |
| 285 int segType, SkScalar startT, SkScalar stopT, SkPath* dst) { | |
| 286 SkASSERT(startT >= 0 && startT <= SK_Scalar1); | |
| 287 SkASSERT(stopT >= 0 && stopT <= SK_Scalar1); | |
| 288 SkASSERT(startT <= stopT); | |
| 289 | |
| 290 if (SkScalarNearlyZero(stopT - startT)) { | |
| 291 return; | |
| 292 } | |
| 293 | |
| 294 const SkPoint* pts = sk_get_path_points(src, ptIndex); | |
| 295 SkPoint tmp0[7], tmp1[7]; | |
| 296 | |
| 297 switch (segType) { | |
| 298 case kLine_SegType: | |
| 299 case kCloseLine_SegType: { | |
| 300 const SkPoint* endp = (segType == kLine_SegType) ? | |
| 301 &pts[1] : | |
| 302 sk_get_path_points(src, firstPtIndex); | |
| 303 | |
| 304 if (stopT == kMaxTValue) { | |
| 305 dst->lineTo(*endp); | |
| 306 } else { | |
| 307 dst->lineTo(SkScalarInterp(pts[0].fX, endp->fX, stopT), | |
| 308 SkScalarInterp(pts[0].fY, endp->fY, stopT)); | |
| 309 } | |
| 310 break; | |
| 311 } | |
| 312 case kQuad_SegType: | |
| 313 if (startT == 0) { | |
| 314 if (stopT == SK_Scalar1) { | |
| 315 dst->quadTo(pts[1], pts[2]); | |
| 316 } else { | |
| 317 SkChopQuadAt(pts, tmp0, stopT); | |
| 318 dst->quadTo(tmp0[1], tmp0[2]); | |
| 319 } | |
| 320 } else { | |
| 321 SkChopQuadAt(pts, tmp0, startT); | |
| 322 if (stopT == SK_Scalar1) { | |
| 323 dst->quadTo(tmp0[3], tmp0[4]); | |
| 324 } else { | |
| 325 SkChopQuadAt(&tmp0[2], tmp1, SkScalarDiv(stopT - startT, | |
| 326 SK_Scalar1 - startT)); | |
| 327 dst->quadTo(tmp1[1], tmp1[2]); | |
| 328 } | |
| 329 } | |
| 330 break; | |
| 331 case kCubic_SegType: | |
| 332 if (startT == 0) { | |
| 333 if (stopT == SK_Scalar1) { | |
| 334 dst->cubicTo(pts[1], pts[2], pts[3]); | |
| 335 } else { | |
| 336 SkChopCubicAt(pts, tmp0, stopT); | |
| 337 dst->cubicTo(tmp0[1], tmp0[2], tmp0[3]); | |
| 338 } | |
| 339 } else { | |
| 340 SkChopCubicAt(pts, tmp0, startT); | |
| 341 if (stopT == SK_Scalar1) { | |
| 342 dst->cubicTo(tmp0[4], tmp0[5], tmp0[6]); | |
| 343 } else { | |
| 344 SkChopCubicAt(&tmp0[3], tmp1, SkScalarDiv(stopT - startT, | |
| 345 SK_Scalar1 - startT)); | |
| 346 dst->cubicTo(tmp1[1], tmp1[2], tmp1[3]); | |
| 347 } | |
| 348 } | |
| 349 break; | |
| 350 default: | |
| 351 SkASSERT(!"unknown segType"); | |
| 352 sk_throw(); | |
| 353 } | |
| 354 } | |
| 355 | |
| 356 //////////////////////////////////////////////////////////////////////////////// | |
| 357 //////////////////////////////////////////////////////////////////////////////// | |
| 358 | |
| 359 SkPathMeasure::SkPathMeasure() { | |
| 360 fPath = NULL; | |
| 361 fLength = -1; // signal we need to compute it | |
| 362 fForceClosed = false; | |
| 363 fFirstPtIndex = -1; | |
| 364 } | |
| 365 | |
| 366 SkPathMeasure::SkPathMeasure(const SkPath& path, bool forceClosed) { | |
| 367 fPath = &path; | |
| 368 fLength = -1; // signal we need to compute it | |
| 369 fForceClosed = forceClosed; | |
| 370 fFirstPtIndex = -1; | |
| 371 | |
| 372 fIter.setPath(path, forceClosed); | |
| 373 } | |
| 374 | |
| 375 SkPathMeasure::~SkPathMeasure() {} | |
| 376 | |
| 377 /** Assign a new path, or null to have none. | |
| 378 */ | |
| 379 void SkPathMeasure::setPath(const SkPath* path, bool forceClosed) { | |
| 380 fPath = path; | |
| 381 fLength = -1; // signal we need to compute it | |
| 382 fForceClosed = forceClosed; | |
| 383 fFirstPtIndex = -1; | |
| 384 | |
| 385 if (path) { | |
| 386 fIter.setPath(*path, forceClosed); | |
| 387 } | |
| 388 fSegments.reset(); | |
| 389 } | |
| 390 | |
