| OLD | NEW |
| (Empty) |
| 1 /* libs/graphics/sgl/SkPath.cpp | |
| 2 ** | |
| 3 ** Copyright 2006, The Android Open Source Project | |
| 4 ** | |
| 5 ** Licensed under the Apache License, Version 2.0 (the "License"); | |
| 6 ** you may not use this file except in compliance with the License. | |
| 7 ** You may obtain a copy of the License at | |
| 8 ** | |
| 9 ** http://www.apache.org/licenses/LICENSE-2.0 | |
| 10 ** | |
| 11 ** Unless required by applicable law or agreed to in writing, software | |
| 12 ** distributed under the License is distributed on an "AS IS" BASIS, | |
| 13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| 14 ** See the License for the specific language governing permissions and | |
| 15 ** limitations under the License. | |
| 16 */ | |
| 17 | |
| 18 #include "SkPath.h" | |
| 19 #include "SkFlattenable.h" | |
| 20 #include "SkMath.h" | |
| 21 | |
| 22 //////////////////////////////////////////////////////////////////////////// | |
| 23 | |
| 24 /* This guy's constructor/destructor bracket a path editing operation. It is | |
| 25 used when we know the bounds of the amount we are going to add to the path | |
| 26 (usually a new contour, but not required). | |
| 27 | |
| 28 It captures some state about the path up front (i.e. if it already has a | |
| 29 cached bounds), and the if it can, it updates the cache bounds explicitly, | |
| 30 avoiding the need to revisit all of the points in computeBounds(). | |
| 31 */ | |
| 32 class SkAutoPathBoundsUpdate { | |
| 33 public: | |
| 34 SkAutoPathBoundsUpdate(SkPath* path, const SkRect& r) : fRect(r) { | |
| 35 this->init(path); | |
| 36 } | |
| 37 | |
| 38 SkAutoPathBoundsUpdate(SkPath* path, SkScalar left, SkScalar top, | |
| 39 SkScalar right, SkScalar bottom) { | |
| 40 fRect.set(left, top, right, bottom); | |
| 41 this->init(path); | |
| 42 } | |
| 43 | |
| 44 ~SkAutoPathBoundsUpdate() { | |
| 45 if (fEmpty) { | |
| 46 fPath->fFastBounds = fRect; | |
| 47 fPath->fFastBoundsIsDirty = false; | |
| 48 } else if (!fDirty) { | |
| 49 fPath->fFastBounds.join(fRect); | |
| 50 fPath->fFastBoundsIsDirty = false; | |
| 51 } | |
| 52 } | |
| 53 | |
| 54 private: | |
| 55 const SkPath* fPath; | |
| 56 SkRect fRect; | |
| 57 bool fDirty; | |
| 58 bool fEmpty; | |
| 59 | |
| 60 // returns true if we should proceed | |
| 61 void init(const SkPath* path) { | |
| 62 fPath = path; | |
| 63 fDirty = path->fFastBoundsIsDirty; | |
| 64 fEmpty = path->isEmpty(); | |
| 65 } | |
| 66 }; | |
| 67 | |
| 68 static void compute_fast_bounds(SkRect* bounds, const SkTDArray<SkPoint>& pts) { | |
| 69 if (pts.count() <= 1) { // we ignore just 1 point (moveto) | |
| 70 bounds->set(0, 0, 0, 0); | |
| 71 } else { | |
| 72 bounds->set(pts.begin(), pts.count()); | |
| 73 // SkDebugf("------- compute bounds %p %d", &pts, pts.count()); | |
| 74 } | |
| 75 } | |
| 76 | |
| 77 //////////////////////////////////////////////////////////////////////////// | |
| 78 | |
| 79 /* | |
| 80 Stores the verbs and points as they are given to us, with exceptions: | |
| 81 - we only record "Close" if it was immediately preceeded by Line | Quad | Cu
bic | |
| 82 - we insert a Move(0,0) if Line | Quad | Cubic is our first command | |
| 83 | |
| 84 The iterator does more cleanup, especially if forceClose == true | |
| 85 1. if we encounter Close, return a cons'd up Line() first (if the curr-pt !=
start-pt) | |
| 86 2. if we encounter Move without a preceeding Close, and forceClose is true,
goto #1 | |
| 87 3. if we encounter Line | Quad | Cubic after Close, cons up a Move | |
| 88 */ | |
| 89 | |
| 90 //////////////////////////////////////////////////////////////////////////// | |
| 91 | |
| 92 SkPath::SkPath() : fFastBoundsIsDirty(true), fFillType(kWinding_FillType) {} | |
| 93 | |
| 94 SkPath::SkPath(const SkPath& src) { | |
| 95 SkDEBUGCODE(src.validate();) | |
| 96 *this = src; | |
| 97 } | |
| 98 | |
| 99 SkPath::~SkPath() { | |
| 100 SkDEBUGCODE(this->validate();) | |
| 101 } | |
| 102 | |
| 103 SkPath& SkPath::operator=(const SkPath& src) { | |
| 104 SkDEBUGCODE(src.validate();) | |
| 105 | |
| 106 if (this != &src) { | |
| 107 fFastBounds = src.fFastBounds; | |
| 108 fPts = src.fPts; | |
| 109 fVerbs = src.fVerbs; | |
| 110 fFillType = src.fFillType; | |
| 111 fFastBoundsIsDirty = src.fFastBoundsIsDirty; | |
| 112 } | |
| 113 SkDEBUGCODE(this->validate();) | |
| 114 return *this; | |
| 115 } | |
| 116 | |
| 117 void SkPath::swap(SkPath& other) { | |
| 118 SkASSERT(&other != NULL); | |
| 119 | |
| 120 if (this != &other) { | |
| 121 SkTSwap<SkRect>(fFastBounds, other.fFastBounds); | |
| 122 fPts.swap(other.fPts); | |
| 123 fVerbs.swap(other.fVerbs); | |
| 124 SkTSwap<uint8_t>(fFillType, other.fFillType); | |
| 125 SkTSwap<uint8_t>(fFastBoundsIsDirty, other.fFastBoundsIsDirty); | |
| 126 } | |
| 127 } | |
| 128 | |
| 129 void SkPath::reset() { | |
| 130 SkDEBUGCODE(this->validate();) | |
| 131 | |
| 132 fPts.reset(); | |
| 133 fVerbs.reset(); | |
| 134 fFastBoundsIsDirty = true; | |
| 135 } | |
| 136 | |
| 137 void SkPath::rewind() { | |
| 138 SkDEBUGCODE(this->validate();) | |
| 139 | |
| 140 fPts.rewind(); | |
| 141 fVerbs.rewind(); | |
| 142 fFastBoundsIsDirty = true; | |
| 143 } | |
| 144 | |
| 145 bool SkPath::isEmpty() const { | |
| 146 SkDEBUGCODE(this->validate();) | |
| 147 | |
| 148 int count = fVerbs.count(); | |
| 149 return count == 0 || (count == 1 && fVerbs[0] == kMove_Verb); | |
| 150 } | |
| 151 | |
| 152 bool SkPath::isRect(SkRect*) const { | |
| 153 SkDEBUGCODE(this->validate();) | |
| 154 | |
| 155 SkASSERT(!"unimplemented"); | |
| 156 return false; | |
| 157 } | |
| 158 | |
| 159 int SkPath::getPoints(SkPoint copy[], int max) const { | |
| 160 SkDEBUGCODE(this->validate();) | |
| 161 | |
| 162 SkASSERT(max >= 0); | |
| 163 int count = fPts.count(); | |
| 164 if (copy && max > 0 && count > 0) { | |
| 165 memcpy(copy, fPts.begin(), sizeof(SkPoint) * SkMin32(max, count)); | |
| 166 } | |
| 167 return count; | |
| 168 } | |