| 391 SkScalar SkPathMeasure::getLength() { | |
| 392 if (fPath == NULL) { | |
| 393 return 0; | |
| 394 } | |
| 395 if (fLength < 0) { | |
| 396 this->buildSegments(); | |
| 397 } | |
| 398 SkASSERT(fLength >= 0); | |
| 399 return fLength; | |
| 400 } | |
| 401 | |
| 402 const SkPathMeasure::Segment* SkPathMeasure::distanceToSegment( | |
| 403 SkScalar distance, SkScalar* t) { | |
| 404 SkDEBUGCODE(SkScalar length = ) this->getLength(); | |
| 405 SkASSERT(distance >= 0 && distance <= length); | |
| 406 | |
| 407 const Segment* seg = fSegments.begin(); | |
| 408 int count = fSegments.count(); | |
| 409 | |
| 410 int index = SkTSearch<SkScalar>(&seg->fDistance, count, distance, | |
| 411 sizeof(Segment)); | |
| 412 // don't care if we hit an exact match or not, so we xor index if it is nega
tive | |
| 413 index ^= (index >> 31); | |
| 414 seg = &seg[index]; | |
| 415 | |
| 416 // now interpolate t-values with the prev segment (if possible) | |
| 417 SkScalar startT = 0, startD = 0; | |
| 418 // check if the prev segment is legal, and references the same set of points | |
| 419 if (index > 0) { | |
| 420 startD = seg[-1].fDistance; | |
| 421 if (seg[-1].fPtIndex == seg->fPtIndex) { | |
| 422 SkASSERT(seg[-1].fType == seg->fType); | |
| 423 startT = seg[-1].getScalarT(); | |
| 424 } | |
| 425 } | |
| 426 | |
| 427 SkASSERT(seg->getScalarT() > startT); | |
| 428 SkASSERT(distance >= startD); | |
| 429 SkASSERT(seg->fDistance > startD); | |
| 430 | |
| 431 *t = startT + SkScalarMulDiv(seg->getScalarT() - startT, | |
| 432 distance - startD, | |
| 433 seg->fDistance - startD); | |
| 434 return seg; | |
| 435 } | |
| 436 | |
| 437 bool SkPathMeasure::getPosTan(SkScalar distance, SkPoint* pos, | |
| 438 SkVector* tangent) { | |
| 439 SkASSERT(fPath); | |
| 440 if (fPath == NULL) { | |
| 441 EMPTY: | |
| 442 return false; | |
| 443 } | |
| 444 | |
| 445 SkScalar length = this->getLength(); // call this to force computing it | |
| 446 int count = fSegments.count(); | |
| 447 | |
| 448 if (count == 0 || length == 0) { | |
| 449 goto EMPTY; | |
| 450 } | |
| 451 | |
| 452 // pin the distance to a legal range | |
| 453 if (distance < 0) { | |
| 454 distance = 0; | |
| 455 } else if (distance > length) { | |
| 456 distance = length; | |
| 457 } | |
| 458 | |
| 459 SkScalar t; | |
| 460 const Segment* seg = this->distanceToSegment(distance, &t); | |
| 461 | |
| 462 compute_pos_tan(*fPath, fSegments[0].fPtIndex, seg->fPtIndex, seg->fType, | |
| 463 t, pos, tangent); | |
| 464 return true; | |
| 465 } | |
| 466 | |
| 467 bool SkPathMeasure::getMatrix(SkScalar distance, SkMatrix* matrix, | |
| 468 MatrixFlags flags) { | |
| 469 SkPoint position; | |
| 470 SkVector tangent; | |
| 471 | |
| 472 if (this->getPosTan(distance, &position, &tangent)) { | |
| 473 if (matrix) { | |
| 474 if (flags & kGetTangent_MatrixFlag) { | |
| 475 matrix->setSinCos(tangent.fY, tangent.fX, 0, 0); | |
| 476 } else { | |
| 477 matrix->reset(); | |
| 478 } | |
| 479 if (flags & kGetPosition_MatrixFlag) { | |
| 480 matrix->postTranslate(position.fX, position.fY); | |
| 481 } | |
| 482 } | |
| 483 return true; | |
| 484 } | |
| 485 return false; | |
| 486 } | |
| 487 | |
| 488 bool SkPathMeasure::getSegment(SkScalar startD, SkScalar stopD, SkPath* dst, | |
| 489 bool startWithMoveTo) { | |
| 490 SkASSERT(dst); | |
| 491 | |
| 492 SkScalar length = this->getLength(); // ensure we have built our segments | |
| 493 | |
| 494 if (startD < 0) { | |
| 495 startD = 0; | |