| 169 | |
| 170 void SkPath::getLastPt(SkPoint* lastPt) const { | |
| 171 SkDEBUGCODE(this->validate();) | |
| 172 | |
| 173 if (lastPt) { | |
| 174 int count = fPts.count(); | |
| 175 if (count == 0) { | |
| 176 lastPt->set(0, 0); | |
| 177 } else { | |
| 178 *lastPt = fPts[count - 1]; | |
| 179 } | |
| 180 } | |
| 181 } | |
| 182 | |
| 183 void SkPath::setLastPt(SkScalar x, SkScalar y) { | |
| 184 SkDEBUGCODE(this->validate();) | |
| 185 | |
| 186 int count = fPts.count(); | |
| 187 if (count == 0) { | |
| 188 this->moveTo(x, y); | |
| 189 } else { | |
| 190 fPts[count - 1].set(x, y); | |
| 191 } | |
| 192 } | |
| 193 | |
| 194 #define ALWAYS_FAST_BOUNDS_FOR_NOW true | |
| 195 | |
| 196 void SkPath::computeBounds(SkRect* bounds, BoundsType bt) const { | |
| 197 SkDEBUGCODE(this->validate();) | |
| 198 | |
| 199 SkASSERT(bounds); | |
| 200 | |
| 201 // we BoundsType for now | |
| 202 | |
| 203 if (fFastBoundsIsDirty) { | |
| 204 fFastBoundsIsDirty = false; | |
| 205 compute_fast_bounds(&fFastBounds, fPts); | |
| 206 } | |
| 207 *bounds = fFastBounds; | |
| 208 } | |
| 209 | |
| 210 ////////////////////////////////////////////////////////////////////////////// | |
| 211 // Construction methods | |
| 212 | |
| 213 void SkPath::incReserve(U16CPU inc) { | |
| 214 SkDEBUGCODE(this->validate();) | |
| 215 | |
| 216 fVerbs.setReserve(fVerbs.count() + inc); | |
| 217 fPts.setReserve(fPts.count() + inc); | |
| 218 | |
| 219 SkDEBUGCODE(this->validate();) | |
| 220 } | |
| 221 | |
| 222 void SkPath::moveTo(SkScalar x, SkScalar y) { | |
| 223 SkDEBUGCODE(this->validate();) | |
| 224 | |
| 225 int vc = fVerbs.count(); | |
| 226 SkPoint* pt; | |
| 227 | |
| 228 if (vc > 0 && fVerbs[vc - 1] == kMove_Verb) { | |
| 229 pt = &fPts[fPts.count() - 1]; | |
| 230 } else { | |
| 231 pt = fPts.append(); | |
| 232 *fVerbs.append() = kMove_Verb; | |
| 233 } | |
| 234 pt->set(x, y); | |
| 235 | |
| 236 fFastBoundsIsDirty = true; | |
| 237 } | |
| 238 | |
| 239 void SkPath::rMoveTo(SkScalar x, SkScalar y) { | |
| 240 SkPoint pt; | |
| 241 this->getLastPt(&pt); | |
| 242 this->moveTo(pt.fX + x, pt.fY + y); | |
| 243 } | |
| 244 | |
| 245 void SkPath::lineTo(SkScalar x, SkScalar y) { | |
| 246 SkDEBUGCODE(this->validate();) | |
| 247 | |
| 248 if (fVerbs.count() == 0) { | |
| 249 fPts.append()->set(0, 0); | |
| 250 *fVerbs.append() = kMove_Verb; | |
| 251 } | |
| 252 fPts.append()->set(x, y); | |
| 253 *fVerbs.append() = kLine_Verb; | |
| 254 | |
| 255 fFastBoundsIsDirty = true; | |
| 256 } | |
| 257 | |
| 258 void SkPath::rLineTo(SkScalar x, SkScalar y) { | |
| 259 SkPoint pt; | |
| 260 this->getLastPt(&pt); | |
| 261 this->lineTo(pt.fX + x, pt.fY + y); | |
| 262 } | |
| 263 | |
| 264 void SkPath::quadTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2) { | |
| 265 SkDEBUGCODE(this->validate();) | |
| 266 | |
| 267 if (fVerbs.count() == 0) { | |
| 268 fPts.append()->set(0, 0); | |
| 269 *fVerbs.append() = kMove_Verb; | |
| 270 } | |
| 271 | |
| 272 SkPoint* pts = fPts.append(2); | |
| 273 pts[0].set(x1, y1); | |
| 274 pts[1].set(x2, y2); | |
| 275 *fVerbs.append() = kQuad_Verb; | |
| 276 | |
| 277 fFastBoundsIsDirty = true; | |
| 278 } | |
| 279 | |
| 280 void SkPath::rQuadTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2) { | |
| 281 SkPoint pt; | |
| 282 this->getLastPt(&pt); | |
| 283 this->quadTo(pt.fX + x1, pt.fY + y1, pt.fX + x2, pt.fY + y2); | |
| 284 } | |
| 285 | |
| 286 void SkPath::cubicTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2, | |
| 287 SkScalar x3, SkScalar y3) { | |
| 288 SkDEBUGCODE(this->validate();) | |
| 289 | |
| 290 if (fVerbs.count() == 0) { | |
| 291 fPts.append()->set(0, 0); | |
| 292 *fVerbs.append() = kMove_Verb; | |
| 293 } | |
| 294 SkPoint* pts = fPts.append(3); | |
| 295 pts[0].set(x1, y1); | |
| 296 pts[1].set(x2, y2); | |
| 297 pts[2].set(x3, y3); | |
| 298 *fVerbs.append() = kCubic_Verb; | |
| 299 | |
| 300 fFastBoundsIsDirty = true; | |
| 301 } | |
| 302 | |
| 303 void SkPath::rCubicTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2, | |
| 304 SkScalar x3, SkScalar y3) { | |
| 305 SkPoint pt; | |
| 306 this->getLastPt(&pt); | |
| 307 this->cubicTo(pt.fX + x1, pt.fY + y1, pt.fX + x2, pt.fY + y2, | |
| 308 pt.fX + x3, pt.fY + y3); | |
| 309 } | |
| 310 | |
| 311 void SkPath::close() { | |
| 312 SkDEBUGCODE(this->validate();) | |
| 313 | |
| 314 int count = fVerbs.count(); | |
| 315 if (count > 0) { | |
| 316 switch (fVerbs[count - 1]) { | |
| 317 case kLine_Verb: | |
| 318 case kQuad_Verb: | |
| 319 case kCubic_Verb: | |
| 320 *fVerbs.append() = kClose_Verb; | |
| 321 break; | |
| 322 default: | |
| 323 // don't add a close if the prev wasn't a primitive | |
| 324 break; | |
| 325 } | |
| 326 } | |
| 327 } | |
| 328 | |
| 329 /////////////////////////////////////////////////////////////////////////////// | |
| 330 | |
| 331 void SkPath::addRect(const SkRect& rect, Direction dir) { | |
| 332 this->addRect(rect.fLeft, rect.fTop, rect.fRight, rect.fBottom, dir); | |
| 333 } | |
| 334 | |
| 335 void SkPath::addRect(SkScalar left, SkScalar top, SkScalar right, | |
| 336 SkScalar bottom, Direction dir) { | |
| 337 SkAutoPathBoundsUpdate apbu(this, left, top, right, bottom); | |
| 338 | |
| 339 this->incReserve(5); | |
| 340 | |
| 341 this->moveTo(left, top); | |
| 342 if (dir == kCCW_Direction) { | |
| 343 this->lineTo(left, bottom); | |
| 344 this->lineTo(right, bottom); | |
| 345 this->lineTo(right, top); | |
| 346 } else { | |
| 347 this->lineTo(right, top); | |
| 348 this->lineTo(right, bottom); | |
| 349 this->lineTo(left, bottom); | |
| 350 } | |
| 351 this->close(); | |
| 352 } | |
| 353 | |
| 354 #define CUBIC_ARC_FACTOR ((SK_ScalarSqrt2 - SK_Scalar1) * 4 / 3) | |
| 355 | |
| 356 void SkPath::addRoundRect(const SkRect& rect, SkScalar rx, SkScalar ry, | |
| 357 Direction dir) { | |
| 358 SkAutoPathBoundsUpdate apbu(this, rect); | |
| 359 | |
| 360 SkScalar w = rect.width(); | |
| 361 SkScalar halfW = SkScalarHalf(w); | |
| 362 SkScalar h = rect.height(); | |
| 363 SkScalar halfH = SkScalarHalf(h); | |
| 364 | |
| 365 if (halfW <= 0 || halfH <= 0) { | |
| 366 return; | |
| 367 } | |
| 368 | |
| 369 bool skip_hori = rx >= halfW; | |
| 370 bool skip_vert = ry >= halfH; | |
| 371 | |
| 372 if (skip_hori && skip_vert) { | |
| 373 this->addOval(rect, dir); | |
| 374 return; | |
| 375 } | |
| 376 if (skip_hori) { | |
| 377 rx = halfW; | |
| 378 } else if (skip_vert) { | |
| 379 ry = halfH; | |
| 380 } | |
| 381 | |
| 382 SkScalar sx = SkScalarMul(rx, CUBIC_ARC_FACTOR); | |
| 383 SkScalar sy = SkScalarMul(ry, CUBIC_ARC_FACTOR); | |
| 384 | |
| 385 this->incReserve(17); | |
| 386 this->moveTo(rect.fRight - rx, rect.fTop); | |
| 387 if (dir == kCCW_Direction) { | |
| 388 if (!skip_hori) { | |
| 389 this->lineTo(rect.fLeft + rx, rect.fTop); // top | |
| 390 } | |
| 391 this->cubicTo(rect.fLeft + rx - sx, rect.fTop, | |
| 392 rect.fLeft, rect.fTop + ry - sy, | |
| 393 rect.fLeft, rect.fTop + ry); // top-left | |
| 394 if (!skip_vert) { | |
| 395 this->lineTo(rect.fLeft, rect.fBottom - ry); // left | |
| 396 } | |
| 397 this->cubicTo(rect.fLeft, rect.fBottom - ry + sy, | |
| 398 rect.fLeft + rx - sx, rect.fBottom, | |
| 399 rect.fLeft + rx, rect.fBottom); // bot-left | |
| 400 if (!skip_hori) { | |
| 401 this->lineTo(rect.fRight - rx, rect.fBottom); // bottom | |
| 402 } | |
| 403 this->cubicTo(rect.fRight - rx + sx, rect.fBottom, | |
| 404 rect.fRight, rect.fBottom - ry + sy, | |
| 405 rect.fRight, rect.fBottom - ry); // bot-right | |
| 406 if (!skip_vert) { | |
| 407 this->lineTo(rect.fRight, rect.fTop + ry); | |
| 408 } | |
| 409 this->cubicTo(rect.fRight, rect.fTop + ry - sy, | |
| 410 rect.fRight - rx + sx, rect.fTop, | |
| 411 rect.fRight - rx, rect.fTop); // top-right | |
| 412 } else { | |
| 413 this->cubicTo(rect.fRight - rx + sx, rect.fTop, | |
| 414 rect.fRight, rect.fTop + ry - sy, | |
| 415 rect.fRight, rect.fTop + ry); // top-right | |
| 416 if (!skip_vert) { | |
| 417 this->lineTo(rect.fRight, rect.fBottom - ry); | |
| 418 } | |
| 419 this->cubicTo(rect.fRight, rect.fBottom - ry + sy, | |
| 420 rect.fRight - rx + sx, rect.fBottom, | |
| 421 rect.fRight - rx, rect.fBottom); // bot-right | |
| 422 if (!skip_hori) { | |
| 423 this->lineTo(rect.fLeft + rx, rect.fBottom); // bottom | |
| 424 } | |
| 425 this->cubicTo(rect.fLeft + rx - sx, rect.fBottom, | |
| 426 rect.fLeft, rect.fBottom - ry + sy, | |
| 427 rect.fLeft, rect.fBottom - ry); // bot-left | |
| 428 if (!skip_vert) { | |
| 429 this->lineTo(rect.fLeft, rect.fTop + ry); // left | |
| 430 } | |
| 431 this->cubicTo(rect.fLeft, rect.fTop + ry - sy, | |
| 432 rect.fLeft + rx - sx, rect.fTop, | |
| 433 rect.fLeft + rx, rect.fTop); // top-left | |
| 434 if (!skip_hori) { | |
| 435 this->lineTo(rect.fRight - rx, rect.fTop); // top | |
| 436 } | |
| 437 } | |
| 438 this->close(); | |
| 439 } | |
| 440 | |
| 441 static void add_corner_arc(SkPath* path, const SkRect& rect, | |
| 442 SkScalar rx, SkScalar ry, int startAngle, | |
| 443 SkPath::Direction dir, bool forceMoveTo) { | |
| 444 rx = SkMinScalar(SkScalarHalf(rect.width()), rx); | |
| 445 ry = SkMinScalar(SkScalarHalf(rect.height()), ry); | |
| 446 | |
| 447 SkRect r; | |
| 448 r.set(-rx, -ry, rx, ry); | |
| 449 | |
| 450 switch (startAngle) { | |
| 451 case 0: | |
| 452 r.offset(rect.fRight - r.fRight, rect.fBottom - r.fBottom); | |
| 453 break; | |
| 454 case 90: | |
| 455 r.offset(rect.fLeft - r.fLeft, rect.fBottom - r.fBottom); | |
| 456 break; | |
| 457 case 180: r.offset(rect.fLeft - r.fLeft, rect.fTop - r.fTop); break; | |
| 458 case 270: r.offset(rect.fRight - r.fRight, rect.fTop - r.fTop); break; | |
| 459 default: SkASSERT(!"unexpected startAngle in add_corner_arc"); | |
| 460 } | |
| 461 | |
| 462 SkScalar start = SkIntToScalar(startAngle); | |
| 463 SkScalar sweep = SkIntToScalar(90); | |
| 464 if (SkPath::kCCW_Direction == dir) { | |
| 465 start += sweep; | |
| 466 sweep = -sweep; | |
| 467 } | |
| 468 | |
| 469 path->arcTo(r, start, sweep, forceMoveTo); | |
| 470 } | |
| 471 | |
| 472 void SkPath::addRoundRect(const SkRect& rect, const SkScalar rad[], | |
| 473 Direction dir) { | |
| 474 SkAutoPathBoundsUpdate apbu(this, rect); | |
| 475 | |
| 476 if (kCW_Direction == dir) { | |
| 477 add_corner_arc(this, rect, rad[0], rad[1], 180, dir, true); | |
| 478 add_corner_arc(this, rect, rad[2], rad[3], 270, dir, false); | |
| 479 add_corner_arc(this, rect, rad[4], rad[5], 0, dir, false); | |
| 480 add_corner_arc(this, rect, rad[6], rad[7], 90, dir, false); | |
| 481 } else { | |
| 482 add_corner_arc(this, rect, rad[0], rad[1], 180, dir, true); | |
| 483 add_corner_arc(this, rect, rad[6], rad[7], 90, dir, false); | |
| 484 add_corner_arc(this, rect, rad[4], rad[5], 0, dir, false); | |
| 485 add_corner_arc(this, rect, rad[2], rad[3], 270, dir, false); | |
| 486 } | |
| 487 this->close(); | |
| 488 } | |
| 489 | |
| 490 void SkPath::addOval(const SkRect& oval, Direction dir) { | |
| 491 SkAutoPathBoundsUpdate apbu(this, oval); | |
| 492 | |
| 493 SkScalar cx = oval.centerX(); | |
| 494 SkScalar cy = oval.centerY(); | |
| 495 SkScalar rx = SkScalarHalf(oval.width()); | |
| 496 SkScalar ry = SkScalarHalf(oval.height()); | |
| 497 #if 0 // these seem faster than using quads (1/2 the number of edges) | |
| 498 SkScalar sx = SkScalarMul(rx, CUBIC_ARC_FACTOR); | |
| 499 SkScalar sy = SkScalarMul(ry, CUBIC_ARC_FACTOR); | |
| 500 | |
| 501 this->incReserve(13); | |
| 502 this->moveTo(cx + rx, cy); | |
| 503 if (dir == kCCW_Direction) { | |
| 504 this->cubicTo(cx + rx, cy - sy, cx + sx, cy - ry, cx, cy - ry); | |
| 505 this->cubicTo(cx - sx, cy - ry, cx - rx, cy - sy, cx - rx, cy); | |
| 506 this->cubicTo(cx - rx, cy + sy, cx - sx, cy + ry, cx, cy + ry); | |
| 507 this->cubicTo(cx + sx, cy + ry, cx + rx, cy + sy, cx + rx, cy); | |
| 508 } else { | |
| 509 this->cubicTo(cx + rx, cy + sy, cx + sx, cy + ry, cx, cy + ry); | |
| 510 this->cubicTo(cx - sx, cy + ry, cx - rx, cy + sy, cx - rx, cy); | |