| 496 } | |
| 497 if (stopD > length) { | |
| 498 stopD = length; | |
| 499 } | |
| 500 if (startD >= stopD) { | |
| 501 return false; | |
| 502 } | |
| 503 | |
| 504 SkPoint p; | |
| 505 SkScalar startT, stopT; | |
| 506 const Segment* seg = this->distanceToSegment(startD, &startT); | |
| 507 const Segment* stopSeg = this->distanceToSegment(stopD, &stopT); | |
| 508 SkASSERT(seg <= stopSeg); | |
| 509 | |
| 510 if (startWithMoveTo) { | |
| 511 compute_pos_tan(*fPath, fSegments[0].fPtIndex, seg->fPtIndex, | |
| 512 seg->fType, startT, &p, NULL); | |
| 513 dst->moveTo(p); | |
| 514 } | |
| 515 | |
| 516 if (seg->fPtIndex == stopSeg->fPtIndex) { | |
| 517 seg_to(*fPath, fSegments[0].fPtIndex, seg->fPtIndex, seg->fType, | |
| 518 startT, stopT, dst); | |
| 519 } else { | |
| 520 do { | |
| 521 seg_to(*fPath, fSegments[0].fPtIndex, seg->fPtIndex, seg->fType, | |
| 522 startT, SK_Scalar1, dst); | |
| 523 seg = SkPathMeasure::NextSegment(seg); | |
| 524 startT = 0; | |
| 525 } while (seg->fPtIndex < stopSeg->fPtIndex); | |
| 526 seg_to(*fPath, fSegments[0].fPtIndex, seg->fPtIndex, seg->fType, | |
| 527 0, stopT, dst); | |
| 528 } | |
| 529 return true; | |
| 530 } | |
| 531 | |
| 532 bool SkPathMeasure::isClosed() { | |
| 533 (void)this->getLength(); | |
| 534 return fIsClosed; | |
| 535 } | |
| 536 | |
| 537 /** Move to the next contour in the path. Return true if one exists, or false if | |
| 538 we're done with the path. | |
| 539 */ | |
| 540 bool SkPathMeasure::nextContour() { | |
| 541 fLength = -1; | |
| 542 return this->getLength() > 0; | |
| 543 } | |
| 544 | |
| 545 /////////////////////////////////////////////////////////////////////////////// | |
| 546 /////////////////////////////////////////////////////////////////////////////// | |
| 547 | |
| 548 #ifdef SK_DEBUG | |
| 549 | |
| 550 void SkPathMeasure::dump() { | |
| 551 SkDebugf("pathmeas: length=%g, segs=%d\n", fLength, fSegments.count()); | |
| 552 | |
| 553 for (int i = 0; i < fSegments.count(); i++) { | |
| 554 const Segment* seg = &fSegments[i]; | |
| 555 SkDebugf("pathmeas: seg[%d] distance=%g, point=%d, t=%g, type=%d\n", | |
| 556 i, seg->fDistance, seg->fPtIndex, seg->getScalarT(), | |
| 557 seg->fType); | |
| 558 } | |
| 559 } | |
| 560 | |
| 561 void SkPathMeasure::UnitTest() { | |
| 562 #ifdef SK_SUPPORT_UNITTEST | |
| 563 SkPath path; | |
| 564 | |
| 565 path.moveTo(0, 0); | |
| 566 path.lineTo(SK_Scalar1, 0); | |
| 567 path.lineTo(SK_Scalar1, SK_Scalar1); | |
| 568 path.lineTo(0, SK_Scalar1); | |
| 569 | |
| 570 SkPathMeasure meas(path, true); | |
| 571 SkScalar length = meas.getLength(); | |
| 572 SkASSERT(length == SK_Scalar1*4); | |
| 573 | |
| 574 path.reset(); | |
| 575 path.moveTo(0, 0); | |
| 576 path.lineTo(SK_Scalar1*3, SK_Scalar1*4); | |
| 577 meas.setPath(&path, false); | |
| 578 length = meas.getLength(); | |
| 579 SkASSERT(length == SK_Scalar1*5); | |
| 580 | |
| 581 path.reset(); | |
| 582 path.addCircle(0, 0, SK_Scalar1); | |
| 583 meas.setPath(&path, true); | |
| 584 length = meas.getLength(); | |
| 585 SkDebugf("circle arc-length = %g\n", length); | |
| 586 | |
| 587 for (int i = 0; i < 8; i++) { | |
| 588 SkScalar d = length * i / 8; | |
| 589 SkPoint p; | |
| 590 SkVector v; | |
| 591 meas.getPosTan(d, &p, &v); | |
| 592 SkDebugf("circle arc-length=%g, pos[%g %g] tan[%g %g]\n", | |
| 593 d, p.fX, p.fY, v.fX, v.fY); | |
| 594 } | |
| 595 #endif | |
| 596 } | |
| 597 | |
| 598 #endif | |
| OLD | NEW |