| 511 this->cubicTo(cx - rx, cy - sy, cx - sx, cy - ry, cx, cy - ry); | |
| 512 this->cubicTo(cx + sx, cy - ry, cx + rx, cy - sy, cx + rx, cy); | |
| 513 } | |
| 514 #else | |
| 515 SkScalar sx = SkScalarMul(rx, SK_ScalarTanPIOver8); | |
| 516 SkScalar sy = SkScalarMul(ry, SK_ScalarTanPIOver8); | |
| 517 SkScalar mx = SkScalarMul(rx, SK_ScalarRoot2Over2); | |
| 518 SkScalar my = SkScalarMul(ry, SK_ScalarRoot2Over2); | |
| 519 | |
| 520 this->incReserve(17); // 8 quads + close | |
| 521 this->moveTo(cx + rx, cy); | |
| 522 if (dir == kCCW_Direction) { | |
| 523 this->quadTo(cx + rx, cy - sy, cx + mx, cy - my); | |
| 524 this->quadTo(cx + sx, cy - ry, cx + 0, cy - ry); | |
| 525 this->quadTo(cx - sx, cy - ry, cx - mx, cy - my); | |
| 526 this->quadTo(cx - rx, cy - sy, cx - rx, cy - 0); | |
| 527 this->quadTo(cx - rx, cy + sy, cx - mx, cy + my); | |
| 528 this->quadTo(cx - sx, cy + ry, cx - 0, cy + ry); | |
| 529 this->quadTo(cx + sx, cy + ry, cx + mx, cy + my); | |
| 530 this->quadTo(cx + rx, cy + sy, cx + rx, cy + 0); | |
| 531 } else { | |
| 532 this->quadTo(cx + rx, cy + sy, cx + mx, cy + my); | |
| 533 this->quadTo(cx + sx, cy + ry, cx - 0, cy + ry); | |
| 534 this->quadTo(cx - sx, cy + ry, cx - mx, cy + my); | |
| 535 this->quadTo(cx - rx, cy + sy, cx - rx, cy - 0); | |
| 536 this->quadTo(cx - rx, cy - sy, cx - mx, cy - my); | |
| 537 this->quadTo(cx - sx, cy - ry, cx + 0, cy - ry); | |
| 538 this->quadTo(cx + sx, cy - ry, cx + mx, cy - my); | |
| 539 this->quadTo(cx + rx, cy - sy, cx + rx, cy + 0); | |
| 540 } | |
| 541 #endif | |
| 542 this->close(); | |
| 543 } | |
| 544 | |
| 545 void SkPath::addCircle(SkScalar x, SkScalar y, SkScalar r, Direction dir) { | |
| 546 if (r > 0) { | |
| 547 SkRect rect; | |
| 548 rect.set(x - r, y - r, x + r, y + r); | |
| 549 this->addOval(rect, dir); | |
| 550 } | |
| 551 } | |
| 552 | |
| 553 #include "SkGeometry.h" | |
| 554 | |
| 555 static int build_arc_points(const SkRect& oval, SkScalar startAngle, | |
| 556 SkScalar sweepAngle, | |
| 557 SkPoint pts[kSkBuildQuadArcStorage]) { | |
| 558 SkVector start, stop; | |
| 559 | |
| 560 start.fY = SkScalarSinCos(SkDegreesToRadians(startAngle), &start.fX); | |
| 561 stop.fY = SkScalarSinCos(SkDegreesToRadians(startAngle + sweepAngle), | |
| 562 &stop.fX); | |
| 563 | |
| 564 SkMatrix matrix; | |
| 565 | |
| 566 matrix.setScale(SkScalarHalf(oval.width()), SkScalarHalf(oval.height())); | |
| 567 matrix.postTranslate(oval.centerX(), oval.centerY()); | |
| 568 | |
| 569 return SkBuildQuadArc(start, stop, | |
| 570 sweepAngle > 0 ? kCW_SkRotationDirection : kCCW_SkRotationDirection, | |
| 571 &matrix, pts); | |
| 572 } | |
| 573 | |
| 574 void SkPath::arcTo(const SkRect& oval, SkScalar startAngle, SkScalar sweepAngle, | |
| 575 bool forceMoveTo) { | |
| 576 if (oval.width() < 0 || oval.height() < 0) { | |
| 577 return; | |
| 578 } | |
| 579 | |
| 580 SkPoint pts[kSkBuildQuadArcStorage]; | |
| 581 int count = build_arc_points(oval, startAngle, sweepAngle, pts); | |
| 582 SkASSERT((count & 1) == 1); | |
| 583 | |
| 584 if (fVerbs.count() == 0) { | |
| 585 forceMoveTo = true; | |
| 586 } | |
| 587 this->incReserve(count); | |
| 588 forceMoveTo ? this->moveTo(pts[0]) : this->lineTo(pts[0]); | |
| 589 for (int i = 1; i < count; i += 2) { | |
| 590 this->quadTo(pts[i], pts[i+1]); | |
| 591 } | |
| 592 } | |
| 593 | |
| 594 void SkPath::addArc(const SkRect& oval, SkScalar startAngle, | |
| 595 SkScalar sweepAngle) { | |
| 596 if (oval.isEmpty() || 0 == sweepAngle) { | |
| 597 return; | |
| 598 } | |
| 599 | |
| 600 const SkScalar kFullCircleAngle = SkIntToScalar(360); | |
| 601 | |
| 602 if (sweepAngle >= kFullCircleAngle || sweepAngle <= -kFullCircleAngle) { | |
| 603 this->addOval(oval, sweepAngle > 0 ? kCW_Direction : kCCW_Direction); | |
| 604 return; | |
| 605 } | |
| 606 | |
| 607 SkPoint pts[kSkBuildQuadArcStorage]; | |
| 608 int count = build_arc_points(oval, startAngle, sweepAngle, pts); | |
| 609 | |
| 610 this->incReserve(count); | |
| 611 this->moveTo(pts[0]); | |
| 612 for (int i = 1; i < count; i += 2) { | |
| 613 this->quadTo(pts[i], pts[i+1]); | |
| 614 } | |
| 615 } | |
| 616 | |
| 617 /* | |
| 618 Need to handle the case when the angle is sharp, and our computed end-points | |
| 619 for the arc go behind pt1 and/or p2... | |
| 620 */ | |
| 621 void SkPath::arcTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2, | |
| 622 SkScalar radius) { | |
| 623 SkVector before, after; | |
| 624 | |
| 625 // need to know our prev pt so we can construct tangent vectors | |
| 626 { | |
| 627 SkPoint start; | |
| 628 this->getLastPt(&start); | |
| 629 before.setNormalize(x1 - start.fX, y1 - start.fY); | |
| 630 after.setNormalize(x2 - x1, y2 - y1); | |
| 631 } | |
| 632 | |
| 633 SkScalar cosh = SkPoint::DotProduct(before, after); | |
| 634 SkScalar sinh = SkPoint::CrossProduct(before, after); | |
| 635 | |
| 636 if (SkScalarNearlyZero(sinh)) { // angle is too tight | |
| 637 return; | |
| 638 } | |
| 639 | |
| 640 SkScalar dist = SkScalarMulDiv(radius, SK_Scalar1 - cosh, sinh); | |
| 641 if (dist < 0) { | |
| 642 dist = -dist; | |
| 643 } | |
| 644 | |
| 645 SkScalar xx = x1 - SkScalarMul(dist, before.fX); | |
| 646 SkScalar yy = y1 - SkScalarMul(dist, before.fY); | |
| 647 SkRotationDirection arcDir; | |
| 648 | |
| 649 // now turn before/after into normals | |
| 650 if (sinh > 0) { | |
| 651 before.rotateCCW(); | |
| 652 after.rotateCCW(); | |
| 653 arcDir = kCW_SkRotationDirection; | |
| 654 } else { | |
| 655 before.rotateCW(); | |
| 656 after.rotateCW(); | |
| 657 arcDir = kCCW_SkRotationDirection; | |
| 658 } | |
| 659 | |
| 660 SkMatrix matrix; | |
| 661 SkPoint pts[kSkBuildQuadArcStorage]; | |
| 662 | |
| 663 matrix.setScale(radius, radius); | |
| 664 matrix.postTranslate(xx - SkScalarMul(radius, before.fX), | |
| 665 yy - SkScalarMul(radius, before.fY)); | |
| 666 | |
| 667 int count = SkBuildQuadArc(before, after, arcDir, &matrix, pts); | |
| 668 | |
| 669 this->incReserve(count); | |
| 670 // [xx,yy] == pts[0] | |
| 671 this->lineTo(xx, yy); | |
| 672 for (int i = 1; i < count; i += 2) { | |
| 673 this->quadTo(pts[i], pts[i+1]); | |
| 674 } | |
| 675 } | |
| 676 | |
| 677 /////////////////////////////////////////////////////////////////////////////// | |
| 678 | |
| 679 void SkPath::addPath(const SkPath& path, SkScalar dx, SkScalar dy) { | |
| 680 SkMatrix matrix; | |
| 681 | |
| 682 matrix.setTranslate(dx, dy); | |
| 683 this->addPath(path, matrix); | |
| 684 } | |
| 685 | |
| 686 void SkPath::addPath(const SkPath& path, const SkMatrix& matrix) { | |
| 687 this->incReserve(path.fPts.count()); | |
| 688 | |
| 689 Iter iter(path, false); | |
| 690 SkPoint pts[4]; | |
| 691 Verb verb; | |
| 692 | |
| 693 SkMatrix::MapPtsProc proc = matrix.getMapPtsProc(); | |
| 694 | |
| 695 while ((verb = iter.next(pts)) != kDone_Verb) { | |
| 696 switch (verb) { | |
| 697 case kMove_Verb: | |
| 698 proc(matrix, &pts[0], &pts[0], 1); | |
| 699 this->moveTo(pts[0]); | |
| 700 break; | |
| 701 case kLine_Verb: | |
| 702 proc(matrix, &pts[1], &pts[1], 1); | |
| 703 this->lineTo(pts[1]); | |
| 704 break; | |
| 705 case kQuad_Verb: | |
| 706 proc(matrix, &pts[1], &pts[1], 2); | |
| 707 this->quadTo(pts[1], pts[2]); | |
| 708 break; | |
| 709 case kCubic_Verb: | |
| 710 proc(matrix, &pts[1], &pts[1], 3); | |
| 711 this->cubicTo(pts[1], pts[2], pts[3]); | |
| 712 break; | |
| 713 case kClose_Verb: | |
| 714 this->close(); | |
| 715 break; | |
| 716 default: | |
| 717 SkASSERT(!"unknown verb"); | |
| 718 } | |
| 719 } | |
| 720 } | |
| 721 | |
| 722 /////////////////////////////////////////////////////////////////////////////// | |
| 723 | |
| 724 static const uint8_t gPtsInVerb[] = { | |
| 725 1, // kMove | |
| 726 1, // kLine | |
| 727 2, // kQuad | |
| 728 3, // kCubic | |
| 729 0, // kClose | |
| 730 0 // kDone | |
| 731 }; | |
| 732 | |
| 733 // ignore the initial moveto, and stop when the 1st contour ends | |
| 734 void SkPath::pathTo(const SkPath& path) { | |
| 735 int i, vcount = path.fVerbs.count(); | |
| 736 if (vcount == 0) { | |
| 737 return; | |
| 738 } | |
| 739 | |
| 740 this->incReserve(vcount); | |
| 741 | |
| 742 const uint8_t* verbs = path.fVerbs.begin(); | |
| 743 const SkPoint* pts = path.fPts.begin() + 1; // 1 for the initial moveTo | |
| 744 | |
| 745 SkASSERT(verbs[0] == kMove_Verb); | |
| 746 for (i = 1; i < vcount; i++) { | |
| 747 switch (verbs[i]) { | |
| 748 case kLine_Verb: | |
| 749 this->lineTo(pts[0].fX, pts[0].fY); | |
| 750 break; | |
| 751 case kQuad_Verb: | |
| 752 this->quadTo(pts[0].fX, pts[0].fY, pts[1].fX, pts[1].fY); | |
| 753 break; | |
| 754 case kCubic_Verb: | |
| 755 this->cubicTo(pts[0].fX, pts[0].fY, pts[1].fX, pts[1].fY, | |
| 756 pts[2].fX, pts[2].fY); | |
| 757 break; | |
| 758 case kClose_Verb: | |
| 759 return; | |
| 760 } | |
| 761 pts += gPtsInVerb[verbs[i]]; | |
| 762 } | |
| 763 } | |
| 764 | |
| 765 // ignore the last point of the 1st contour | |
| 766 void SkPath::reversePathTo(const SkPath& path) { | |
| 767 int i, vcount = path.fVerbs.count(); | |
| 768 if (vcount == 0) { | |
| 769 return; | |
| 770 } | |
| 771 | |
| 772 this->incReserve(vcount); | |
| 773 | |
| 774 const uint8_t* verbs = path.fVerbs.begin(); | |
| 775 const SkPoint* pts = path.fPts.begin(); | |
| 776 | |
| 777 SkASSERT(verbs[0] == kMove_Verb); | |
| 778 for (i = 1; i < vcount; i++) { | |
| 779 int n = gPtsInVerb[verbs[i]]; | |
| 780 if (n == 0) { | |
| 781 break; | |
| 782 } | |
| 783 pts += n; | |
| 784 } | |
| 785 | |
| 786 while (--i > 0) { | |
| 787 switch (verbs[i]) { | |
| 788 case kLine_Verb: | |
| 789 this->lineTo(pts[-1].fX, pts[-1].fY); | |
| 790 break; | |
| 791 case kQuad_Verb: | |
| 792 this->quadTo(pts[-1].fX, pts[-1].fY, pts[-2].fX, pts[-2].fY); | |
| 793 break; | |
| 794 case kCubic_Verb: | |
| 795 this->cubicTo(pts[-1].fX, pts[-1].fY, pts[-2].fX, pts[-2].fY, | |
| 796 pts[-3].fX, pts[-3].fY); | |
| 797 break; | |
| 798 default: | |
| 799 SkASSERT(!"bad verb"); | |
| 800 break; | |
| 801 } | |
| 802 pts -= gPtsInVerb[verbs[i]]; | |
| 803 } | |
| 804 } | |
| 805 | |
| 806 /////////////////////////////////////////////////////////////////////////////// | |
| 807 | |
| 808 void SkPath::offset(SkScalar dx, SkScalar dy, SkPath* dst) const { | |
| 809 SkMatrix matrix; | |
| 810 | |
| 811 matrix.setTranslate(dx, dy); | |
| 812 this->transform(matrix, dst); | |
| 813 } | |
| 814 | |
| 815 #include "SkGeometry.h" | |
| 816 | |
| 817 static void subdivide_quad_to(SkPath* path, const SkPoint pts[3], | |
| 818 int level = 2) { | |
| 819 if (--level >= 0) { | |
| 820 SkPoint tmp[5]; | |
| 821 | |
| 822 SkChopQuadAtHalf(pts, tmp); | |
| 823 subdivide_quad_to(path, &tmp[0], level); | |
| 824 subdivide_quad_to(path, &tmp[2], level); | |
| 825 } else { | |
| 826 path->quadTo(pts[1], pts[2]); | |
| 827 } | |
| 828 } | |
| 829 | |
| 830 static void subdivide_cubic_to(SkPath* path, const SkPoint pts[4], | |
| 831 int level = 2) { | |
| 832 if (--level >= 0) { | |
| 833 SkPoint tmp[7]; | |
| 834 | |
| 835 SkChopCubicAtHalf(pts, tmp); | |
| 836 subdivide_cubic_to(path, &tmp[0], level); | |
| 837 subdivide_cubic_to(path, &tmp[3], level); | |
| 838 } else { | |
| 839 path->cubicTo(pts[1], pts[2], pts[3]); | |
| 840 } | |
| 841 } | |
| 842 | |
| 843 void SkPath::transform(const SkMatrix& matrix, SkPath* dst) const { | |
| 844 SkDEBUGCODE(this->validate();) | |
| 845 if (dst == NULL) { | |
| 846 dst = (SkPath*)this; | |
| 847 } | |
| 848 | |
| 849 if (matrix.getType() & SkMatrix::kPerspective_Mask) { | |
| 850 SkPath tmp; | |
| 851 tmp.fFillType = fFillType; | |
| 852 | |
| 853 SkPath::Iter iter(*this, false); | |
| 854 SkPoint pts[4]; | |
| 855 SkPath::Verb verb; | |
| 856 | |
| 857 while ((verb = iter.next(pts)) != kDone_Verb) { | |
| 858 switch (verb) { | |
| 859 case kMove_Verb: | |
| 860 tmp.moveTo(pts[0]); | |
| 861 break; | |
| 862 case kLine_Verb: | |
| 863 tmp.lineTo(pts[1]); | |
| 864 break; | |
| 865 case kQuad_Verb: | |
| 866 subdivide_quad_to(&tmp, pts); | |
| 867 break; | |
| 868 case kCubic_Verb: | |
| 869 subdivide_cubic_to(&tmp, pts); | |
| 870 break; | |
| 871 case kClose_Verb: | |
| 872 tmp.close(); | |
| 873 break; | |
| 874 default: | |
| 875 SkASSERT(!"unknown verb"); | |
| 876 break; | |
| 877 } | |
| 878 } | |
| 879 | |
| 880 dst->swap(tmp); | |
| 881 matrix.mapPoints(dst->fPts.begin(), dst->fPts.count()); | |
| 882 } else { | |
| 883 // remember that dst might == this, so be sure to check | |
| 884 // fFastBoundsIsDirty before we set it | |
| 885 if (!fFastBoundsIsDirty && matrix.rectStaysRect() && fPts.count() > 1) { | |
| 886 // if we're empty, fastbounds should not be mapped | |
| 887 matrix.mapRect(&dst->fFastBounds, fFastBounds); | |
| 888 dst->fFastBoundsIsDirty = false; | |
| 889 } else { | |
| 890 dst->fFastBoundsIsDirty = true; | |
| 891 } | |
| 892 | |
| 893 if (this != dst) { | |
| 894 dst->fVerbs = fVerbs; | |
| 895 dst->fPts.setCount(fPts.count()); | |
| 896 dst->fFillType = fFillType; | |
| 897 } | |
| 898 matrix.mapPoints(dst->fPts.begin(), fPts.begin(), fPts.count()); | |
| 899 SkDEBUGCODE(dst->validate();) | |
| 900 } | |
| 901 } | |
| 902 | |
| 903 void SkPath::updateBoundsCache() const { | |
| 904 if (fFastBoundsIsDirty) { | |
| 905 SkRect r; | |
| 906 this->computeBounds(&r, kFast_BoundsType); | |
| 907 SkASSERT(!fFastBoundsIsDirty); | |
| 908 } | |
| 909 } | |
| 910 | |
| 911 /////////////////////////////////////////////////////////////////////////////// | |
| 912 /////////////////////////////////////////////////////////////////////////////// | |
| 913 | |
| 914 enum NeedMoveToState { | |
| 915 kAfterClose_NeedMoveToState, | |
| 916 kAfterCons_NeedMoveToState, | |
| 917 kAfterPrefix_NeedMoveToState | |
| 918 }; | |
| 919 | |
| 920 SkPath::Iter::Iter() { | |
| 921 #ifdef SK_DEBUG | |
| 922 fPts = NULL; | |
| 923 fMoveTo.fX = fMoveTo.fY = fLastPt.fX = fLastPt.fY = 0; | |
| 924 fForceClose = fNeedMoveTo = fCloseLine = false; | |
| 925 #endif | |
| 926 // need to init enough to make next() harmlessly return kDone_Verb | |
| 927 fVerbs = NULL; | |
| 928 fVerbStop = NULL; | |
| 929 fNeedClose = false; | |
| 930 } | |
| 931 | |
| 932 SkPath::Iter::Iter(const SkPath& path, bool forceClose) { | |
| 933 this->setPath(path, forceClose); | |
| 934 } | |
| 935 | |
| 936 void SkPath::Iter::setPath(const SkPath& path, bool forceClose) { | |
| 937 fPts = path.fPts.begin(); | |
| 938 fVerbs = path.fVerbs.begin(); | |
| 939 fVerbStop = path.fVerbs.end(); | |
| 940 fForceClose = SkToU8(forceClose); | |
| 941 fNeedClose = false; | |
| 942 fNeedMoveTo = kAfterPrefix_NeedMoveToState; | |
| 943 } | |
| 944 | |
| 945 bool SkPath::Iter::isClosedContour() const { | |
| 946 if (fVerbs == NULL || fVerbs == fVerbStop) { | |
| 947 return false; | |
| 948 } | |
| 949 if (fForceClose) { | |
| 950 return true; | |
| 951 } | |
| 952 | |
| 953 const uint8_t* verbs = fVerbs; | |
| 954 const uint8_t* stop = fVerbStop; | |
| 955 | |
| 956 if (kMove_Verb == *verbs) { | |
| 957 verbs += 1; // skip the initial moveto | |
| 958 } | |
| 959 | |
| 960 while (verbs < stop) { | |
| 961 unsigned v = *verbs++; | |
| 962 if (kMove_Verb == v) { | |
| 963 break; | |
| 964 } | |
| 965 if (kClose_Verb == v) { | |
| 966 return true; | |
| 967 } | |
| 968 } | |
| 969 return false; | |
| 970 } | |
| 971 | |
| 972 SkPath::Verb SkPath::Iter::autoClose(SkPoint pts[2]) { | |
| 973 if (fLastPt != fMoveTo) { | |
| 974 if (pts) { | |
| 975 pts[0] = fLastPt; | |
| 976 pts[1] = fMoveTo; | |
| 977 } | |
| 978 fLastPt = fMoveTo; | |
| 979 fCloseLine = true; | |
| 980 return kLine_Verb; | |
| 981 } | |
| 982 return kClose_Verb; | |
| 983 } | |
| 984 | |
| 985 bool SkPath::Iter::cons_moveTo(SkPoint pts[1]) { | |
| 986 if (fNeedMoveTo == kAfterClose_NeedMoveToState) { | |
| 987 if (pts) { | |
| 988 *pts = fMoveTo; | |
| 989 } | |
| 990 fNeedClose = fForceClose; | |
| 991 fNeedMoveTo = kAfterCons_NeedMoveToState; | |
| 992 fVerbs -= 1; | |
| 993 return true; | |
| 994 } | |
| 995 | |
| 996 if (fNeedMoveTo == kAfterCons_NeedMoveToState) { | |
| 997 if (pts) { | |
| 998 *pts = fMoveTo; | |
| 999 } | |
| 1000 fNeedMoveTo = kAfterPrefix_NeedMoveToState; | |
| 1001 } else { | |
| 1002 SkASSERT(fNeedMoveTo == kAfterPrefix_NeedMoveToState); | |
| 1003 if (pts) { | |
| 1004 *pts = fPts[-1]; | |
| 1005 } | |
| 1006 } | |
| 1007 return false; | |
| 1008 } | |
| 1009 | |
| 1010 SkPath::Verb SkPath::Iter::next(SkPoint pts[4]) { | |
| 1011 if (fVerbs == fVerbStop) { | |
| 1012 if (fNeedClose) { | |
| 1013 if (kLine_Verb == this->autoClose(pts)) { | |
| 1014 return kLine_Verb; | |
| 1015 } | |
| 1016 fNeedClose = false; | |
| 1017 return kClose_Verb; | |
| 1018 } | |
| 1019 return kDone_Verb; | |
| 1020 } | |
| 1021 | |
| 1022 unsigned verb = *fVerbs++; | |
| 1023 const SkPoint* srcPts = fPts; | |
| 1024 | |
| 1025 switch (verb) { | |
| 1026 case kMove_Verb: | |
| 1027 if (fNeedClose) { | |
| 1028 fVerbs -= 1; | |
| 1029 verb = this->autoClose(pts); | |
| 1030 if (verb == kClose_Verb) { | |
| 1031 fNeedClose = false; | |
| 1032 } | |
| 1033 return (Verb)verb; | |
| 1034 } | |
| 1035 if (fVerbs == fVerbStop) { // might be a trailing moveto | |
| 1036 return kDone_Verb; | |
| 1037 } | |
| 1038 fMoveTo = *srcPts; | |
| 1039 if (pts) { | |
| 1040 pts[0] = *srcPts; | |
| 1041 } | |
| 1042 srcPts += 1; | |
| 1043 fNeedMoveTo = kAfterCons_NeedMoveToState; | |
| 1044 fNeedClose = fForceClose; | |
| 1045 break; | |
| 1046 case kLine_Verb: | |
| 1047 if (this->cons_moveTo(pts)) { | |
| 1048 return kMove_Verb; | |
| 1049 } | |
| 1050 if (pts) { | |
| 1051 pts[1] = srcPts[0]; | |
| 1052 } | |
| 1053 fLastPt = srcPts[0]; | |
| 1054 fCloseLine = false; | |
| 1055 srcPts += 1; | |
| 1056 break; | |
| 1057 case kQuad_Verb: | |
| 1058 if (this->cons_moveTo(pts)) { | |
| 1059 return kMove_Verb; | |
| 1060 } | |
| 1061 if (pts) { | |
| 1062 memcpy(&pts[1], srcPts, 2 * sizeof(SkPoint)); | |
| 1063 } | |
| 1064 fLastPt = srcPts[1]; | |
| 1065 srcPts += 2; | |
| 1066 break; | |
| 1067 case kCubic_Verb: | |
| 1068 if (this->cons_moveTo(pts)) { | |
| 1069 return kMove_Verb; | |
| 1070 } | |
| 1071 if (pts) { | |
| 1072 memcpy(&pts[1], srcPts, 3 * sizeof(SkPoint)); | |
| 1073 } | |
| 1074 fLastPt = srcPts[2]; | |
| 1075 srcPts += 3; | |
| 1076 break; | |
| 1077 case kClose_Verb: | |
| 1078 verb = this->autoClose(pts); | |
| 1079 if (verb == kLine_Verb) { | |
| 1080 fVerbs -= 1; | |
| 1081 } else { | |
| 1082 fNeedClose = false; | |
| 1083 } | |
| 1084 fNeedMoveTo = kAfterClose_NeedMoveToState; | |
| 1085 break; | |
| 1086 } | |
| 1087 fPts = srcPts; | |
| 1088 return (Verb)verb; | |
| 1089 } | |
| 1090 | |
| 1091 /////////////////////////////////////////////////////////////////////////////// | |
| 1092 | |
| 1093 static bool exceeds_dist(const SkScalar p[], const SkScalar q[], SkScalar dist, | |
| 1094 int count) { | |
| 1095 SkASSERT(dist > 0); | |
| 1096 | |
| 1097 count *= 2; | |
| 1098 for (int i = 0; i < count; i++) { | |
| 1099 if (SkScalarAbs(p[i] - q[i]) > dist) { | |
| 1100 return true; | |
| 1101 } | |
| 1102 } | |
| 1103 return false; | |
| 1104 } | |
| 1105 | |
| 1106 static void subdivide_quad(SkPath* dst, const SkPoint pts[3], SkScalar dist, | |
| 1107 int subLevel = 4) { | |
| 1108 if (--subLevel >= 0 && exceeds_dist(&pts[0].fX, &pts[1].fX, dist, 4)) { | |
| 1109 SkPoint tmp[5]; | |
| 1110 SkChopQuadAtHalf(pts, tmp); | |
| 1111 | |
| 1112 subdivide_quad(dst, &tmp[0], dist, subLevel); | |
| 1113 subdivide_quad(dst, &tmp[2], dist, subLevel); | |
| 1114 } else { | |
| 1115 dst->quadTo(pts[1], pts[2]); | |
| 1116 } | |
| 1117 } | |
| 1118 | |
| 1119 static void subdivide_cubic(SkPath* dst, const SkPoint pts[4], SkScalar dist, | |
| 1120 int subLevel = 4) { | |
| 1121 if (--subLevel >= 0 && exceeds_dist(&pts[0].fX, &pts[1].fX, dist, 6)) { | |
| 1122 SkPoint tmp[7]; | |
| 1123 SkChopCubicAtHalf(pts, tmp); | |
| 1124 | |
| 1125 subdivide_cubic(dst, &tmp[0], dist, subLevel); | |
| 1126 subdivide_cubic(dst, &tmp[3], dist, subLevel); | |
| 1127 } else { | |
| 1128 dst->cubicTo(pts[1], pts[2], pts[3]); | |
| 1129 } | |
| 1130 } | |
| 1131 | |
| 1132 void SkPath::subdivide(SkScalar dist, bool bendLines, SkPath* dst) const { | |
| 1133 SkPath tmpPath; | |
| 1134 if (NULL == dst || this == dst) { | |
| 1135 dst = &tmpPath; | |
| 1136 } | |
| 1137 | |
| 1138 SkPath::Iter iter(*this, false); | |
| 1139 SkPoint pts[4]; | |
| 1140 | |
| 1141 for (;;) { | |
| 1142 switch (iter.next(pts)) { | |
| 1143 case SkPath::kMove_Verb: | |
| 1144 dst->moveTo(pts[0]); | |
| 1145 break; | |
| 1146 case SkPath::kLine_Verb: | |
| 1147 if (!bendLines) { | |
| 1148 dst->lineTo(pts[1]); | |
| 1149 break; | |
| 1150 } | |
| 1151 // construct a quad from the line | |
| 1152 pts[2] = pts[1]; | |
| 1153 pts[1].set(SkScalarAve(pts[0].fX, pts[2].fX), | |
| 1154 SkScalarAve(pts[0].fY, pts[2].fY)); | |
| 1155 // fall through to the quad case | |
| 1156 case SkPath::kQuad_Verb: | |
| 1157 subdivide_quad(dst, pts, dist); | |
| 1158 break; | |
| 1159 case SkPath::kCubic_Verb: | |
| 1160 subdivide_cubic(dst, pts, dist); | |
| 1161 break; | |
| 1162 case SkPath::kClose_Verb: | |
| 1163 dst->close(); | |
| 1164 break; | |
| 1165 case SkPath::kDone_Verb: | |
| 1166 goto DONE; | |
| 1167 } | |
| 1168 } | |
| 1169 DONE: | |
| 1170 if (&tmpPath == dst) { // i.e. the dst should be us | |
| 1171 dst->swap(*(SkPath*)this); | |
| 1172 } | |
| 1173 } | |
| 1174 | |
| 1175 /////////////////////////////////////////////////////////////////////// | |
| 1176 /* | |
| 1177 Format in flattened buffer: [ptCount, verbCount, pts[], verbs[]] | |
| 1178 */ | |
| 1179 | |
| 1180 void SkPath::flatten(SkFlattenableWriteBuffer& buffer) const { | |
| 1181 SkDEBUGCODE(this->validate();) | |
| 1182 | |
| 1183 buffer.write32(fPts.count()); | |
| 1184 buffer.write32(fVerbs.count()); | |
| 1185 buffer.write32(fFillType); | |
| 1186 buffer.writeMul4(fPts.begin(), sizeof(SkPoint) * fPts.count()); | |
| 1187 buffer.writePad(fVerbs.begin(), fVerbs.count()); | |
| 1188 } | |
| 1189 | |
| 1190 void SkPath::unflatten(SkFlattenableReadBuffer& buffer) { | |
| 1191 fPts.setCount(buffer.readS32()); | |
| 1192 fVerbs.setCount(buffer.readS32()); | |
| 1193 fFillType = buffer.readS32(); | |
| 1194 buffer.read(fPts.begin(), sizeof(SkPoint) * fPts.count()); | |
| 1195 buffer.read(fVerbs.begin(), fVerbs.count()); | |
| 1196 | |
| 1197 fFastBoundsIsDirty = true; | |
| 1198 | |
| 1199 SkDEBUGCODE(this->validate();) | |
| 1200 } | |
| 1201 | |
| 1202 /////////////////////////////////////////////////////////////////////////////// | |
| 1203 | |
| 1204 #include "SkString.h" | |
| 1205 #include "SkStream.h" | |
| 1206 | |
| 1207 static void write_scalar(SkWStream* stream, SkScalar value) { | |
| 1208 char buffer[SkStrAppendScalar_MaxSize]; | |
| 1209 char* stop = SkStrAppendScalar(buffer, value); | |
| 1210 stream->write(buffer, stop - buffer); | |
| 1211 } | |
| 1212 | |
| 1213 static void append_scalars(SkWStream* stream, char verb, const SkScalar data[], | |
| 1214 int count) { | |
| 1215 stream->write(&verb, 1); | |
| 1216 write_scalar(stream, data[0]); | |
| 1217 for (int i = 1; i < count; i++) { | |
| 1218 if (data[i] >= 0) { | |
| 1219 // can skip the separater if data[i] is negative | |
| 1220 stream->write(" ", 1); | |
| 1221 } | |
| 1222 write_scalar(stream, data[i]); | |
| 1223 } | |
| 1224 } | |
| 1225 | |
| 1226 void SkPath::toString(SkString* str) const { | |
| 1227 SkDynamicMemoryWStream stream; | |
| 1228 | |
| 1229 SkPath::Iter iter(*this, false); | |
| 1230 SkPoint pts[4]; | |
| 1231 | |
| 1232 for (;;) { | |
| 1233 switch (iter.next(pts)) { | |
| 1234 case SkPath::kMove_Verb: | |
| 1235 append_scalars(&stream, 'M', &pts[0].fX, 2); | |
| 1236 break; | |
| 1237 case SkPath::kLine_Verb: | |
| 1238 append_scalars(&stream, 'L', &pts[1].fX, 2); | |
| 1239 break; | |
| 1240 case SkPath::kQuad_Verb: | |
| 1241 append_scalars(&stream, 'Q', &pts[1].fX, 4); | |
| 1242 break; | |
| 1243 case SkPath::kCubic_Verb: | |
| 1244 append_scalars(&stream, 'C', &pts[1].fX, 6); | |
| 1245 break; | |
| 1246 case SkPath::kClose_Verb: | |
| 1247 stream.write("Z", 1); | |
| 1248 break; | |
| 1249 case SkPath::kDone_Verb: | |
| 1250 str->resize(stream.getOffset()); | |
| 1251 stream.copyTo(str->writable_str()); | |
| 1252 return; | |
| 1253 } | |
| 1254 } | |
| 1255 } | |
| 1256 | |
| 1257 /////////////////////////////////////////////////////////////////////////////// | |
| 1258 /////////////////////////////////////////////////////////////////////////////// | |
| 1259 | |
| 1260 #ifdef SK_DEBUG | |
| 1261 | |
| 1262 void SkPath::validate() const { | |
| 1263 SkASSERT(this != NULL); | |
| 1264 SkASSERT((fFillType & ~3) == 0); | |
| 1265 fPts.validate(); | |
| 1266 fVerbs.validate(); | |
| 1267 | |
| 1268 if (!fFastBoundsIsDirty) { | |
| 1269 SkRect bounds; | |
| 1270 compute_fast_bounds(&bounds, fPts); | |
| 1271 // can't call contains(), since it returns false if the rect is empty | |
| 1272 SkASSERT(fFastBounds.fLeft <= bounds.fLeft); | |
| 1273 SkASSERT(fFastBounds.fTop <= bounds.fTop); | |
| 1274 SkASSERT(fFastBounds.fRight >= bounds.fRight); | |
| 1275 SkASSERT(fFastBounds.fBottom >= bounds.fBottom); | |
| 1276 } | |
| 1277 } | |
| 1278 | |
| 1279 #if 0 // test to ensure that the iterator returns the same data as the path | |
| 1280 void SkPath::test() const | |
| 1281 { | |
| 1282 Iter iter(*this, false); | |
| 1283 SkPoint pts[4]; | |
| 1284 Verb verb; | |
| 1285 | |
| 1286 const uint8_t* verbs = fVerbs.begin(); | |
| 1287 const SkPoint* points = fPts.begin(); | |
| 1288 | |
| 1289 while ((verb = iter.next(pts)) != kDone_Verb) | |
| 1290 { | |
| 1291 SkASSERT(*verbs == verb); | |
| 1292 verbs += 1; | |
| 1293 | |
| 1294 int count; | |
| 1295 switch (verb) { | |
| 1296 case kMove_Verb: | |
| 1297 count = 1; | |
| 1298 break; | |
| 1299 case kLine_Verb: | |
| 1300 count = 2; | |
| 1301 break; | |
| 1302 case kQuad_Verb: | |
| 1303 count = 3; | |
| 1304 break; | |
| 1305 case kCubic_Verb: | |
| 1306 count = 4; | |
| 1307 break; | |
| 1308 case kClose_Verb: | |
| 1309 default: | |
| 1310 count = 0; | |
| 1311 break; | |
| 1312 } | |
| 1313 if (count > 1) | |
| 1314 points -= 1; | |
| 1315 SkASSERT(memcmp(pts, points, count * sizeof(SkPoint)) == 0); | |
| 1316 points += count; | |
| 1317 } | |
| 1318 | |
| 1319 int vc = fVerbs.count(), pc = fPts.count(); | |
| 1320 if (vc && fVerbs.begin()[vc-1] == kMove_Verb) | |
| 1321 { | |
| 1322 vc -= 1; | |
| 1323 pc -= 1; | |
| 1324 } | |
| 1325 SkASSERT(verbs - fVerbs.begin() == vc); | |
| 1326 SkASSERT(points - fPts.begin() == pc); | |
| 1327 } | |
| 1328 #endif | |
| 1329 | |
| 1330 void SkPath::dump(bool forceClose, const char title[]) const { | |
| 1331 Iter iter(*this, forceClose); | |
| 1332 SkPoint pts[4]; | |
| 1333 Verb verb; | |
| 1334 | |
| 1335 SkDebugf("path: forceClose=%s %s\n", forceClose ? "true" : "false", | |
| 1336 title ? title : ""); | |
| 1337 | |
| 1338 while ((verb = iter.next(pts)) != kDone_Verb) { | |
| 1339 switch (verb) { | |
| 1340 case kMove_Verb: | |
| 1341 #ifdef SK_CAN_USE_FLOAT | |
| 1342 SkDebugf(" path: moveTo [%g %g]\n", | |
| 1343 SkScalarToFloat(pts[0].fX), SkScalarToFloat(pts[0].fY)); | |
| 1344 #else | |
| 1345 SkDebugf(" path: moveTo [%x %x]\n", pts[0].fX, pts[0].fY); | |
| 1346 #endif | |
| 1347 break; | |
| 1348 case kLine_Verb: | |
| 1349 #ifdef SK_CAN_USE_FLOAT | |
| 1350 SkDebugf(" path: lineTo [%g %g]\n", | |
| 1351 SkScalarToFloat(pts[1].fX), SkScalarToFloat(pts[1].fY)); | |
| 1352 #else | |
| 1353 SkDebugf(" path: lineTo [%x %x]\n", pts[1].fX, pts[1].fY); | |
| 1354 #endif | |
| 1355 break; | |
| 1356 case kQuad_Verb: | |
| 1357 #ifdef SK_CAN_USE_FLOAT | |
| 1358 SkDebugf(" path: quadTo [%g %g] [%g %g]\n", | |
| 1359 SkScalarToFloat(pts[1].fX), SkScalarToFloat(pts[1].fY), | |
| 1360 SkScalarToFloat(pts[2].fX), SkScalarToFloat(pts[2].fY)); | |
| 1361 #else | |
| 1362 SkDebugf(" path: quadTo [%x %x] [%x %x]\n", | |
| 1363 pts[1].fX, pts[1].fY, pts[2].fX, pts[2].fY); | |
| 1364 #endif | |
| 1365 break; | |
| 1366 case kCubic_Verb: | |
| 1367 #ifdef SK_CAN_USE_FLOAT | |
| 1368 SkDebugf(" path: cubeTo [%g %g] [%g %g] [%g %g]\n", | |
| 1369 SkScalarToFloat(pts[1].fX), SkScalarToFloat(pts[1].fY), | |
| 1370 SkScalarToFloat(pts[2].fX), SkScalarToFloat(pts[2].fY), | |
| 1371 SkScalarToFloat(pts[3].fX), SkScalarToFloat(pts[3].fY)); | |
| 1372 #else | |
| 1373 SkDebugf(" path: cubeTo [%x %x] [%x %x] [%x %x]\n", | |
| 1374 pts[1].fX, pts[1].fY, pts[2].fX, pts[2].fY, | |
| 1375 pts[3].fX, pts[3].fY); | |
| 1376 #endif | |
| 1377 break; | |
| 1378 case kClose_Verb: | |
| 1379 SkDebugf(" path: close\n"); | |
| 1380 break; | |
| 1381 default: | |
| 1382 SkDebugf(" path: UNKNOWN VERB %d, aborting dump...\n", verb); | |
| 1383 verb = kDone_Verb; // stop the loop | |
| 1384 break; | |
| 1385 } | |
| 1386 } | |
| 1387 SkDebugf("path: done %s\n", title ? title : ""); | |
| 1388 } | |
| 1389 | |
| 1390 #include "SkTSort.h" | |
| 1391 | |
| 1392 void SkPath::UnitTest() { | |
| 1393 #ifdef SK_SUPPORT_UNITTEST | |
| 1394 SkPath p; | |
| 1395 SkRect r; | |
| 1396 | |
| 1397 r.set(0, 0, 10, 20); | |
| 1398 p.addRect(r); | |
| 1399 p.dump(false); | |
| 1400 p.dump(true); | |
| 1401 | |
| 1402 { | |
| 1403 int array[] = { 5, 3, 7, 2, 6, 1, 2, 9, 5, 0 }; | |
| 1404 int i; | |
| 1405 | |
| 1406 for (i = 0; i < (int)SK_ARRAY_COUNT(array); i++) { | |
| 1407 SkDebugf(" %d", array[i]); | |
| 1408 } | |
| 1409 SkDebugf("\n"); | |
| 1410 SkTHeapSort<int>(array, SK_ARRAY_COUNT(array)); | |
| 1411 for (i = 0; i < (int)SK_ARRAY_COUNT(array); i++) | |
| 1412 SkDebugf(" %d", array[i]); | |
| 1413 SkDebugf("\n"); | |
| 1414 } | |
| 1415 | |
| 1416 { | |
| 1417 SkPath p; | |
| 1418 SkPoint pt; | |
| 1419 | |
| 1420 p.moveTo(SK_Scalar1, 0); | |
| 1421 p.getLastPt(&pt); | |
| 1422 SkASSERT(pt.fX == SK_Scalar1); | |
| 1423 } | |
| 1424 #endif | |
| 1425 } | |
| 1426 | |
| 1427 #endif | |
| OLD | NEW |